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说几个数字给您听…!
•  >1000 million users 
•  The 3rd  largest “Country” in the world 
•  More visitors than Google 

•  More than 6 billion images 

•  2009, 2 billion tweets per quarter 
•  2010, 4 billion tweets per quarter 
•  2011,                tweets per quarter 

•  >721 million users 

•  Pinterest, with a traffic higher than Twitter and Google 

25 billion�

•  2012,                   users, 300% yearly increase 400 million�
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•  Per Second: Email 
– 2.9 million emails per second 

•  Per Minute: Election Night 2012 
– a peak of 327,452 Tweets per minute 

•  Per Month: Facebook 
–  “Waste” 700 billion minutes per month 

•  àBig Data 
– 2.5×1018 Byte (2.5 EB) data per day�

再说几个数字给您听…!
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Social Web and Social Influence�

Info. 
Space!

Social 
Space!

Interaction!
1.Social Influence 
 
2.Collective Intelligence!
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Social Influence�

Author citation network�

How researchers influence each other?�

Twitter’s following network�

How people influences 
friends’ following behaviors?�



6 

Social Influence 

Social 
Influe
nce 

Test!

Measure!

Application 
&Inf. max.!

1

2

3
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Following Influence Analysis 
—A Case Study�

Tiancheng Lou, Jie Tang, John Hopcroft, Zhanpeng Fang, Xiaowen Ding. Learning to Predict Reciprocity and 
Triadic Closure in Social Networks. ACM Transactions on Knowledge Discovery from Data (TKDD).�
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Following Influence on Twitter�

Peng �

Sen �Lei �

Peng �

Sen �Lei �

When you follow a user in a 
social network, will the be- 

havior influences your friends 
to also follow her? �

Time 1 � Time 2 �

Lady Gaga � Lady Gaga �
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Social Influence 

Social 
Influe
nce 

Test!

Measure!

Application 
&Inf. max.!

1

2

3

Jing Zhang, Zhanpeng Fang, Wei Chen, and Jie Tang. Social Influence on User Following Behaviors in Social 
Networks. (submitted)�
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Influence Test via Triad Formation�

A �

B � C �

t�
A �

B � C �

t�

t’=t+1 �t’=t+1 �
Follower diffusion� Followee diffusion�

–>: pre-existed relationships 
–>: a new relationship added at t 
-->: a possible relationship added at t+1 �

Two Categories of Following Influences�

Whether 
influence exists?�
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24 Triads in Following Influence  �
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Follower diffusion� Followee diffusion�

12 triads� 12 triads�
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Twitter Data �

•  Twitter data 
−  “Lady Gaga” -> 10K followers -> millions of followers; 
−  13,442,659 users and 56,893,234 following links. 
−  35,746,366 tweets. 

•  A complete dynamic network 
−  112,044 users and 468,238 follows 
−  From 10/12/2010 to 12/23/2010 
−  13 timestamps by viewing every 4 days as a timestamp 
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Test 1: Timing Shuffle Test�
•  Method: Shuffle the timing of all the following relationships. 

•  Compare the rate under the original and shuffled dataset.  

•  Result 

A �

B � C �

tAC �

tBC �

A �

B � C �

t’AC �

t’BC �
Original� Shuffle �

Rate =
#Triad | 0 < tBC − tAC < δ

#Triad | tBC and tAC exist

Follower diffusion� Followee diffusion�
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Test 2: Influence Decay Test�
•  Method: Remove the time information t of AC 

•  Compare the probability of B following C under the original and w/o time dataset.  

•  Result 

A �

B � C �

t�

t’ �

A �

B � C �
t’ �

Original� w/o time �

PBC =
#Triad | B follows C

#Triad

Follower diffusion� Followee diffusion�
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Test 3: Influence Propagation Test�
•  Method: Remove the relationship between A and B. 

•  Compare the rate under the original and w/o edge dataset.  

•  Result 

A �

B � C �

t�

t’ �

A �

B � C �
t’ �

Original� w/o edge�

Follower diffusion� Followee diffusion�

t�

Rate =
#Triad | 0 < tBC − tAC < δ

#Triad | tBC and tAC exist
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Social Influence 

Social 
Influe
nce 

Test!

Measure!

Application 
&Inf. max.!

1

2

3
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Follower Diffusion: Power of Reciprocity�
A

B	
   C
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B ->A � A->B� B<->A�

<�

Observation: Following influence is more significant when there is a reciprocal 
relationship between B and A. 
Explanation: “intimacy” is one of the three key factors that can increase people’s 
likelihood to respond to social influence(social impact theory)  
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Followee Diffusion: One-way Relationship�
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A

B	
   C

t

t'	
  
A ->C � A<->C � A<-C �

>�

Observation: Following influence is more significant when there is a one-way 
relationship from A to C. 
Explanation: Users usually prefer to check their followee’s followees, from whom they 
select those they may be interested to follow. 

VS�
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Reversed Relationship�

A

B	
   C

t

t'	
  
Without C->B�

Observation: Following influence is more significant when there is a reversed 
relationship from C to B. 
Explanation: Users are highly encouraged to follow their followers. 

A

B	
   C

t

t'	
  
With C ->B �

<�
A

B	
   C

t <�
t'	
  

A

B	
   C

t

t'	
  
Without C->B� With C ->B �
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Social Theories: Structural Balance[1] �

Explanation: Users have tendency to form a balanced triad  

A

B	
   C

t

t'	
  
Followee diffusion�

A

B	
   C

t

t'	
  
Follower diffusion�

Social Balance: my friend’s friend is also my friend 
The probabilities of B following C in the two triads are higher 
than others in their respective categories.�

Fritz Heider (1958). The Psychology of Interpersonal Relations. John Wiley & Sons.�
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Social Theories: Social Status�

•  Low-status users act as a bridge to 
connect users so as to form a closure 
triad. 

•  The likelihood of 0XX is 1.4 times of 1XX. 

Followee diffusion:�

A

B	
   C

t

t'	
  

0�

1: Elite user 
0: Low-status user�

A

B	
   C

t

t'	
  

1�

>�

P(0XX) > P(1XX)�



22 

Social Theories: Social Status�

•  Elite users play a more important role to 
form the triadic closure.  

•  The likelihood of X1X is almost double the 
probability of X0X. 

Followee diffusion:�

A

B	
   C

t

t'	
  
1�

1: Elite user 
0: Low-status user�

A

B	
   C

t

t'	
  
0�

>�

P(X1X) > P(X0X)�
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Social Theories: Social Status�

•  The rich gets richer.  
•  The likelihood of XX1 is nearly 2 times 

higher than that of XX0. 
•  This phenomenon validates the 

mechanism of preferential attachment. 

Followee diffusion:�

A

B	
   C

t

t'	
  
1�

1: Elite user 
0: Low-status user�

A

B	
   C

t

t'	
  
0�

>�

P(XX1) > P(XX0)�
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Social Theories: Social Status�

•  Elite users play a more important role to 
form the triadic closure.  

•  The likelihood of X1X is almost double the 
probability of X0X. 

Follower diffusion:�
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P(X1X) > P(X0X)�
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Influence Learning Model�

The formation of one following edge at time t’ actually may be influenced by 
the formation of multiple neighbor edges eBA1 , eBA2 and eAnC at time t. 

The formed edges� The unformed edges�

We assume the neighbor edges activated at time t 
independently trigger a new edge.�

The generative model FCM (Following cascade model)�
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Parameter Estimation�
•  We exact 24*8 features from the neighbor edges of each edge pair (e,e’) 

•  24 triad structures and 8 triad statuses�
•  We aggregate different pairs with same features together and estimate the probabilities 

associated to 24*8 triads. 
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Social Influence 

Social 
Influe
nce 

Test!

Measure!

Application 
&Inf. max.!
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Applications: Influence Maximization�

Alice�

Mary �

John�

Find a set S of k initial followers to follow user v such that the number of 
newly activated users to follow v is maximized.�
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Applications: Friend Recommendation�

Ada�

Bob�

Mike �

Find a set S of k initial followees for user v such that the total number of 
new followees accepted by v is maximized �
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Experiments�
•  Link Formation Accuracy 

–  Link formation is used to verify the the influence 
probabilities learned by FCM.  

–  A model has a good performance If it can best recover 
the process of link formation over time. 

–  Link formation is modeled as both classification and 
ranking problem. 

•  Application improvement 
–  Influence probabilities are applied to influence 

maximization and recommendation.   
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Link Formation Performance�

Link formation as classification�

Link formation as ranking�

SVN, LRC, and FCM all use the same features 
except that FCM considers the diffusion process 
of following influence.�

CF, SimRank and Katz ignore the 
dynamic evolution of the network 
structure (e.g., an edge newly 
formed at t may trigger the 
neighbor edges at t’).�
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Application Performance�

Recommendation �Influence Maximization�

•  High degree 
•  May select the users that do not have large influence on following behaviors.  

•  Uniform configured influence 
•  Can not accurately reflect the correlations between following behaviors. 

•  Greedy algorithm based on the influence probabilities learned by FCM 
•  Captures the entire features of three users in a triad (i.e., triad structures and triad statuses)�
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Summaries 

Social 
Influen

ce 

Test!

Measure!

Application 
&Inf. max.!

1

2

3

Social 
Machines �
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“Social Machines”!

•  Deploy a “machine” on Weibo.com, the 
largest “Twitter” in China; 

•  Act as a person by auto follow/retweet/reply; 
•  Attracted thousands of fans. 
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Thank you！ 
Data: http://arnetminer.org/download/ 

http://keg.cs.tsinghua.edu.cn/jietang/  
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Related Works�
•  Social Influence Testing 

–  Randomized controlled trial [Bakshy,2012][Bond,2012] 
–  Distinguish influence and homophily [Sinan, 2009] 
–  Shuffle Test [Anagnostopoulos,2008] 

•  Social Influence Quantification 
–  Directly count action number [Goyal, 2010] 
–  Define likelihood function based on IC model [Myers,

2010][Gruhl,2004][Saito,2011] 
•  Influence Maximization 

–  Algorithmic problem [Domingos, 2001] 
–  Discrete optimization problem [Kempe, 2003] 
–  Efficiency improvement [Leskovec, 2010][Chen, 2010] 


