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Abstract

Diabetes complications often afflict diabetes patients
seriously: over 68% of diabetes-related mortality is
caused by diabetes complications. In this paper, we
study the problem of automatically diagnosing diabetes
complications from patients’ lab test results. The objec-
tive problem has two main challenges: 1) feature sparse-
ness: a patient only undergoes 1.26% lab tests on aver-
age, and 65.5% types of lab tests are performed on sam-
ples from less than 10 patients; 2) knowledge skewness:
it lacks comprehensive detailed domain knowledge of
the association between diabetes complications and lab
tests. To address these challenges, we propose a novel
probabilistic model called Sparse Factor Graph Model
(SparseFGM). SparseFGM projects sparse features onto
a lower-dimensional latent space, which alleviates the
problem of sparseness. SparseFGM is also able to cap-
ture the associations between complications and lab
tests, which help handle the knowledge skewness. We
evaluate the proposed model on a large collections of
real medical records. SparseFGM outperforms (+20%
by F1) baselines significantly and gives detailed associ-
ations between diabetes complications and lab tests.

Introduction
Diabetes mellitus, or simply diabetes, is a very common
chronic disease, whose prevalence continues to increase, es-
pecially in the “Western” world. People with diabetes nor-
mally suffer from high blood glucose levels, which damages
tissues over time and leads to life-threatening health com-
plications, e.g., hypertension, coronary heart disease, hyper-
lipidemia, etc. Many of these complications seriously dimin-
ish the quality of life and even lead to premature death. Stud-
ies show that diabetes and its complications are major causes
of early death in most countries (Roglic and Unwin 2010),
and over 68% of diabetes-related mortality is caused by dia-
betes complications1.

However, diabetes and its complications are often diag-
nosed late due to the long subclinical evolution, unclear
pathogenesis, and poor medical facilities in some regions
over the world. Although more than 471 billion USD were
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spent on healthcare for 371 million diabetes patients world-
wide in 2012, still half of the people with diabetes remain
undiagnosed, and 4.8 million people died in 2012 due to di-
abetes2.

Challenges. In this paper, we study the problem of auto-
matically diagnosing diabetes complications from lab test
results. More specifically, given a series of lab test results
of a potential diabetes patient, the goal of this study is to
find particular complications that the patient may have. This
approach can benefit a wide range of applications and stud-
ies, such as online diabetes complication diagnosis system,
and studies of underlying patterns between diabetes compli-
cations and lab tests. The problem has several unique chal-
lenges:

Feature sparseness. There are 1945 different lab tests in
our data set, while the clinical record of each patient only
contains 24.43 different lab tests (1.26%) on average, which
means only 1.26% of the features on average are used to
represent each instance. At the same time, 65.5% types of
lab tests are recoded in less than 10 clinical records among
181,933 records in total (0.0054%). The rare appearance of
features will cause ineffectiveness of the model learning and
lead to poor performance.

Knowledge skewness. The performance of approaches
to solve the objective problem highly relies on the domain
knowledge of associations between diabetes complications
and different types of lab tests. Previous work studied some
of the associations. For example, (Zürbig et al. 2012) stud-
ied the association between tests on urinary proteome and
diabetic nephropathy. Voulgari et al. (2010) studied the as-
sociation between echocardiographic methods and diabetic
cardiomyopathy. However, to the best of our knowledge, no
study has provided a comprehensive detailed association.
The skewness of the domain knowledge will cause an un-
balanced performance.

Proposed Solution and Contributions. To address these
challenges, we propose the Sparse Factor Graph Model
(SparseFGM). For handling feature sparseness, SparseFGM
projects the sparse features into a lower-dimensional la-
tent space, which alleviates the sparseness issue. For han-
dling knowledge skewness, SparseFGM models the associa-

2http://www.idf.org/diabetesatlas/
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Figure 1: Associations between 10 complications and 9 pa-
rameters of routine urine analysis. The parameters include: vi-
tamin C, ketone (KET), urobilinogen (URO), bilirubin (BIL), red
blood cell (RBC), nitrite, white blood cell (WBC), glucose (GLU),
and protein (PRO). the meanings of the complication abbreviation
can be referred to the experimental section.

tions between all diabetes complications and lab tests in our
dataset by exponential-linear functions. More importantly,
with the model, we can not only forecast a potential dia-
betes complication, but also discover which types of lab test
are most strongly associated with the diagnosed complica-
tion.

We evaluate the proposed model on a large collection of
real medical records. Figure 1 shows the results obtained in
our experiment to demonstrate the associations between ten
complications and nine parameters of routine urine analysis.
The color in each square represents the association strength,
discovered by our proposed model, between each urine test
and complication. For example, protein (PRO) has a strong
association with hypertension (HTN) as chronic hyperten-
sion causes kidney damage, which in turn leads to the ap-
pearance of protein in the urine.

In all, our contributions of this paper are summarized in
the following.

• We identify and formalize a new problem of diagnosing
diabetes complications by a machine learning method. To
the best of our knowledge, no previous work has exten-
sively studied this problem.

• We propose a probabilistic model, SparseFGM, to solve
the diabetes complication diagnosis problem, which in-
tegrates a feature dimensionality reduction process, asso-
ciation mining between complications and lab tests, and
complication prediction into a unified model.

• We demonstrate the power of the proposed method using
a large collection of real clinical records. Experimental re-
sults show that SparseFGM outperforms SVM, traditional
factor graph models (FGM), and PCA based methods by
+20% on average.

Problem Definition
In this section, we define several related concepts and for-
mulate the diabetes complication forecasting problem.
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Figure 2: An illustration of the proposed model. Instances in
the input layer are represented sparsely. The model projects
a 9-dimensional feature space into a 5-dimensional latent
space, which alleviates the sparseness issue. Vectors indi-
cating associations between a particular complication and
(groups of) lab tests are derived from the feature factors,
which bridge the latent layer and output layer of Sparse-
FGM. Detailed dependencies between input layer and latent
layer are omitted.

We first introduce the observed lab tests, which are per-
formed on patients to evaluate the patient’s health condition.
Formally, we define a lab test record of a patient as follows:

Definition 1. Lab Test Record. We define a lab test record
of a patient n as a set un = {ui}, where each ui denotes
a lab test performed on the patient n. We also use a tuple
u = (l, r) to represent each lab test, where l is the type of
the lab test (e.g., WBC test in urine routine), and r is the
result. Lab tests can have numerical or categorical types of
results.

A patient can have several different lab test records as he
may undergo lab tests more than once. For example, patients
with serious diabetes may have to undergo tests once per
week. Thus we further define a (lab test) record sequence
for a particular patient to represent the order of the patient
taking lab tests. Specifically, a record sequence of a patient
is defined as a sequence S = (si), where si is a lab test
record. We say the test si is performed later than sj if i > j.

We finally define the objective problem in this study. Gen-
erally, our goal is to diagnose diabetes complications from a
set of lab test records of patients. Specifically, the problem
can be defined as follows.

Definition 2. Diabetes Complication Forecasting. The
inputs of diabetes complication forecasting include a dia-
betes complication C, a set of patients V = {v}, and a
record sequence Sn for each patient vn. The goal of diabetes
forecasting is, for each patient vn, and each lab test record
un ∈ Sn, determining if the patient vn has the diabetes com-
plication C, when the lab tests in un are performed on the
patient vn.



Table 1: Notations in the proposed model.
SYMBOL DESCRIPTION

K The number of latent variables;
L The number of different lab tests;
C A particular diabetes complication the model aims

to forecast;
xnl The l-th value in the n-th instance node;
yn A label node indicates whether the patient cor-

responding to the n-th instance has the diabetes
complication C or not;

θn The parameter of the multinomial distribution over
latent variables specific to the n-th instance node;

µkl, δk The parameters of the Gaussian distribution used
to sample xnl, which has a numerical value and is
specific to the latent variable k;

φklxnl The parameter of the multinomial distribution over
xnl, which has a categorical value, specific to the
latent variable k;

α, β Parameters used to define the feature factor and the
correlation factor respectively.

Model Framework
In this section, we explain the model that we have developed
for the diabetes complication forecasting problem. Table 1
summarizes the notations used in the proposed model.

For each patient’s lab test record un, we create an instance
node xn. Assume that there are in total L available (differ-
ent) lab tests, we define xn as a L-dimensional vector. For
each lab test uni = (l, r) ∈ un, we set xnl = r. We also
set xnl′ = / to denote that there is no lab test with type l′ in
un. We associate a variable label yn for xn’s corresponding
patient, to denote whether the patient has the given com-
plication C or not. Particularly, we use yn = 1 to denote
a positive result, and use yn = −1 to denote a negative
result. Based on this formulation, we can build a classifi-
cation model to map the input instance to the target label,
i.e., f(xn) → yn. With this formulation, more-or-less stan-
dard technologies can be employed for learning and infer-
ence, for example SVM (Chang and Lin 2011). However,
SVM treats all instances independently and cannot capture
the dependencies between instances (e.g., the dependencies
between records in the record sequence). A factor graph
model (Kschischang, Frey, and Loeliger 2001) can be lever-
aged to model the dependencies. However, the traditional
factor graph model still cannot deal with the challenges in
our problem: feature sparseness and knowledge skewness.

To this end, we propose a Sparse Factor Graph Model
(SparseFGM). The basic idea here is that we first project
instances from the original sparse space onto a lower di-
mensional latent space. The latent space is used to cap-
ture the correlation between different lab tests. In this way,
the model alleviates the feature sparseness problem. More-
over, the graphical structure of the SparseFGM model is
designed to model the correlation between different labels.
Figure 2 shows a simple example of a SparseFGM. In-
stances in the input layer (represented as a 9-dimensional
vector) are sparse. The model projects all instances onto a
5-dimensional latent space, which alleviates the sparseness

issue. Furthermore, the factor function (indicated as black
rectangles) between labels is defined to model the depen-
dencies between instances. Please notice that SparseFGM
can be applied not only in the diabetes complication fore-
casting problem but also to other similar scenarios.

According to the model, we can write the joint distribution
of a given set of instances X over Y as

P (yn|θn,xn) = P (yn|θn)
Y
l

(

KX
k=1

θnk · Ωxnlk) (1)

where l is an index of xn which satisfies xnl 6= /; K is the
number of latent variables in SparseFGM; θn is the param-
eter of a multinomial distribution which assigns latent vari-
ables to the n-th instance; Ωxnlk is the parameter of a dis-
tribution which generates values of xnl when it is assigned
with latent variable k. In the diabetes complication diagno-
sis problem, there are two kinds of lab test results: numerical
and categorical. Similar with Liu et al. (2013), we assume
that the numerical values are drawn from some Gaussian
distributions, and categorical values are drawn from multi-
nomial distributions. Thus Ωxnlk is defined as

Ωxnlk =


N(xnl|µkl, δk) xnl is numerical
φklxnl xnl is categorical (2)

where µkl is the mean of the Gaussian distribution w.r.t. la-
tent variable k and the category of patient symptom l; we
assume that all Gaussian distributions corresponding to the
same latent variable k share the same standard deviation δk;
φklxnl is the probability that the l-th dimension of an in-
stance variable assigned to the latent variable k has the value
xnl.

Regarding the feature factor P (yn|θn), we define it as

P (yn|θn) =
1

Z1
exp{α · f(θn, yn)} (3)

whereα is a parameter of SparseFGM,Z1 is a normalization
factor, and f(θn, yn) = yn · θn.

To model the correlations between different labels, we de-
fine the correlation factor. Intuitively, a patient’s health con-
dition will not change quickly. Thus, we create a correla-
tion factor between two labels yn and yn′ corresponding to
two adjacent lab test records in the same patient’s record se-
quence. Specifically, we define the correlation factor as

P (yn, yn′) =
1

Z2
exp{β · g(yn, yn′)} (4)

where β is a real number, Z2 is a normalization factor, and
g(yn, yn′) is defined as a vector of indicator functions.

By combining all the factors together, we can obtain the
log-likelihood objective function for SparseFGM:

O(λ) =
X
n

logP (yn|θn,xn) +
X
c

logP (yc1 , yc2)

=
X
n

αf(θn, yn) +
X
c

βg(yc1 , yc2)

+
X
n

X
l

log
X
k

θnkΩk,l,xnl − logZ

(5)



Input: a feature matrix X , learning rate η
Output: estimated parameters λ

Initialize α, β,θ,µ,φ randomly;
Initialize δ ← 1;
repeat

Calculate P (knl|xn, λn) according to Eq. 8;
Update θ,µ, δ,φ according to Eq. 9-12;
Call LBP to calculate E[

P
n f(θn, yn)] and

E[
P
c g(yc1 , yc2)] ;

Call LBP to calculate EPα(y|θ)[
P
n f(θn, yn)] and

EPβ(y)[
P
c g(yc1 , yc2)];

Calculate ∂O(α,β)
∂α

and ∂O(α,β)
∂β

according to Eq. 14;

αnew = αold + η ∂O(α,β)
∂α

;
βnew = βold + η ∂O(α,β)

∂β

until Convergence ;

Algorithm 1: Learning algorithm of SparseFGM.

where c is an indicator for 2-cliques among label nodes Y,
and Z = Z1Z2.

Model Learning

We introduce the learning algorithm to estimate the optimal
parameter configuration λ = {α, β,θ,φ,µ, δ} for the pro-
posed SparseFGM, i.e., finding parameters to maximize the
log-likelihood, i.e.,

λ? = arg max
λ

O(λ)

s.t.
X
k

θnk = 1,
X
x

φklx = 1
(6)

Unfortunately Eq. 6 does not have a closed-form solution.
Thus, we propose an EM-like approximation learning algo-
rithm to estimate the parameters.

We first introduce the general idea of the learning algo-
rithm. By regarding labels inferred by the last updated model
configuration, α and β as fixed, the remaining part of the
model can be learned as a mixture generative model with
parameters θ and Ω. On the other hand, by fixing θ and Ω,
the remaining part of the model is similar to FGM and we
are able to utilize a gradient based method to estimateα and
β. Next, we introduce how we update these parameters in
detail, and give a framework of the learning algorithm.

Step 1: Update {θ,φ,µ, δ}. When fixing Y, {α, β},
SparseFGM can be regarded as a mixture generative model
with the generative process as follows: first, each instance
variable has a latent variable distribution parameterized by
θn. Next, for each instance variable xn, a latent variable k is
sampled according to k ∼Mult(θn). After that, xnl is sam-
pled according to xnl ∼ Ωkl. Finally, each label variable yn

is sampled according to yn ∼ P (yn|θn).
With the generative process above, we can define the mix-

ture generative model’s log-likelihood, which can also been
treated as the combination of related terms from Eq. 5:

O(θ,φ,µ, δ) =
X
n

X
l1

log
X
k

θnk
exp{−(xnl1−µkl)

2

2δ2
k

}

δk
√

2π

+
X
n

X
l2

log
X
k

θnkφkl2xnl2

(7)

By Jensen’s inequality, we obtain the lower bound of
Eq. 7. We derive the lower bound with respect to each pa-
rameter and set them to zero, we have

P (knl|xn, λn) =
θnkΩklrP
k θnkΩklr

(8)

θnk =

P
l P (knl|xn, λn)P

l

P
knl

P (knl|xn, λn)
+ αkyn (9)

µkl =

P
n P (knl|xn, λn)xnlP
n P (knl|xn, λn)

(10)

δ2k =

P
n

P
l(xnl − µkl)

2

N × L1
(11)

φklr =

P
n P (knl|xn, λn)P

n

P
r P (knl|xn, λn)

(12)

where L1 is the number of numerical features, and N is the
total number of lab test records.

Step 2: Update {α, β}. When fixing θ and Ω, the remain-
ing part of SparseFGM is similar with FGM, which has the
log-likelihood as

O(α, β) =
X
n

αf(θn, yn) +
X
c

βg(yc1 , yc2)− logZ (13)

We then adopt a gradient descent method to optimize
Eq. 13. The gradient for each parameter is calculated as

∂O(α, β)

∂α
= E[

X
n

f(θn, yn)]−EPα(y|θ)[
X
n

f(θn, yn)]

∂O(α, β)

∂β
= E[

X
c

g(yc1 , yc2)]−EPβ(y)[
X
c

g(yc1 , yc2)]

(14)

We adopt Loopy Belief Propagation (LBP) (Murphy,
Weiss, and Jordan 1999) to compute the marginal probabil-
ity of y and thus compute the two expectations. We then up-
date α and β with a learning rate η with the gradient. Algo-
rithm 1 summarizes the learning algorithm for SparseFGM.

Experiments
In this section, we present experimental results to demon-
strate the effectiveness of the proposed approach. All codes
used in the paper are publicly available 3.

Experimental Setup
We use a collection of real medical records from a famous
geriatric hospital. The data set spans one year, containing
181,933 medical records corresponding to 35,525 unique pa-
tients and 1, 945 kinds of lab tests in total. On average each

3http://arnetminer.org/diabetes



clinical record contains 24.43 different lab tests (1.26% of
all lab tests), which indicates that the feature sparsity prob-
lem is serious for this data set.

We view each medical record as an instance, and aim to
infer whether the corresponding patient has a particular di-
abetes complication or not from the lab test results. Nine
complications are taken into account in our experiments:
hypertension (HTN), coronary heart disease (CHD), hyper-
lipidemia (HPL), cerebrovascular disease (CVD), bronchitis
(bro.), osteoporosis (OP), insomnia (ins.), fatty liver (FL),
diabetic retinopathy (DR), and depression (depr.). In the ex-
periments, we randomly picked 60% of the medical records
as training data and the rest for testing.

Evaluation Aspects. We evaluate our method on the fol-
lowing two aspects:

• Forecasting Performance. We evaluate the proposed
model in terms of Precision, Recall, F1-Measure, and
compare with baseline methods to validate its effective-
ness.

• Association pattern illustration. We use the discovered
association patterns between diabetes complications and
lab tests as anecdotal evidence to further demonstrate the
effectiveness of our method.

We compare the following methods for forecasting dia-
betes complications.

SVM. Lab test results are treated as features and LIB-
SVM (Chang and Lin 2011) is employed as the classification
model for complication forecasting.

FGM. A traditional factor graph is used as the classifi-
cation model. We employ a gradient descent algorithm to
learn the parameters in FGM (Tang, Zhuang, and Tang 2011;
Hopcroft, Lou, and Tang 2011), and set the learning rate pa-
rameter as 0.1.

FGM+PCA. To solve the feature sparsity problem in
FGM, PCA (Jolliffe 1986) is employed to convert the fea-
tures into a set of principal components, which is then used
as the input of FGM then.

SparseFGM. SparseFGM is our proposed model. In all
experiments, we empirically set the number of latent vari-
ables in SparseFGM to 100, and set η = 0.1.

All algorithms were implemented in C++, and all exper-
iments were performed on a Mac running Mac OS X with
Intel Core i7 2.66 GHz and 4 GB of memory.

Forecasting Performance
Table 2 shows the performance of the different methods on
the diabetes complication forecasting task. Due to the space
limitations, we only present the results for the three most
common diabetes complications: hypertension (HTN), coro-
nary heart disease (CHD), and hyperlipidemia (HPL). From
the table, we can see that SparseFGM achieves the high-
est F1-score in all three tasks compared with other methods
on average. Generally, SparseFGM offers the possibility to
model the dependencies and constraints together with mod-
eling latent class information. The results show that recall is
increased without hurting precision substantially, or in some
cases while even improving precision.

Table 2: Performance of diabetes complication forecasting.

Complication Method Precision Recall F1

HTN

SVM 0.3804 0.4789 0.4241
FGM 0.5666 0.4959 0.5075

FGM+PCA 0.5741 0.3284 0.4178
SparseFGM 0.4714 0.6319 0.5400

CHD

SVM 0.2132 0.0636 0.0980
FGM 0.6264 0.1369 0.2247

FGM+PCA 0.2425 0.8367 0.3761
SparseFGM 0.2522 0.7972 0.3832

HPL

SVM 0.2208 0.0460 0.0761
FGM 0.6557 0.0591 0.1084

FGM+PCA 0.2047 0.8035 0.3262
SparseFGM 0.2796 0.8396 0.4195

SVM and traditional factor-graph-based methods suffer
from the feature sparsity particularly in terms of recall,
which is on average 59.9% lower compared with Sparse-
FGM in all tasks. By a careful investigation, we find that
most parameters in FGM tend to be zero due to the serious
feature sparsity problem, which causes the false diagnose
results.

With the effect of dimension reduction, FGM+PCA-
based methods improve the performance a lot. For exam-
ple, FGM+PCA increases 40.3% in terms of recall com-
pared with FGM in the CHD the forecasting task. However,
FGM+PCA separates the sparse coding and classification
process into two steps, while SparseFGM integrates them
into a uniform model. Thus SparseFGM estimates the pa-
rameters better and outperforms FGM+PCA on average by
13.5% in terms of F1 on average.

Factor Contribution Analysis. Figure 3 demonstrates how
the correlation factor helps in this problem. Generally, mod-
els considering the correlations between labels increase
16.29% in terms of F1 compared with their counterparts that
do not consider the correlation factors. Intuitively, correla-
tion factors improve the performance by bringing the prior
knowledge that “a patient’s health condition will be similar
in adjacent time periods”.

Association pattern illustration
Based on SparseFGM, we can discover the underlying pat-
terns between diabetes complications and lab tests at the
micro-level and macro-level.

Micro-level. At the micro-level, we calculate the associa-
tion score AS(c, e) of a complication c with a lab test type e
as

AS(c, e) =
X
k

αckθek (15)

where k is the latent variable in SparseFGM, and αc is the
feature factor parameter of SparseFGM for diagnosing com-
plication c.
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Figure 4: Association analysis at the macro-level. The X-
axis denotes the performance of the proposed model for
forecasting each diabetes complication in terms of recall.

The example which illustrates the associations between
the lab tests of routine urine analysis and 10 diabetes com-
plications is shown in Figure 1. We see that urinary glu-
cose (GLU) is strongly associated with diabetic retinopa-
thy (DR), because DR typically occurs in diabetic patients
whose blood glucose levels are not well controlled. To our
surprise, we find that insomnia (ins.) is associated with most
urine routine measures, such as white blood cells (WBC).
This association has an interesting explanation: WBC in the
urine are typically found in urinary tract infections which
cause frequent voiding, so people who have to go to the toi-
let frequently can hardly get a good sleep at night.

Macro-level. At the macro-level, we study the different
strengths of diabetes complications forecasting depending
on lab test results. We say a complication is more diagnos-
able from lab test results if the proposed model is able to
target more positive instances correctly among all positive
instances. Thus the strength can be estimated by the mea-
surement recall. Figure 4 shows the results, from which we
see that hyperlipidemia (HPL) can be diagnosed based on
lab tests precisely, while depression (depr.) is usually rec-

ognized from psychological investigation instead of physi-
ological lab tests such as blood tests. In this experiment, to
avoid the effect of the label unbalance issue on the analysis
results, we set the ratio of positive to negative instances for
each complication as 1 : 5. Thus the recall results are differ-
ent from the comparison experimental results, in which all
the testing samples in the dataset are used.

Related Work
In recent years, utilizing health care data to study diabetes,
which is a common chronic disease, has attracted the interest
of several researchers. Liu et al. (2013) propose a Symptom-
Diagnosis-Treatment model to mine the diabetes complica-
tion patterns and symptoms from electronic medical records,
which is the same data set employed in this paper. Besides,
Neuvirth et al. (2011) studied the personalized care man-
agement of diabetes patients at risk. For the medical work,
De Groot et al. (2001) examine the strength and consistency
of the relationship between depression and diabetes com-
plications in studies of adult patients with type 1 or type
2 diabetes. Katon et al. (2003) and Kanaya et al. (Kanaya,
Grady, and Barrett-Connor 2002) investigate two major dia-
betes complications: depression and coronary heart disease
respectively, which are used as sample labels in our experi-
ments. However, to the best of our knowledge, none of the
previous work investigated how to predict diabetes compli-
cation by machine learning methods.

Sparse modeling is a component in many machine learn-
ing tasks. Yoshida et al. (2010) also propose a class of
sparse latent factor models and relevant learning algorithms.
Krishnapuram et al. (2005) and Zhong et al. (2008) learn
models for a sparse Multinomial Logistic Regression and a
sparse Conditional Random Field respectively with a Lapla-
cian prior. Tan et al. (2012), Zhang et al. (2011), and Lee
et al. (2006) study the spare coding problem. Mairal et
al. (2010) propose a stochastic online learning algorithm for
learning dictionaries adapted to sparse coding tasks.

Conclusion
In this paper, we study the problem of diabetes complica-
tion forecasting. We propose a novel probabilistic model,
Sparse Factor Graph Model (SparseFGM), which integrates
sparse modeling and complication diagnosing into a uniform
model. By using this model, we cannot only forecast dia-
betes complications but also discover the underlying asso-
ciation between complications and lab test types. We vali-
date the model on a large collection of real medical records.
Experimental results demonstrate that the proposed model
outperforms baseline methods significantly. We also demon-
strate how to discover the association between complications
and lab test types at two granularities.
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