

Cross-lingual Knowledge Validation Based Taxonomy Derivation from Heterogeneous OnlineWikis

Zhigang Wang¹, Juanzi Li¹, Shuangjie Li¹, Mingyang Li¹, Jie Tang¹, Kuo Zhang², Kun Zhang²1 TSINGHUA UNIVERSITY, BEIJING, CHINA2 SOGOU INCORPORATION, BEIJING, CHINA

\blacklozenge Introduction

- Creating KBs based on the crowd-sourced wikis has attracted significant research interest in the field of intelligent Web.
- However, the user-generated subsumption relations in the wikis and the semantic taxonomic relations in the KBs are not exactly the same.
- Current taxonomy derivation approaches include:
 - The heuristic-based methods
 - The corpus-based methods
- Here, we systematically study the problem of cross-lingual knowledge validation based taxonomy derivation from heterogeneous online wikis.

The problem of cross-lingual taxonomic relation prediction is at the heart of our work.

Note: \bigcirc for category/class, \bigcirc for article/instance.

Example of Mistaken Derived Facts

\blacklozenge Approach

Given two wikis W_1 , W_2 in different languages (English and Chinese here) and the set of crosslingual links *CL*, **Cross-lingual Taxonomy Derivation** is a cross-lingual knowledge validation based boosting process, by simultaneously learning four taxonomic prediction functions f^{en} , f^{zh} , g^{en} and g^{zh} in *T* iterations.

1. Weak Classifier

We utilize the binary classifier for the basic learner and use the Decision Tree as our implementation.

Linguistic Heuristic Features

Feature 1: English Features. Whether the head words of *label* are plural or singular.

Feature 2: Chinese Features. Whether the super-category's *label* is the prefix/suffix of the sub-category's *label*. Or, whether the category's *label* is the prefix/suffix of the article's *label*.

Feature 3: Common Features for *instanceOf*. Whether the *comment* contains the *label* or

2. Boosting Model

Active Set A: the set of training data.Pool P: the set of all labeled data.Unknown Data Set U: the set of unlabeled data.

where f^{en} , f^{zh} , g^{en} and g^{zh} denote the English *subClassOf*, the Chinese *subClassOf*, the English *instanceOf*, and the Chinese *instanceOf* prediction functions respectively.

Dynamic Adaptive Boosting (**DAB**) model is to maintain a dynamic changed training set to achieve a better generalization ability via knowledge validation with *cross-lingual links*. not.

Structural Features

Six Normalized Google Distance based structural features are defined on *articles*, *properties* and *categories*.

 $d_a(c,c') = \frac{\log(\max(|A(c)|, |A(c')|)) - \log(|A(c) \cap A(c')|)}{\log(|A|) - \log(\min(|A(c)|, |A(c')|))}$

H(x)

Learning Process.

- Train a hypothesis on current active set.
- Re-weight the weight vector.
- Predict U using current classifier and validate the results using CL.
- Expand *P* and update *U*.
- **Resample** *A* with the constant size.

• Experiments

Comparison Methods

- Heuristic Linking (HL): only uses the linguistic heuristic features, and trains the taxonomic relation prediction functions separately using the decision tree model.
- Decision Tree (DT): uses both the linguistic heuristic features and the structural features, and trains the taxonomic relation prediction functions separately using the decision tree

Performance of Cross-lingual Taxonomy Derivation with Different Methods (%)

	English SubClassOf			Chinese SubClassOf			English InstanceOf			Chinese InstanceOf		
Methods	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
HL	87.1	81.3	84.1	91.4	91.4	91.4	94.3	89.4	91.8	42.4	51.9	46.7
DT	88.7	86.9	87.8	90.9	92.0	91.4	91.9	95.6	93.7	46.8	58.1	51.8
AdaBoost	90.8	90.9	90.9	91.4	92.3	91.8	94.3	94.1	94.2	51.4	63.9	57.0
DAB	90.7	91.8	91.2	91.1	95.2	93.1	94.1	97.7	95.9	77.8	75.0	76.4

model.

Adaptive Boosting (AdaBoost): uses the same basic learner, and iteratively trains the taxonomic relation prediction functions using the real AdaBoost model.

Conclusion and Future Work

- DAB gives a new way for language processing tasks using cross-language resources.
- The future work contains automatically learning more cross-lingual validation rules and conducting more experiments in other languages.

♦ References

- de Melo, G., and Weikum, G. 2010. Menta: Inducing multilingual taxonomies from Wikipedia. In CIKM'10.
- Potthast, M., Stein, B., and Anderka, M. 2008. A Wikipedia-based multilingual retrieval model. In ECIR'08.
- Wang, Z.; Li, J.; Wang, Z.; and Tang, J. 2012. Cross-lingual knowledge linking across wiki knowledge bases. In WWW'12.
 Zhigang Wang et al., 2014-07-29