Social Influence Analysis in Large Social Networks

Jie Tang
Tsinghua University

Collaborate with
Jimeng Sun (IBM), Wei Chen (MSRA)
John Hopcroft (Cornell), Jiawei Han and Chi Wang (UIUC)
Tiancheng Lou, Jing Zhang, Zhanpeng Fang, Lu Liu (THU)
说几个数字给您听...

Facebook:
- >1000 million users
- The 3rd largest “Country” in the world
- More visitors than Google
- >721 million users

Weibo (Sina Weibo):
- 2012, 400 million users, 300% yearly increase

Twitter:
- 2009, 2 billion tweets per quarter
- 2010, 4 billion tweets per quarter
- 2011, 25 billion tweets per quarter

Flickr:
- More than 6 billion images

Pinterest:
- Pinterest, with a traffic higher than Twitter and Google
再说几个数字给您听...

- **Per Second**: Email
 - 2.9 million emails per second

- **Per Minute**: Election Night 2012
 - a peak of 327,452 Tweets per minute

- **Per Month**: Facebook
 - “Waste” 700 billion minutes per month

- **Big Data**
 - 2.5×10^{18} Byte (2.5 EB) data per day
Social Web and Social Influence

1. Social Influence
2. Collective Intelligence
Social Influence

How researchers influence each other?

Author citation network

How people influences friends’ following behaviors?

Twitter’s following network
Following Influence Analysis
—A Case Study

Tiancheng Lou, Jie Tang, John Hopcroft, Zhanpeng Fang, Xiaowen Ding. Learning to Predict Reciprocity and Triadic Closure in Social Networks. ACM Transactions on Knowledge Discovery from Data (TKDD).
Following Influence on Twitter

When you follow a user in a social network, will the behavior influences your friends to also follow her?
Social Influence on User Following Behaviors in Social Networks

Jing Zhang, Zhanpeng Fang, Wei Chen, and Jie Tang. Social Influence on User Following Behaviors in Social Networks. (submitted)
Influence Test via Triad Formation

Two Categories of Following Influences

Follower diffusion Followee diffusion

\[t' = t + 1 \]

\[t = t + 1 \]

\[\rightarrow: \text{pre-existent relationships} \]
\[\rightarrow: \text{a new relationship added at } t \]
\[\rightarrow: \text{a possible relationship added at } t+1 \]
24 Triads in Following Influence

Follower diffusion

12 triads

Followee diffusion

12 triads
Twitter Data

• Twitter data
 – “Lady Gaga” -> 10K followers -> millions of followers;
 – 13,442,659 users and 56,893,234 following links.
 – 35,746,366 tweets.

• A complete dynamic network
 – 112,044 users and 468,238 follows
 – From 10/12/2010 to 12/23/2010
 – 13 timestamps by viewing every 4 days as a timestamp
Test 1: Timing Shuffle Test

- Method: Shuffle the timing of all the following relationships.

- Compare the rate under the original and shuffled dataset.

\[
\text{Rate} = \frac{\text{\#Triad} \mid 0 < t_{BC} - t_{AC} < \delta}{\text{\#Triad} \mid t_{BC} \text{ and } t_{AC} \text{ exist}}
\]

- Result

![Graphs showing rate comparison between original and shuffled datasets for follower and followee diffusion.](image)
Test 2: Influence Decay Test

- Method: Remove the time information t of AC

- Compare the probability of B following C under the original and w/o time dataset.

\[
P_{BC} = \frac{\#Triad \mid B \text{ follows } C}{\#Triad}
\]

- Result

![Graph showing comparison of P_{BC} in follower and followee diffusion between original and w/o time datasets.](image-url)
Test 3: Influence Propagation Test

- Method: Remove the relationship between A and B.

- Compare the rate under the original and w/o edge dataset.

- Result

\[
Rate = \frac{\#Triad \mid 0 < t_{BC} - t_{AC} < \delta}{\#Triad \mid t_{BC} \text{ and } t_{AC} \text{ exist}}
\]
Social Influence

1. Test
2. Measure
3. Application & Inf. max.
Observation: Following influence is more significant when there is a reciprocal relationship between B and A.
Explanation: “intimacy” is one of the three key factors that can increase people’s likelihood to respond to social influence (social impact theory).
Follower Diffusion: One-way Relationship

Observation: Following influence is more significant when there is a one-way relationship from A to C.

Explanation: Users usually prefer to check their followee’s followees, from whom they select those they may be interested to follow.
Reversed Relationship

Observation: Following influence is more significant when there is a reversed relationship from C to B.

Explanation: Users are highly encouraged to follow their followers.
Social Theories: Structural Balance[1]

Social Balance: my friend’s friend is also my friend
The probabilities of B following C in the two triads are higher than others in their respective categories.

Explaination: Users have tendency to form a balanced triad

Social Theories: Social Status

Followee diffusion: \(P(0XX) > P(1XX) \)

- Low-status users act as a bridge to connect users so as to form a closure triad.
- The likelihood of 0XX is 1.4 times of 1XX.
Social Theories: Social Status

Followee diffusion: \(P(X1X) > P(X0X) \)

- Elite users play a more important role to form the triadic closure.
- The likelihood of \(X1X \) is almost double the probability of \(X0X \).

1: Elite user
0: Low-status user
Social Theories: Social Status

Followee diffusion: \(P(XX1) > P(XX0) \)

- The rich gets richer.
- The likelihood of \(XX1 \) is nearly 2 times higher than that of \(XX0 \).
- This phenomenon validates the mechanism of preferential attachment.

1: Elite user
0: Low-status user
Social Theories: Social Status

Follower diffusion: \[P(X1X) > P(X0X) \]

- Elite users play a more important role to form the triadic closure.
- The likelihood of X1X is almost double the probability of X0X.

1: Elite user
0: Low-status user
Influence Learning Model

The formation of one following edge at time t' actually may be influenced by the formation of multiple neighbor edges e_{BA1}, e_{BA2} and e_{AnC} at time t.

We assume the neighbor edges activated at time t independently trigger a new edge.

The generative model FCM (Following cascade model)

$$L = \prod_{e' \in E} \left(1 - \prod_{e \in N^-(e')} (1 - p_{ee'})\right) \prod_{e \in E} \prod_{e' \in \neg N(e)} (1 - p_{ee'})$$

$N(e)$	the neighbor edges of e activated before $t_e + \delta$
$N^-(e)$	the neighbor edges of e activated within $[t_e - \delta, t_e]$
$\neg N(e)$	the neighbor edges of e not activated within $[t_e, t_e + \delta]$
p_e	the probability of the formation of edge e
$p_{ee'}$	the influence probability of edge e on edge e'
Parameter Estimation

- We extract 24*8 features from the neighbor edges of each edge pair (e, e')
 - 24 triad structures and 8 triad statuses
- We aggregate different pairs with same features together and estimate the probabilities associated to 24*8 triads.

\[
\theta = \{p_{ee'}\} \quad \Rightarrow \quad \theta = \{p_\Delta\}
\]

Input: network \(G = (V, E, t) \)

Output: \(\theta = \{p_\Delta\} \)

while not converged do

- **E-step:** calculate \(p_{e'} \) using
- **M-step:** calculate \(p_\Delta \) using

\[
p_{e'} = 1 - \prod_{e \in N^-(e')} (1 - \hat{p}_\Delta)
\]

\[
p_\Delta = \frac{1}{|\Delta^A| + |\Delta^U|} \sum_{e' \in E_\Delta} \frac{\hat{p}_\Delta}{\hat{p}_{e'}}
\]

Table:

<table>
<thead>
<tr>
<th>(\Delta)</th>
<th>the triad type associated with two edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_\Delta)</td>
<td>the influence probability of the triad type (\Delta)</td>
</tr>
<tr>
<td>(\Delta^A)</td>
<td>the times of the triad type activated one edge</td>
</tr>
<tr>
<td>(\Delta^U)</td>
<td>the times of the triad type failed in activating one edge</td>
</tr>
<tr>
<td>(E_\Delta)</td>
<td>the edges activated by a triad type (\Delta)</td>
</tr>
</tbody>
</table>
Social Influence

1. Test
2. Measure
3. Application & Inf. max.
Find a set S of k initial followers to follow user v such that the number of newly activated users to follow v is maximized.
Find a set S of k initial followees for user v such that the total number of new followees accepted by v is maximized
Experiments

• Link Formation Accuracy
 – Link formation is used to verify the influence probabilities learned by FCM.
 – A model has a good performance if it can best recover the process of link formation over time.
 – Link formation is modeled as both classification and ranking problem.

• Application improvement
 – Influence probabilities are applied to influence maximization and recommendation.
SVN, LRC, and FCM all use the same features except that FCM considers the diffusion process of following influence.

Link formation as classification

<table>
<thead>
<tr>
<th>Model</th>
<th>P@1</th>
<th>P@2</th>
<th>P@5</th>
<th>P@10</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>39.96</td>
<td>37.55</td>
<td>30.88</td>
<td>26.41</td>
<td>55.08</td>
</tr>
<tr>
<td>SimRank</td>
<td>26.35</td>
<td>26.06</td>
<td>26.22</td>
<td>24.39</td>
<td>44.15</td>
</tr>
<tr>
<td>Katz</td>
<td>46.24</td>
<td>41.84</td>
<td>32.77</td>
<td>26.61</td>
<td>59.40</td>
</tr>
<tr>
<td>FCM</td>
<td>72.88</td>
<td>55.69</td>
<td>37.15</td>
<td>27.88</td>
<td>77.91</td>
</tr>
</tbody>
</table>

CF, SimRank and Katz ignore the dynamic evolution of the network structure (e.g., an edge newly formed at t may trigger the neighbor edges at t").

Link formation as ranking
Application Performance

Influence Maximization

- High degree
 - May select the users that do not have large influence on following behaviors.
- Uniform configured influence
 - Can not accurately reflect the correlations between following behaviors.
- Greedy algorithm based on the influence probabilities learned by FCM
 - Captures the entire features of three users in a triad (i.e., triad structures and triad statuses)

Recommendation
Summaries

Social Influence

1. Test
2. Measure
3. Application & Inf. max.

Social Machines
“Social Machines”

• **Deploy** a “machine” on Weibo.com, the largest “Twitter” in China;

• **Act** as a person by auto follow/retweet/reply;

• **Attracted** thousands of fans.
Related Publications

• Tiancheng Lou, Jie Tang, John Hopcroft, Zhanpeng Fang, Xiaowen Ding. Learning to Predict Reciprocity and Triadic Closure in Social Networks. ACM Transactions on Knowledge Discovery from Data (TKDD).

• Jing Zhang, Zhanpeng Fang, Wei Chen, and Jie Tang. Social Influence on User Following Behaviors in Social Networks. (submitted)

• Lu Liu, Jie Tang, Jiawei Han, and Shiqiang Yang. Learning Influence from Heterogeneous Social Networks. In Data Mining and Knowledge Discovery (DMKD), 2012, Volume 25, Issue 3, pages 511-544.
Thank you!

Data: http://arnetminer.org/download/

http://keg.cs.tsinghua.edu.cn/jietang/
Related Works

• Social Influence Testing
 – Randomized controlled trial [Bakshy, 2012][Bond, 2012]
 – Distinguish influence and homophily [Sinan, 2009]
 – Shuffle Test [Anagnostopoulos, 2008]

• Social Influence Quantification
 – Directly count action number [Goyal, 2010]
 – Define likelihood function based on IC model [Myers, 2010][Gruhl, 2004][Saito, 2011]

• Influence Maximization
 – Algorithmic problem [Domingos, 2001]
 – Discrete optimization problem [Kempe, 2003]
 – Efficiency improvement [Leskovec, 2010][Chen, 2010]