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Opinion Mining! Innovation 
diffusion!

Business Intelligence!

Info. 
Space!

Social 
Space!

Interaction!
Req: Info.à user 
Interaction mechanism!

SN bridges our daily life and the virtual web space! 

Social Networks 

Revolutionary changes…!
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Revolutionary Changes 

Social Networks 

 
 
 
Embedding social in 
search: 
•  Google plus 
•  FB graph search 
•  Bing’s influence 

Search�  
 
 
Human Computation: 
•  CAPTCHA + OCR 
•  MOOC 
•  Duolingo (Machine 
Translation) 

Education�  
 
 
The Web knows you 
than yourself: 
•  Contextual 
computing 
•  Big data marketing 
 

O2O �  
 
 
More … 
 

...�
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Part A: Overview of Core Research 
in Social Networks  
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Core Research in Social Network 

BIG Social 
Data 

Social Theories Algorithmic 
Foundations 

B
A m

odel 

S
ocial 

influence 

A
ction 

Social 
Network 
Analysis 

Theory 

Prediction Search Information 
Diffusion Advertise Application 

Macro Meso Micro 

E
R

 m
odel 

C
om

m
unity 

G
roup 

behavior 

D
unbar 

S
ocial tie 



6 

Computational Foundations for 
Social Networks  



7 

Computational Foundations 

•  Social Theories 
– Social balance 
– Social status 
– Structural holes 
– Two-step flow 

•  Algorithmic Foundations 
– Network flow 
– K-densest subgraph 
– Set cover 
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Social Theories—Social Balance 
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Examples on Epinions, Slashdot, and MobileU 
(1) The underlying networks are unbalanced; 
(2) While the friendship networks are balanced. 

Jie Tang, Tiancheng Lou, and Jon Kleinberg. Inferring Social Ties across Heterogeneous Networks. In WSDM'2012. pp. 
743-752.�

Your friend’s friend is your friend, and your enemy’s enemy is also your friend. 
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Social Theories—Social status�

Observations:  99% of triads in the networks satisfy the social status theory 
Examples: Enron, Coauthor, MobileD 

Note: Given a triad (A,B,C), let us use 1 to 
denote the advisor-advisee relationship and 0 
colleague relationship. Thus the number 011 to 
denote A and B are colleagues, B is C’s advisor 
and A is C’s advisor. 

Your boss’s boss is also your boss… 

Jie Tang, Tiancheng Lou, and Jon Kleinberg. Inferring Social Ties across Heterogeneous Networks. In WSDM'2012. pp. 
743-752.�
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R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon. Network Motifs: Simple Building Blocks of Complex 
Networks. Science, 2004 

Triadic Closure�
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Social Theories—Structural holes�

a1
a4

a2
a3

a8

a5

a6a0

a7

a9a11

a10

Structural hole users control the information flow between different 
communities (Burt, 92; Podolny, 97; Ahuja, 00; Kleinberg, 08; Lou & Tang, 13) 

Information diffusion 
across communities 

Community 1 

Community 2 

Community 3 Structural hole 
spanners 

1% twitter users control 
25% retweeting behaviors 
between communities.�

T. Lou and J. Tang. Mining Structural Hole Spanners Through Information Diffusion in Social Networks. In WWW'13. pp. 
837-848. 
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Social Theories—Two-step-flow �

Estimate OL and OU by PageRank 
OL : Opinion leader;      
OU : Ordinary user.  
 
Observations:  Opinion leaders are more 
likely (+71%-84% higher than 
chance) to spread information to ordinary 
users. 

Lazarsfeld et al suggested that: 
"ideas often flow from radio and print to 
the opinion leaders and from them to the 
less active sections of the population." �

Lazarsfeld et al. (1944). The people’s choice: How the voter makes up his mind in a presidential campaign. 
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Computational Foundations 

•  Social Theories 
– Social balance 
– Social status 
– Structural holes 
– Two-step flow 

•  Algorithmic Foundations 
– Network flow 
– K-densest subgraph 
– Set cover 
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Algorithm — Network Flow 

•  Classical problems: 
– Maximum flow / minimum cut 

•  Ford-Fulkerson algorithm 
•  Dinic algorithm 

– Minimum cut between multiple sets of vertices 
•  NP hard when there are more than 2 sets 

– Minimum cost flow; 
– Circulation problem; 
–   … 
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Algorithm — Network Flow (cont.) 

•  Ford-Fulkerson 
–  As long as there is an 

augmenting path, send the 
minimum of the residual 
capacities on the path. 

–  A maximum flow is obtained 
when the no augmenting 
paths left. 

–  Time complexity: O(VE^2) 
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Algorithm — K-densest subgraph 

•  NP Problem 
–  Find the maximum density subgraph on exactly k vertices. 
–  Reduced from the clique problem 

•  Application 
–  Reduce the structural hole spanner detection problem to 

proof its NP hardness. 
–  To find a subset of nodes, such that without them, the 

connection between communities would be minimized. 

v2

v3

v5
v4

v1
v6

v12
v11

v7

v8 v9

v10
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Algorithm — K-densest subgraph (cont.) 

•  An linear programming based solution 
– Approximation ratio:  

Find the subgraph with 
the largest average 
degree in subgraph St-1 

Replace St by 
neighbors of St-1 

Find j which satisfy: 
 
 
 
 
 
  
Update S by j’s neighbors. 
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Algorithm — Set Cover 

•  Another NP problem 
–  Given a set of elements (universe) 

and a set S of n sets whose union 
equals the universe; 

–  Find the smallest subset of S to 
contains all elements in the universe; 

–  The decision version is NP-complete. 
•  Greedy 

–  Choose the set containing the most 
uncovered elements; 

–  Approximation ratio: H(size(S)), 
where H(n) is the n-th harmonic 
number. 
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-  Macro Level 
-  Meso Level 
-  Micro Level 

Social Network Analysis�
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Erdős–Rényi Model�
In the G(n, p) model, each edge is included in the graph with probability p 
independent from every other edge. �

•  Properties 
(1)  Degree distribution-Poisson 

 
 

(2)  Clustering coefficient  
 

(3)  Average shortest path 
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Problem: In real social network, neighbors tend to be connected with each 
other, thus the clustering coefficient should not be too small. 

Small �

Erdős, P.; Rényi, A. (1959), “On Random Graphs.”. 

Each random graph has 
the probability 
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Small-World Model�
Mechanism 

1.  Start from a regular 
wired ring, where each 
node is connected 
with its K-nearest 
neighbors 

2.  With probability p  
rewire each edge. 

•  Properties 
(1)  Degree distribution 

 
 
 

(2)  Clustering coefficient  
 
 

(3)  Average shortest path 
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Problem: In real social 
network, degree 
distribution is power law. 

Not power law�

Source:  Watts and Strogatz (1998). "Collective dynamics of 'small-world' networks”. Watts, D. J.; Strogatz, S. H. (1998). "Collective dynamics of 'small-world' networks". Nature 393 (6684): 440–442. 
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Barabási-Albert Model�
Idea 
-  Growth 
-  Preferential attachment (rich-get-richer, the Matthew Effect) 
Mechanism 
1.  Start from a small connected graph with m0  nodes 
2.  At each time step, add one new node with m ( m ≤ m0) new edges; the probability 

that the new node is connected to node i is 
�

•  Degree distribution 
 
 

•  Clustering coefficient 
 
 

•  Average longest shortest path 
�
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Source:  Barabasi and Albert(1999). Emergence of scaling n complex networks. 
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Barabasi and Albert(1999). Emergence of scaling n complex networks. 
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Social Network Analysis�

-  Macro Level 
-  Meso Level 
-  Micro Level 
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Community Detection�

Node-Centric Community 
Each node in a group satisfies certain 
properties  

Group-Centric Community 
Consider the connections within a group 
as a whole. The group has to satisfy 
certain properties without zooming into 
node-level 

Network-Centric Community 
Partition the whole network into several 
disjoint sets 

Hierarchy-Centric Community   
Construct a hierarchical structure of 
communities 

 



25 

Community Evolution�
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Dunbar Number�
•  Dunbar number:150. Dunbar's number is a suggested cognitive 

limit to the number of people with whom one can maintain 
stable social relationships 

     —Robin Dunbar, 2000�
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Social Network Analysis�

-  Macro Level 
-  Meso Level 
-  Micro Level 
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Social Action�
•  …the object is to interpret the meaning of social action and 

thereby give a causal explanation of the way in which the action 
proceeds and the effects which it produces... 

— Social Action Theory, by Max Weber, 1922 
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Social Action — User Characterization 

•  Betweenness 
– A centrality measure of a vertex within a graph 

–    

 

Hue (from red=0 to blue=max) 
shows the node betweenness. 

#shortest paths 
pass through v 

#shortest paths 
from s to t 



30 

Social Action — User Characterization (cont.) 

•  Clustering Coefficient 
– A measure of degree to which nodes in a graph 

tend to cluster together. 
– Global clustering coefficient 

•    

•  A triangle consists of three closed triplets, and a closed 
triplet consists of three nodes connected to each other.  

– Local clustering coefficient 

 



31 

Social Action — User Characterization (cont.) 

•  Degree: the number of one vertex’s neighbors. 

•  Closeness: the shortest path between one 

vertex and another vertex.  
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Social Action — Game Theory 

•  Example: a game theory model on Weibo. 
– Strategy: whether to follow a user or not; 
– Payoff:  

– The model has a pure strategy Nash Equilibrium  

2 2
( ) ( ) ( ) ( ) ( )

( ) ( ) log ( )u
v B u v L u v B u w L v F u

P u G v C Cα
∈ ∈ ∈ ∈

= − +∑ ∑ ∑ ∑
I

�
!

The frequency of a 
user to follow 

someone 

The value of a 
user 

The cost of following a 
user 

The density of v’s ego 
network 
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Social Action — Game Theory (cont.) 

•  Results: three stage life cycle 
– Stage 1: getting into a community 
– Stage 2: becoming an elite 
– Stage 3: bridging different communities (structural 

hole spanners) 
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Strong/Weak Ties 

•  Strong ties 
– Frequent communication, but ties are redundant 

due to high clustering 
•  Weak ties 

– Reach far across network, but communication is 
infrequent… 

“forbidden triad”: 
strong ties are likely to “close”� Weak ties act as local bridge�
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?�
Family �

Friend �

KDD 2010, PKDD 2011 (Best Paper Runnerup), WSDM 2012, ACM TKDD �

Lady Gaga �You� Lady Gaga �You�

?�

Lady Gaga �

You�

Lady Gaga �

You�

?�
Shiteng Shiteng 

Inferring social ties 

Reciprocity 

Triadic Closure 

Social Ties�
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Triadic Closure�
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Information Diffusion 
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Disease-Propagation Models 
•  Classical disease-propagation models in epidemiology are 

based upon the cycle of disease in a host. 
–  Susceptible 
–  Infected 
–  Recovered 
–  … 

•  The transition rates from one cycle to another are expressed as 
derivatives. 

•  Classical models: 
–  SIR 
–  SIS 
–  SIRS 
–  … 
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SIR Model 
•  Created by Kermack and McKendrick in 1927. 
•  Considers three cycles of disease in a host: 

•  Transition rates:  

S(t) : #susceptible people at time t; 

I(t) : #infected people at time t; 

R(t) : #recovered people at time t; 

     : a parameter for infectivity; 

     : a parameter for recovery. 
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•  Designed for infections confer no long lasting immunity 
(e.g., common cold) 

•  Individuals are considered become susceptible again 
after infection: 

•  Model: 

SIS Model 

Notice for both SIR and SIS, it holds: 

 

 

where N is the fixed total population. 
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Core Research in Social Network 
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Part B: Social Influence Analysis 
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Agenda 

S
ocial 

Influence 

Test!

Measure!

Models!

1

2

3

§  Randomization test 
§  Shuffle test 
§  Reverse test 

§  Reachability-based methods 
§  Structure Similarity 
§  Structure + Content Similarity 
§  Action-based methods 

§  Linear Threshold Model 
§  Cascade Model 
§  Algorithms 

Jie Tang, KEG, Tsinghua U                                     Download all data from  AMiner.org 
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“Love Obama” 

I love Obama 

Obama is 
great! 

Obama is 
fantastic 

I hate Obama, the 
worst president ever 

He cannot be the 
next president! 

No Obama in 
2012! 

Positive Negative 
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What is Social Influence? 

•  Social influence occurs when one's opinions, 
emotions, or behaviors are affected by others, 
intentionally or unintentionally.[1] 

–  Informational social influence: to accept 
information from another; 

– Normative social influence: to conform to the 
positive expectations of others.  

[1] http://en.wikipedia.org/wiki/Social_influence�
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Three Degree of Influence 

Three degree of Influence[2] 

[1] S. Milgram. The Small World Problem. Psychology Today, 1967, Vol. 2, 60–67 
[2] J.H. Fowler and N.A. Christakis. The Dynamic Spread of Happiness in a Large Social Network: Longitudinal Analysis 
Over 20 Years in the Framingham Heart Study. British Medical Journal 2008; 337: a2338 
[3] R. Dunbar. Neocortex size as a constraint on group size in primates. Human Evolution, 1992, 20: 469–493.�

Six degree of separation[1] 

You are able to influence up to >1,000,000 persons in 
the world, according to the Dunbar’s number[3].   



47 

Does Social Influence really matter? 
•  Case 1: Social influence and political mobilization[1] 

–  Will online political mobilization really work? 

[1] R. M. Bond, C. J. Fariss, J. J. Jones, A. D. I. Kramer, C. Marlow, J. E. Settle and J. H. Fowler. A 61-million-person 
experiment in social influence and political mobilization. Nature, 489:295-298, 2012.�

A controlled trial (with 61M users on FB) 

-  Social msg group: was shown with msg that 
indicates one’s friends who have made the 
votes. 

-  Informational msg group: was shown with 
msg that indicates how many other. 

-  Control group: did not receive any msg. 
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Case 1: Social Influence and Political 
Mobilization 

Social msg group v.s.  
Info msg group 

 
Result: The former were 2.08% (t-

test, P<0.01) more likely to click 
on the “I Voted” button 

Social msg group v.s.  
Control group 

 
Result: The former were 0.39% (t-

test, P=0.02) more likely to 
actually vote (via examination of 

public voting records) 

[1] R. M. Bond, C. J. Fariss, J. J. Jones, A. D. I. Kramer, C. Marlow, J. E. Settle and J. H. Fowler. A 61-million-person 
experiment in social influence and political mobilization. Nature, 489:295-298, 2012.�
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Case 2: Klout[1]—Social Media Marketing 

•  Toward measuring real-world influence  
–  Twitter, Facebook, G+, LinkedIn, etc. 
–  Klout generates a score on a scale of 1-100 for a social user 

to represent her/his ability to engage other people and 
inspire social actions.  

–  Has built 100 million profiles.  
•  Though controversial[2], in May 2012, Cathay Pacific 

opens SFO lounge to Klout users 
–  A high Klout score gets you into Cathay Pacific’s SFO 

lounge 

[1] http://klout.com 
[2] Why I Deleted My Klout Profile, by Pam Moore, at Social Media Today, originally published November 19, 2011; 
retrieved November 26 2011�
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Case 3: Influential verse Susceptible[1] 

•  Study of product adoption for 1.3M FB users 

[1] S. Aral and D Walker. Identifying Influential and Susceptible Members of Social Networks. Science, 337:337-341, 
2012. 

Results: 
-  Younger users are more (18%, P<0.05) 

susceptible to influence than older users 
-  Men are more (49%, P<0.05) influential 

than women 
-  Single and Married individuals are 

significantly more (>100%, P<0.05) 
influential than those who are in a 
relationship 

-  Married individuals are the least 
susceptible to influence 
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Case 4: Who influenced you and How?  

•  Magic: the structural diversity of the ego network[1] 

[1] J. Ugandera, L. Backstromb, C. Marlowb, and J. Kleinberg. Structural diversity in social contagion. PNAS, 109 (20):
7591-7592, 2012. 

Results: Your behavior is influenced by the “structural diversity” (the 
number of connected components in your ego network) instead of the 
number of your friends. 
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Challenges: WH3 

1.  Whether social influence exist? 
2.  How to measure influence? 
3.  How to model influence? 
4.  How influence can help real applications? 
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Preliminaries 
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Notations�

G =(V, E, X, Y) �

Attributes: xi 
 - location, gender, age, etc. 

Action/Status: yi  
- e.g., “Love Obama” 

Gt — the superscript t represents the time stamp 

Time t�

Time t-1, t-2… �

Node/user: vi 

eij
t ∈Et — represents a link/relationship from vi to vj at time t 
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Homophily�
•  Homophily 

–  A user in the social network tends to be similar to their 
connected neighbors. 

•  Originated from different mechanisms 
–  Social influence 

•  Indicates people tend to follow the behaviors of their friends 

–  Selection 
•  Indicates people tend to create relationships with other people who 

are already similar to them 

–  Confounding variables 
•  Other unknown variables exist, which may cause friends to behave 

similarly with one another.�
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•  Denominator: the conditional probability that an unlinked pair will become linked 
•  Numerator: the same probability for unlinked pairs whose similarity exceeds the 
threshold 

 

•  Denominator: the probability that the similarity increase from time t-1 to time t between 
two nodes that were not linked at time t-1 
•  Numerator: the same probability that became linked at time t  

•  A Model is learned through matrix factorization/factor graph 

Selection =
p(eij

t = 1| eij
t−1 = 0, xi

t−1,x j
t−1 > ε )

p(eij
t = 1| eij

t−1 = 0)

Influence and Selection[1] �

[1] J. Scripps, P.-N. Tan, and A.-H. Esfahanian. Measuring the effects of preprocessing decisions and network forces in dynamic network 
analysis. In KDD’09, pages 747–756, 2009.�

There is a link between user i and j at 
time t 

Similarity between user i and j at time 
t-1 is larger than a threshold  

Influence =
p( xi

t ,x j
t > xi

t−1,x j
t−1 | eij

t = 1,eij
t−1 = 0)

p( xi
t ,x j

t > xi
t−1,x j

t−1 | eij
t−1 = 0)
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Other Related Concepts 

•  Cosine similarity 
•  Correlation factors 
•  Hazard ratio 
•  t-test 
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Cosine Similarity�

•  A measure of similarity 
•  Use a vector to represent a sample (e.g., user) 

•  To measure the similarity of two vectors x and 
y, employ cosine similarity:�

   x = (x1,...,xn )

   
sim(x,y) = x ⋅y

x y



59 

Correlation Factors�
•  Several correlation coefficients could be used to measure 

correlation between two random variables x and y. 
•  Pearsons’ correlation 

•  It could be estimated by  

•  Note that correlation does NOT imply causation�

  
ρx ,y = corr(x, y) =

E[(x − µx )( y − µ y )]
σ xσ y

1

2 2

1 1

( )( )

( ) ( )

n

i i
i

n n

i i
i i

x x y y
r

x x y y

=

= =

− −
=

− −

∑

∑ ∑

mean 

Standard 
deviation 
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Hazard Ratio�
•  Hazard Ratio 

–  Chance of an event occurring in the treatment group divided by its chance 
in the control group 

–  Example:  
    Chance of users to buy iPhone with >=1 iPhone user friend(s)  
    Chance of users to buy iPhone without any iPhone user friend 

–  Measuring instantaneous chance by hazard rate h(t) 

 

–  The hazard ratio is the relationship between the instantaneous hazards in 
two groups 

–  Proportional hazards models (e.g. Cox-model) could be used to report 
hazard ratio. 
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t-test�
•  A t-test usually used when the test statistic follows a Student’s t 

distribution if the null hypothesis is supported. 
•  To test if the difference between two variables are significant 
•  Welch’s t-test 

–  Calculate t-value 

 
–  Find the p-value using a table of values from Student’s t-distribution 
–  If the p-value is below chosen threshold (e.g. 0.01) then the two 

variables are viewed as significant different. 

1 2

1 2

2 2
1 2 1 2

1 2

, x x
x x

x x s st s
s n n−

−

−= = +
sample mean�

Unbiased estimator 
of sample variance�

#participants in the 
treatment group�

#participants in the 
control group�
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Data Sets 
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Ten Cases 
Network #Nodes #Edges Behavior 

Twitter-net 111,000 450,000 Follow 

Weibo-Retweet 1,700,000 400,000,000 Retweet 

Slashdot 93,133 964,562 Friend/Foe 

Mobile (THU) 229 29,136 Happy/Unhappy 

Gowalla 196,591 950,327 Check-in 

ArnetMiner 1,300,000 23,003,231 Publish on a topic 

Flickr 1,991,509 208,118,719 Join a group 

PatentMiner 4,000,000 32,000,000 Patent on a topic 

Citation 1,572,277 2,084,019 Cite a paper 

Twitter-content 7,521 304,275 Tweet “Haiti Earthquake” 

Most of the data sets will be publicly available for research. 
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Case 1: Following Influence on Twitter�

Peng �

Sen �Lei �

Peng �

Sen �Lei �

When you follow a user in a 
social network, will the be- 

havior influences your friends to 
also follow her? �

Time 1 � Time 2 �

Lady Gaga � Lady Gaga �
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Case 2: Retweeting Influence 

Andy�

Jon �

Bob �

Dan �

When you (re)tweet 
something�

Who will 
follow to 

retweet it?�
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 Case 3: Commenting Influence 

+ �-‐
+ �

-‐

-‐
-‐

+ �

Alan Cox Exists Intel.�News:�

Re:…�

Re:…�

Re:…�
positive influence from friends �

Governments Want Private Data�

Did not 
comment�

Re:…�

Re:…�

Re:…�

negative influence from foes �

Re:…�

+	  Friend	  
-‐	  	  Foe	  
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Case 4: Emotion Influence 
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Case 4: Emotion Influence (cont.) 

Jennifer

Happy

Happy

location

Neutral

Neutral

call

sms

Mike

Allen

MikeAllen

Jennifer today

Jennifer 
yesterday

?

Jennifer  
tomorrow

MoodCast

Predict

Attributes f(.)

Temporal 
correlation h(.)

Social correlation g(.)

Can we predict users’ 
emotion?�
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Case 5: Check-in Influence in Gowalla 

1’ �

1’ �

1’ �

1’ �

Alice’s friend� Other users�Alice �Legend �

If Alice’s friends check in 
this location at time t�

Will Alice also 
check in nearby?�
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Social Influence 

S
ocial 

Influence 

Test!

Measure!

Models!

1

2

3
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Social Influence 

S
ocial 

Influence 

Test!

Measure!

Models!

1

2

3
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Randomization 
•  Theoretical fundamentals[1, 2] 

–  In science, randomized experiments are the experiments that allow the 
greatest reliability and validity of statistical estimates of treatment effects.  

•  Randomized Control Trials (RCT) 
–  People are randomly assigned to a “treatment” group or a “controlled” 

group; 
–  People in the treatment group receive some kind of “treatment”, while 

people in the controlled group do not receive the treatment; 
–  Compare the result of the two groups, e.g., survival rate with a disease. 

[1] Rubin, D. B. 1974. Estimating causal effects of treatments in randomized and nonrandomized studies. 
Journal of Educational Psychology 66, 5, 688–701. 
[2] http://en.wikipedia.org/wiki/Randomized_experiment 
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RCT in Social Network 
•  We use RCT to test the influence and its significance 

in SN. 

•  Two challenges: 
–  How to define the treatment group and the controlled group? 
–  How to find a real random assignment? 
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Example: Political mobilization 
•  There are two kinds of treatments. 

[1] R. M. Bond, C. J. Fariss, J. J. Jones, A. D. I. Kramer, C. Marlow, J. E. Settle and J. H. Fowler. A 61-million-person 
experiment in social influence and political mobilization. Nature, 489:295-298, 2012.�

A controlled trial 
-  Social msg group: was shown with msg that 

indicates one’s friends who have made the 
votes. 

-  Informational msg group: was shown with 
msg that indicates how many other. 

-  Control group: did not receive any msg. 

 

Treatment Group 1 

Treatment for Group 2 

Treatment for Group 1 Treatment for Group 1&2 
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Adoption Diffusion of Y! Go 

RCT: 
-  Treatment group: people who did not adopt Y! Go but have friend(s) adopted Y! Go 

at time t; 
-  Controlled group: people who did not adopt Y! Go and also have no friends adopted 

Y! Go at time t. 

Yahoo! Go is a product of Yahoo to access its services of search, mailing, photo sharing, etc.  

[1] S. Aral, L. Muchnik, and A. Sundararajan. Distinguishing influence-based contagion from homophily-driven diffusion in 
dynamic networks. PNAS, 106 (51):21544-21549, 2009. 
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For an example 
•  Yahoo! Go 

–  27.4 M users, 14 B page views, 3.9 B messages 

•  The RCT 
–  Control seeds: random sample of 2% of the entire network 

(3.2M nodes) 
–  Experimental seeds: all adopters of Yahoo! Go from 

6/1/2007 to 10/31/2007 (0.5M nodes) 
  

[1] S. Aral, L. Muchnik, and A. Sundararajan. Distinguishing influence-based contagion from homophily-driven diffusion in 
dynamic networks. PNAS, 106 (51):21544-21549, 2009. 
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Evidence of Influence? 

Is the setting 
fair? �



78 

Matched Sampling Estimation 
•  Bias of existing randomized methods 

–  Adopters are more likely to have adopter friends than non-
adopters 

•  Matched sampling estimation   
–  Match the treated observations with untreated who are as likely 

to have been treated, conditional on a vector of observable 
characteristics, but who were not treated 

pit = P(Tit = 1| Xit ) All attributes associated with 
user i at time t 

A binary variable indicating whether user i 
will be treated at time t 

The new RCT: 
-  Treatment group: a user i who have k friends have adopted the Y! Go at time t; 
-  Controlled group: a matched user j who do not have k friends adopt Y! Go at time t, but is very 

likely to have k friends to adopt Y!Go at time t, i.e., |pit - pjt|<σ 
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Results—Random sampling and Matched sampling  

The fraction of observed 
treated to untreated adopters 
(n+/n-) under:  
(a) Random sampling; 
(b) Matched sampling. 
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 Two More Methods 
•  Shuffle test: shuffle the activation time of users. 

–  If social influence does not play a role, then the timing of 
activation should be independent of the timing of activation 
of others.  

•  Reverse test: reserve the direction of all edges. 
–  Social influence spreads in the direction specified by the 

edges of the graph, and hence reversing the edges should 
intuitively change the estimate of the correlation. 
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Example: Following Influence Test�

Peng �

Sen �Lei �

Peng �

Sen �Lei �

Time 1 � Time 2 �

Lady Gaga � Lady Gaga �

Treatment Group  

RCT: 
-  Treatment group: people who followed some other people or who have friends 

following others at time t; 
-  Controlled group: people who did not follow anyone and do not have any friends 

following others  at time t. 

[1] T. Lou, J. Tang, J. Hopcroft, Z. Fang, and X. Ding. Learning to Predict Reciprocity and Triadic Closure in Social 
Networks. ACM TKDD, (accepted).�

When you follow a user, 
will the behavior 

influences others?�
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Influence Test via Triad Formation�

A �

B � C �

t�
A �

B � C �

t�

t’=t+1 �t’=t+1 �
Follower diffusion� Followee diffusion�

–>: pre-existed relationships 
–>: a new relationship added at t 
-->: a possible relationship added at t+1 �

Two Categories of Following Influences�

Whether influence 
exists? �
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24 Triads in Following Influence  �

A	  

B	   C	  

	  	   t	  
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B	   C	  
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A	  

B	   C	  
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t'	  

Follower diffusion� Followee diffusion�

12 triads� 12 triads�
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Twitter Data �

•  Twitter data 
−  “Lady Gaga” -> 10K followers -> millions of followers; 
−  13,442,659 users and 56,893,234 following links. 
−  35,746,366 tweets. 

•  A complete dynamic network 
− We have all followers and all followees for every user 
−  112,044 users and 468,238 follows 
−  From 10/12/2010 to 12/23/2010 
−  13 timestamps by viewing every 4 days as a timestamp 
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Test 1: Timing Shuffle Test�
•  Method: Shuffle the timing of all the following relationships. 

•  Compare the rate under the original and shuffled dataset.  

•  Result 

A �

B � C �

tAC �

tBC �

A �

B � C �

t’AC �

t’BC �
Original� Shuffle �

Rate =
#Triad | 0 < tBC − tAC < δ

#Triad | tBC and tAC exist

Follower diffusion� Followee diffusion�

[1] A. Anagnostopoulos, R. Kumar, M. Mahdian. Influence and correlation in social networks. In KDD, pages 7-15, 2008. 

Shuffle test 

t-test, P<0.01 



86 

Test 2: Influence Decay Test�
•  Method: Remove the time information t of AC 

•  Compare the probability of B following C under the original and w/o time dataset.  

•  Result 

A �

B � C �

t�

t’ �

A �

B � C �
t’ �

Original� w/o time �

PBC =
#Triad | B follows C

#Triad

Follower diffusion� Followee diffusion�

Shuffle test 

t-test, P<0.01 
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Test 3: Influence Propagation Test�
•  Method: Remove the relationship between A and B. 

•  Compare the rate under the original and w/o edge dataset.  

•  Result 

A �

B � C �

t�

t’ �

A �

B � C �
t’ �

Original� w/o edge�

Follower diffusion� Followee diffusion�

t�

Rate =
#Triad | 0 < tBC − tAC < δ

#Triad | tBC and tAC exist

Reverse test 

t-test, P<0.01 



88 

Summary 

•  Randomization test 
– Define “treatment” group 
– Define “controlled” group 
– Random assignment 

•  Shuffle test 
•  Reverse test 
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Output of Influence Test 

Positive 

Negative 

There indeed 
exists influence! 

output 
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Social Influence 

S
ocial 

Influence 

Test!

Measure!

Models!

1

2

3

“The idea of measuring influence is kind of crazy. Influence has always been something that 
we each see through our own lens.” 

—by CEO and co-founder of Klout, Joe Fernandez 
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Methodologies 

•  Reachability-based methods 
•  Structure Similarity 
•  Structure + Content Similarity 
•  Action-based methods 
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Reachability-based Method 

•  Let us begin with PageRank[1] 

5

4

1

3

2

0.2�

0.2�

0.2�0.2�

0.2�

5

4

1

3

2

(0.2+0.2*0.5+0.2*1/3+0.2)0.85+0.15*0.2�

? �

? �? �

? �
   

r = (1−α )M ⋅r +αU

Mij =
1

outdeg(vi )

Ui =
1
N

α = 0.15

[1] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web. Technical 
Report SIDL-WP-1999-0120, Stanford University, 1999. 



93 

Random Walk Interpretation�

5

4

1

3

2

0.4�

0.15�

0.1�
0.1�

0.25�

1/3�

1/3�

1/3�

•  Probability distribution 
P(t) = r 

 
•  Stationary distribution 

P(t+1) = M P(t) 
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Random Walk with Restart[1] �

   

rq = (1−α )M ⋅rq +αU

Mij =
1

outdeg(vi )

Ui =
1,    i = q
0,    i ≠ q
⎧
⎨
⎩

q�

4

1

3

2

0.4�

0.15�

0.1�
0.1�

0.25�

1/3�

1/3�

1/3�

Uq=1� 1 �

[1] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood formation and anomaly detection in bipartite graphs. 
In ICDM’05, pages 418–425, 2005.  
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Measure Influence via Reachability[1]  

•  Influence of a path 

•  Influence of user u on v  

[1] G. Jeh and J. Widom. Scaling personalized web search. In WWW '03, pages 271-279, 2003.  

  
inf( p) = 1

outdeg(vi )vi∈p
∏

  
influence(u,v) = lim

t→∞
inf( p)

p∈patht (u,v )
∑

All paths from u to v within path length t 

Note: The method only 
considers the network 

information and does not 
consider the content 

information 

u� v�

Influence(u, v) 
=0.5*0.5+0.5*0.5�

0.5�

0.5� 0.5�

0.5�
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Methodologies 

•  Reachability-based methods 
•  Structure Similarity 
•  Structure + Content Similarity 
•  Action-based methods 
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SimRank�

•  SimRank is a general similarity measure, based 
on a simple and intuitive graph-theoretic model 
(Jeh and Widom, KDD’02). 

  

sim(u,v) = C
| I(u) || I(v) |

sim(Ii(u), I j (v))
j=1

|I (v )|

∑
i=1

|I (u)|

∑
Initialization : sim(u,u) = 1, if  u = v;
                      sim(u,v) = 0,if u ≠ v.

[1] G. Jeh and J. Widom,  SimRank: a measure of structural-context similarity.  In KDD, pages 538-543, 2002. 

The set of pages which have inks 
pointing to u 

C is a constant between 0 and 1, 
e.g., C=0.8 
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Bipartite SimRank�

  

sim( A, B) =
C1

| O( A) || O(B) |
sim(Oi( A),Oj (B))

j=1

|O( B)|

∑
i=1

|O( A)|

∑

sim(a,b) =
C2

| I(a) || I(b) |
sim(Ii(a), I j (b))

j=1

|I (b)|

∑
i=1

|I (a)|

∑

Extend the basic SimRank equation to bipartite domains 
consisting of two types of objects  
{A, B} and {a, b}. 
 
E.g., 
People A and B are similar if they purchase similar items. 
Items a and b are similar if they are purchased by similar people. 
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MiniMax Variation �

  

simA( A, B) =
C1

| O( A) |
max

j=1

|O( B)|

sim(Oi( A),Oj (B))
i=1

|O( A)|

∑

simB( A, B) =
C1

| O(B) |
max

i=1

|O( A)|

sim(Oi( A),Oj (B))
j=1

|O( B)|

∑
sim( A, B) = min(simA( A, B),simB( A, B))

In some cases, e.g., course similarity, we are more care about the maximal 
similarity of two neighbors.  

Note: Again, the method 
only considers the network 

information. 
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Methodologies 

•  Reachability-based methods 
•  Structure Similarity 
•  Structure + Content Similarity 
•  Action-based methods 
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Topic-based Social Influence Analysis �

•  Social network -> Topical influence network�

Ada

Frank

Eve David

Carol

Bob

George

Input: coauthor network

Ada

Frank

Eve David

Carol

George

Social influence anlaysis

θi1=.5
θi2=.5

Topic 
distribution g(v1,y1,z)θi1

θi2

Topic 
distribution

Node factor function

f (yi,yj, z)
Edge factor function

rz

az

Output: topic-based social influences

Topic 1: Data mining

Topic 2: Database

Topics:

Bob

Output

Ada

Frank

Eve

BobGeorge

Topic 1: Data mining

Ada

Frank

Eve David

George

Topic 2: Database

. . .

2

1

1
4

2

2 3
3

[1] J. Tang, J. Sun, C. Wang, and Z. Yang. Social Influence Analysis in Large-scale Networks. In KDD’09, pages 
807-816, 2009.  
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The Solution: Topical Affinity Propagation�

•  Topical Affinity Propagation �
– Topical Factor Graph model�
– Efficient learning algorithm 
– Distributed implementation�

[1] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social Influence Analysis in Large-scale Networks. In KDD, pages 
807-816, 2009.  
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Topical Factor Graph (TFG) Model 

Node/user 

Nodes that have the 
highest influence on 

the current node 

The problem is cast as identifying which node has the highest probability to 
influence another node on a specific topic along with the edge. 

Social link 
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•  The learning task is to find a configuration for 

all {yi} to maximize the joint probability. 

Topical Factor Graph (TFG) 

Objective function: 

1. How to define? 

2. How to optimize? 
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How to define (topical) feature functions? 

–  Node feature function 

–  Edge feature function 
 
 
 
 

–  Global feature function�

similarity 

 or simply binary 
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Model Learning Algorithm 

Sum-product:�

- Low efficiency! 
- Not easy for 
distributed learning! 
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New TAP Learning Algorithm 

1. Introduce two new variables r and a, to replace the 
original message m. 

2. Design new update rules: 

mij 

[1] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social Influence Analysis in Large-scale Networks. In KDD, pages 
807-816, 2009.  
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The TAP Learning Algorithm�
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•  Map-Reduce 
– Map: (key, value) pairs 

•  eij /aij à ei* /aij; eij /bij à ei* /bij; eij /rij à e*j /rij . 

– Reduce: (key, value) pairs 
•   eij / * à new rij; eij/* à new aij 

 

•  For the global feature function 
 

Distributed TAP Learning 
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Experiments 
•  Data set: (http://arnetminer.org/lab-datasets/soinf/) 

 
 
 
 
 
 

 
•  Evaluation measures 

– CPU time 
– Case study 
– Application 

Data set� #Nodes� #Edges �
Coauthor� 640,134� 1,554,643�
Citation� 2,329,760� 12,710,347�
Film 
(Wikipedia)�

18,518 films 
7,211 directors 
10,128 actors 
9,784 writers�

142,426�
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Social Influence Sub-graph on “Data mining”�

On “Data Mining” in 2009 
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Results on Coauthor and Citation�
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Scalability Performance 
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Speedup results 

0 170K 540K 1M 1.7M
0

1

2

3

4

5

6

7

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Perfect
Our	  method

Speedup vs. Dataset size 

 Speedup vs. #Computer nodes 
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Application—Expert Finding[1] 

Expert finding data from 
http://arnetminer.org/lab-datasets/expertfinding/  

Note: Well though this 
method can combine network 

and content information, it 
does not consider users’ 

action. 

[1] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. ArnetMiner: Extraction and Mining of Academic Social Networks. In KDD’08, pages 
990-998, 2008. 
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Methodologies 

•  Reachability-based methods 
•  Structure Similarity 
•  Structure + Content Similarity 
•  Action-based methods 
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Influence and Action �
Gt =(Vt, Et, Xt, Yt) �

Input:  
Gt =(Vt, Et, Xt, Yt)  

t = 1,2,…T�

Output: 
F: f(Gt) ->Y(t+1)   �

Nodes at time t 

Edges at time t 

Attribute matrix at time t 

Actions at time t 
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John�

Time t�

John�

Time t+1 �

Action Prediction： 
Will John post a tweet on “Haiti Earthquake”?�

Personal attributes: 
1.  Always watch news 
2.  Enjoy sports 
3.   ….�

     Influence 1

    Action bias 4

  Dependence 2

Social Influence & Action Modeling[1] �

    Correlation 3

[1] C. Tan, J. Tang, J. Sun, Q. Lin, and F. Wang. Social action tracking via noise tolerant time-varying factor graphs. In KDD’10, pages 807–816, 
2010.�
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A Discriminative Model: NTT-FGM�

Continuous latent action state�

Personal attributes�

Correlation�

Dependence�

Influence�

Action �
Personal attributes �
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Model Instantiation�

How to estimate the parameters? 



121 

Model Learning—Two-step learning�

[1] C. Tan, J. Tang, J. Sun, Q. Lin, and F. Wang. Social action tracking via noise tolerant time-varying factor graphs. In KDD’10, pages 807–816, 
2010.�
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Still Challenges 

•  Q1: Are there any other social factor that may 
affect the prediction results? 

•  Q2: How to scale up the model to large 
networks? 
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Q1: Conformity Influence 

I love Obama 

Obama is 
great! 

Obama is 
fantastic 

Positive Negative 

2. Individual 

3. Group conformity 

1. Peer 
influence 

[1] Jie Tang, Sen Wu, and Jimeng Sun. Confluence: Conformity Influence in Large Social Networks. In KDD’13, 2013. 
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Conformity Factors 

•  Individual conformity 

•  Peer conformity 

•  Group conformity 

All actions by user v �

A specific action performed 
by user v at time t�
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Q2: Distributed Learning 

Slave 
Compute local gradient 
via random sampling�

Master 
Global 
update�

Graph Partition by Metis 
Master-Slave Computing 

Inevitable loss of 
correlation factors! 
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Random Factor Graphs�
Master: Optimize with 

Gradient Descent�
Slave: Distributedly 

compute Gradient via 
LBP�

Master-Slave 
Computing 

Gradients�

Parameters�
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Model Inference�

•  Calculate marginal probability in each subgraph 

•  Aggregate the marginal probability and 
normalize�
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Theoretical Analysis 
•  Θ*: Optional parameter of the complete graph 
•  Θ: Optional parameter of the subgraphs 
•  Ps,j: True marginal distributions on the complete graph 
•  G*

s,j: True marginal distributions on subgraphs 
•  Let Es,j = log G*

s,j – log Ps,j，we have: 
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•  Data Set (http://arnetminer.org/stnt) 

•  Baseline 
–  SVM 
–  wvRN (Macskassy, 2003) 

•  Evaluation Measure: 
Precision, Recall, F1-Measure 

Action� Nodes� #Edges � Action Stats �

Twitter� Post tweets on 
“Haiti Earthquake”�

7,521 � 304,275� 730,568�

Flickr� Add photos into 
favorite list�

8,721� 485,253� 485,253�

Arnetminer� Issue publications 
on KDD �

2,062� 34,986� 2,960�

Experiment�
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Results�
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Summaries 

•  Reachability-based methods 
•  Structure Similarity 
•  Structure + Content Similarity 

– Topical Affinity Propagation (TAP) 
•  Action-based methods 

– A discriminative model: NTT-FGM 
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Output of Measuring Influence 

Positive 

Negative 

output 

0.3�

0.2�

0.5�
0.4�

0.7�

0.74�0.1�

0.1�

0.05�

I love Obama 

I hate Obama 
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Understanding the Emotional Impact 
in Social Networks 

[1] J. Jia, S. Wu, X. Wang, P. Hu, L. Cai, and J. Tang. Can We Understand van Gogh’s Mood? Learning to Infer Affects from Images in Social 
Networks. In ACM Multimedia, pages 857-860, 2012.�
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Social Influence 

S
ocial 

Influence 

Test!

Measure!

Models!

1

2

3
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Influence Maximization�
•  Influence maximization 

–  Minimize marketing cost and more generally to maximize profit. 
–  E.g., to get a small number of influential users to adopt a new product, and 

subsequently trigger a large cascade of further adoptions. 

0.6�

0.5�

0.1�

0.4�
0.6� 0.1�

0.8�

0.1�

A�
B�

C �

D � E� F�

Probability of 
influence�

[1] P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings of the seventh ACM SIGKDD international 
conference on Knowledge discovery and data mining (KDD’01), pages 57–66, 2001.�
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Problem Abstraction�

•  We associate each user with a status:  
– Active or Inactive 
– The status of the chosen set of users (seed nodes) 

to market is viewed as active 
– Other users are viewed as inactive 

•  Influence maximization 
–  Initially all users are considered inactive 
– Then the chosen users are activated, who may 

further influence their friends to be active as well 
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Diffusion Influence Model�

•  Linear Threshold Model 
•  Cascade Model�
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Linear Threshold Model�
•  General idea 

–  Whether a given node will be active can be based on an arbitrary monotone 
function of its neighbors that are already active. 

•  Formalization 
–  fv : map subsets of v’s neighbors’ influence to real numbers in [0,1] 
–  θv : a threshold for each node 
–  S: the set of neighbors of v that are active in step t-1  
–  Node v will turn active in step t if  fv(S) >θv 

•  Specifically, in [Kempe, 2003], fv  is defined as                      ,  where bv,u 
can be seen as a fixed weight, satisfying 

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM 
SIGKDD international conference on Knowledge discovery and data mining (KDD’03), pages 137–146, 2003.�
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Linear Threshold Model: An example 

0.3�

0.2�

0.5�
0.4�

0.7�
0.74�

0.1�

0.1�

0.05�

θ = 0.8

θ = 0.5
θ = 0.2

θ = 0.5

θ = 0.4

1st try �
 0.74<0.8 

2nd try, 
0.74+0.1>0.8 

1st try, 0.7>0.5 

A 

B 

C 
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Cascade Model�

•  Cascade model 
–  pv(u,S) : the success probability of user u activating user v 
–  User u tries to activate v and finally succeeds, where S is the set of v’s 

neighbors that have already attempted but failed to make v active 

•  Independent cascade model 
–  pv(u,S) is a constant, meaning that whether v is to be active does not 

depend on the order v’s neighbors try to activate it. 
–  Key idea: Flip coins c in advance -> live edges 
–  Fc(A): People influenced under outcome c (set cover) 
–  F(A) = Sum cP(c) Fc(A) is submodular as well �

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM 
SIGKDD international conference on Knowledge discovery and data mining (KDD’03), pages 137–146, 2003.�
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Theoretical Analysis�
•  NP-hard [1] 

–  Linear threshold model 
–  General cascade model 

•  Kempe Prove that approximation algorithms can guarantee that the 
influence spread is within(1-1/e) of the optimal influence spread. 
–  Verify that the two models can outperform the traditional heuristics 

•  Recent research focuses on the efficiency improvement 
–  [2] accelerate the influence procedure by up to 700 times 

•  It is still challenging to extend these methods to large data sets �

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM 
SIGKDD international conference on Knowledge discovery and data mining(KDD’03), pages 137–146, 2003.  
[2] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks. In 
Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’07), pages 420–429, 2007. 
�
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Objective Function�
•  Objective function:  
    - f (S) = Expected #people influenced when targeting a set of 

users S 
    
•  Define f (S) as a monotonic submodular function 

 
where  

[1] P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings of the seventh ACM SIGKDD international 
conference on Knowledge discovery and data mining (KDD’01), pages 57–66, 2001. 
[2] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM 
SIGKDD international conference on Knowledge discovery and data mining(KDD’03), pages 137–146, 2003.  
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Maximizing the Spread of Influence�
•  Solution 

–  Use a submodular function to approximate the influence function 
–  Then the problem can be transformed into finding a k-element set S for 

which f (S) is maximized. 

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM 
SIGKDD international conference on Knowledge discovery and data mining (KDD’03), pages 137–146, 2003.�

approximation ratio 
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Performance Guarantee 

•  Let                        and 
•  For                 and  

•  Let  
where     is the optimal solution 
•  We have 

•  Thus 

•  Then  

jg j

{ }1, ,j jG g g= K
,S S k∀ = 0,1, , 1j k= −K

( ) ( ) ( ) 1j j jF S F G S F G kg +≤ ∪ ≤ +

monotonicity greedy + 
submodularity 

Let       be the   -th node selected by the greedy algorithm 

( ) ( )*
j jF S F GΔ = −

*S
1 1j j jg + += Δ −Δ

0G =∅ ( )1j j jk +Δ ≤ Δ −Δ

( )

0

*

11

1

k

k k

F S
e

⎛ ⎞Δ ≤ − Δ⎜ ⎟⎝ ⎠

≤

( ) ( )*11kF G F S
e

⎛ ⎞≥ −⎜ ⎟⎝ ⎠

The solution obtained by Greedy is 
better than 63% of the optimal solution 

Recall 
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Algorithms 

•  General Greedy 
•  Low-distance Heuristic 
•  High-degree heuristic 
•  Degree Discount Heuristic 
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General Greedy 

•  General idea: In each round, 
the algorithm adds one vertex 
into the selected set S such 
that this vertex together with 
current set S maximizes the 
influence spread. 

Any random diffusion 
process 
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Low-distance Heuristic�

•  Consider the nodes with the shortest paths to 
other nodes as seed nodes 

•  Intuition 
–  Individuals are more likely to be influenced by those 

who are closely related to them.�
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High-degree heuristic�

•  Choose the seed nodes according to their 
degree. 

•  Intuition 
– The nodes with more neighbors would arguably 

tend to impose more influence upon its direct 
neighbors. 

– Know as “degree centrality”�
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Degree Discount Heuristic[1] �

•  General idea: If u has been 
selected as a seed, then when 
considering selecting v as a new 
seed based on its degree, we 
should not count the edge v->u  

•  Specifically, for a node v with dv  
neighbors of which tv are 
selected as seeds, we should 
discount v’s degree by  

          2tv +(dv-tv) tv p  
where p=0.1. �

[1] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In KDD'09, pages 199-207, 
2009. 
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Summaries 
•  Influence Maximization Models 

– Linear Threshold Model 
– Cascade Model 

•  Algorithms 
– General Greedy 
– Low-distance Heuristic 
– High-degree heuristic 
– Degree Discount Heuristic 
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Social Influence 
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Applications 
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Application: Social Advertising[1] 

•  Conducted two very large field experiments that 
identify the effect of social cues on consumer 
responses to ads on Facebook 

•  Exp. 1: measure how responses increase as a 
function of the number of cues. 

•  Exp. 2: examines the effect of augmenting traditional 
ad units with a minimal social cue 

•  Result: Social influence causes significant increases in 
ad performance 

[1] E. Bakshy, D. Eckles, R. Yan, and I. Rosenn. Social influence in social advertising: evidence from field experiments. In 
EC'12, pages 146-161, 2012. 
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Application: Opinion Leader[1] �

•  Propose viral marketing through frequent pattern mining. 
•  Assumption 

–  Users can see their friends actions. 

•  Basic formation of the problem 
–  Actions take place in different time steps, and the actions which come up 

later could be influenced by the earlier taken actions. 

•  Approach 
–  Define leaders as people who can influence a sufficient number of 

people in the network with their actions for a long enough period of time. 
–  Finding leaders in a social network makes use of action logs. 

[1] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Discovering leaders from community actions. In CIKM’08, pages 499–
508, 2008. 
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Application: Influential Blog Discovery[1] �

•  Influential Blog Discovery 
–  In the web 2.0 era, people spend a significant amount of time on user-

generated content web sites, like blog sites. 
–  Opinion leaders bring in new information, ideas, and opinions, and 

disseminate them down to the masses. 

•  Four properties for each bloggers 
–  Recognition: A lot of inlinks to the article. 
–  Activity generation: A large number of comments indicates that the 

blog is influential.  
–  Novelty: with less outgoing links. 
–  Eloquence: Longer articles tend to be more eloquent, and can thus be 

more influential.�

[1] N. Agarwal, H. Liu, L. Tang, and P. S. Yu. Identifying the influential bloggers in a community. In WSDM’08, pages 
207–217, 2008. 
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Example 1: Influence maximization with 
the learned influence probabilities 
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Maximizing Influence Spread 
•  Goal 

–  Verify whether the learned influence probability can help 
maximize influence spread. 

•  Data sets 
–  Citation and Coauthor are from Arnetminer.org; 
–  Film is from Wikipedia, consisting of relationships between 

directors, actors, and movies. 
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Influence Maximization 

(a) With uniform influence (b) With the learned influence 

a)  The influence probability from      to       is simply defined as as      , where 
           is the in-degree of       . 
a)  Influence probability learned from the model we introduced before.  

[1] C. Wang, J. Tang, J. Sun, and J. Han. Dynamic Social Influence Analysis through Time-dependent Factor Graphs. In 
ASONAM’11, pages 239-246, 2011. 
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Example 2: Following Influence 
Applications 
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Following Influence Applications�

Peng �

Sen �Lei �

Peng �

Sen �Lei �

When you follow a user in a 
social network, will the be- 

havior influences your friends to 
also follow her? �

Time 1 � Time 2 �

Lady Gaga � Lady Gaga �
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Applications: Influence Maximization�

Alice�

Mary �

John�

Find a set S of k initial followers to follow user v such that the number of newly 
activated users to follow v is maximized.�
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Applications: Friend Recommendation�

Ada�

Bob�

Mike �

Find a set S of k initial followees for user v such that the total number of new 
followees accepted by v is maximized �
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Application Performance�

Recommendation �Influence Maximization�

•  High degree 
•  May select the users that do not have large influence on following behaviors.  

•  Uniform configured influence 
•  Can not accurately reflect the correlations between following behaviors. 

•  Greedy algorithm based on the influence probabilities learned by FCM 
•  Captures the entire features of three users in a triad (i.e., triad structures and triad statuses)�
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Example 3: Emotion Influence 

[1] J. Tang, Y. Zhang, J. Sun, J. Rao, W. Yu, Y. Chen, and ACM Fong. Quantitative Study of Individual Emotional States 
in Social Networks. IEEE TAC, 2012, Volume 3, Issue 2, Pages 132-144.  
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Happy System�

Can we predict users’ 
emotion?�
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Observations (cont.)�

 
Location correlation 

(Red-happy) �

Activity correlation �

Karaoke�

?

?

?

?

?

GYM �

Dorm�The Old Summer 
Palace �

Classroom�
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Observations�

(a) Social correlation � (a) Implicit groups by emotions �

(c) Calling (SMS) correlation�
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Observations (cont.)�

Temporal correlation�
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MoodCast: Dynamic Continuous Factor 
Graph Model�

Jennifer

Happy

Happy

location

Neutral

Neutral

call

sms

Mike

Allen

MikeAllen

Jennifer today

Jennifer 
yesterday

?

Jennifer  
tomorrow

MoodCast

Predict

Attributes f(.)

Temporal 
correlation h(.)

Social correlation g(.)

Our solution 
 

1. We directly define continuous feature function; 
 

2. Use Metropolis-Hasting algorithm to learn the factor graph model. 
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Problem Formulation�

Gt =(V, Et, Xt, Yt) �

Attributes: 
 - Location: Lab 
 - Activity: Working 

Emotion: Sad 

Learning Task:�

Time t�

Time t-1, t-2… �
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Dynamic Continuous Factor Graph Model�

Time t’ �

Time t�
     

 : Binary function �
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Learning with Factor Graphs�

Temporal�

Social�

Attribute �

y3�

y4�
y5�

y2� y1�

y'
3�
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MH-based Learning algorithm�

[1] J. Tang, Y. Zhang, J. Sun, J. Rao, W. Yu, Y. Chen, and ACM Fong. Quantitative Study of Individual Emotional States 
in Social Networks. IEEE TAC, 2012, Volume 3, Issue 2, Pages 132-144.  
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•  Data Set 

•  Baseline 
–  SVM 
–  SVM with network features 
–  Naïve Bayes 
–  Naïve Bayes with network features 

•  Evaluation Measure: 
Precision, Recall, F1-Measure 

#Users� Avg. Links� #Labels� Other �

MSN � 30 � 3.2� 9,869� >36,000hr�

LiveJournal� 469,707� 49.6� 2,665,166�

Experiment�
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Performance Result�
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Factor Contributions�

•  All factors are important for predicting user emotions 
Mobile �
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Summaries 

•  Applications 
– Social advertising 
– Opinion leader finding 
– Social recommendation 
– Emotion analysis 
– etc. 
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Social Influence Summaries 
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ocial 
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§  Randomization test 
§  Shuffle test 
§  Reverse test 

§  Reachability-based methods 
§  Structure Similarity 
§  Structure + Content Similarity 
§  Action-based methods 

§  Linear Threshold Model 
§  Cascade Model 
§  Algorithms 
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