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Social Networks 
Å >900 million users 

Å the 3rd  largest ñCountryò in the world 

Å More visitors than Google 

Å More than 5 billion images 

Å 2009, 2 billion tweets per quarter 

Å 2010, 4 billion tweets per quarter 

Å 2011,                tweets per quarter 

Å >500 million users 

Å 2012,                   users, 300% yearly increase 

Å Pinterest, with a traffic higher than Twitter and Google 

25 billion 

300 million 
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A Trillion Dollar Opportunity 

Social networks already become a bridge to connect our 

daily physical life and the virtual web space 
 

On2Off  [1] 

[1] Online to Offline is trillion dollar business 

http://techcrunch.com/2010/08/07/why-online2offline-commerce-is-a-trillion-dollar-opportunity/ 
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What are the fundamentally new 

things in social networks? 
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hyperlinks between web pages 

Examples: 

Google search (information retrieval) 

Web 1.0 
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Collaborative Web 

(1)personalized learning  

(2)collaborative filtering 

What are the fundamentally new 

things in social networks? 
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Social Web 

(1) interactions 

(2) information diffusion 
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Interactions 

1. Influence 

2. Collective 

intelligence 

influence 

What are the fundamentally new 

things in social networks? 
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Iceberg Model for Social Network 

User behaviors 

Network 

structure 

Social Tie 

Influence 

Collective 

Intelligence 

Information 

Diffusion 
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KDD 2010, PKDD 2011 (Best Paper Runnerup), WSDM 2012, DMKD 

Social Ties Analysis 

? 
Family 

Friend 

Collaborate with  

John Hopcroft, Jon Kleinberg (Cornell), Tiancheng Lou (Google) 
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Example: finding boss in email networks 
(PKDDô11, Best Paper Runnerup)

CEO 

Employee 

How to 

infer 
Manager 

Enterprise email network 

User interactions may form implicit groups  
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Networks 

ÅEpinions a network of product reviewers: 131,828 nodes (users) 

and 841,372 edges 

ï trust relationships between users 

ÅSlashdot: 82,144 users and 59,202 edges  

ïñfriendò relationships between users 

ÅMobile: 107 mobile users and 5,436 edges 

ï to infer friendships between users 

ÅCoauthor: 815,946 authors and 2,792,833 coauthor relationships 

ï to infer advisor-advisee relationships between coauthors 

ÅEnron: 151 Enron employees and 3572 edges 

ï to infer manager-subordinate relationships between users. 

Undirected network 

Directed network 
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KDD 2009, KDD 2011, DMKD 

Social Influence Analysis 

Collaborate with 

Jimeng Sun (IBM TJ Watson), Jiawei Han and Chi Wang (UIUC) 
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Ada

Frank

Eve David

Carol

Bob
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Marketer 

Alice 

Opinion Leader 

Find K nodes (users) in a social network that could maximize the 

spread of influence (Domingos, 01; Richardson, 02; Kempe, 03) 

Social influence 

Who are the 

opinion leaders 

in a community? 
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Ada
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Marketer 

Alice 

Opinion Leader 

Find K nodes (users) in a social network that could maximize the 

spread of influence (Domingos, 01; Richardson, 02; Kempe, 03) 

Who are the 

opinion leaders 

in a community? 

Challenge: How to quantify the strength of social 

influence between users? 

Social influence 
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Topic-level Social Influence Analysis 

Ada

Frank

Eve David

Carol

Bob

George

Input: coauthor  network

Ada

Frank

Eve David

Carol

George

Social influence anlaysis

ɗi1=.5

ɗi2=.5

Topic 

distribution
g(v1,y1,z)ɗi1

ɗi2

Topic 

distribution

Node factor function

f (yi,yj, z)

Edge factor function

rz

az

Output: topic-based social influences

Topic 1: Data mining

Topic 2: Database

Topics:

Bob

Output

Ada

Frank

Eve

BobGeorge

Topic 1: Data mining

Ada

Frank

Eve David

George

Topic 2: Database

. . .

2
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4
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Several key challenges: 

Å How to differentiate the social influences from different topics? 

Å How to incorporate different information (e.g., topic distribution 

and network structure) into a unified model̙ 

Å How to estimate the model on real-large networks? 

[1] J. Tang, J. Sun, C.Wang, and Z. Yang. Social influence analysis in largescale networks. In Proceedings of the 15th ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining (SIGKDDô09), pages 807ï816, 2009. 
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Emotion/Action Prediction:  
Can we infer usersô emotions and social action? 

Collaborate with 

Jinghai Rao (Nokia), Jimeng Sun (IBM TJ Watson), Yuan Zhang (MIT) 

KDD 2010, ICDM 2010, ACM TKDD, IEEE TAC 
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It's an emotional world we live in 

Emotion stimulates the mind 3000 times quicker 

than rational thought!!! 

It's an emotional world we live in! 

 

Six degree vs. Three degree [Nature; BMJ] 
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ñHappyò System 

Can we predict usersô 

emotion? 
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Observations 

 

Location correlation 

(Red-happy) 

Activity correlation  

KO 
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GYM 

Dorm 

The Old 

Summer 

Palace 

class

room 
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Observations (cont.) 

Social correlation 

(a) Social correlation (a) Implicit groups by emotions 

Temporal correlation 
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MoodCast: Dynamic Continuous Factor 

Graph Model 

Jennifer

Happy

Happy

location

Neutral

Neutral

call

sms

Mike

Allen

MikeAllen

Jennifer today

Jennifer 

yesterday

?

Jennifer   

tomorrow

MoodCast

Predict

Attr ibutes f(.)

Temporal 

correlation h(.)

Social correlation g(.)

Our solution 
 

1. We directly define continuous feature function; 
 

2. Use Metropolis-Hasting algorithm to learn the factor graph model. 
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John 

Time t 

John 

Time t+1 

Action Prediction̔ 

Will John post a tweet on ñHaiti Earthquakeò? 

Personal attributes: 

1. Always watch news 

2. Enjoy sports 

3.  é. 

     Influence 1 

    Action bias 4 

  Dependence 2 

Social Action Modeling and Prediction 

    Correlation 3 
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ñSocial Machineò 

ÅDeploy a ñmachineò on Weibo.com, the largest 
ñTwitterò in China; 

ÅAct as a person by auto follow/retweet/reply; 

ÅAttracted  thousands of fans. 


