
Cross-Domain Ranking via Latent Space Learning

Jie Tang,�† Wendy Hall‡
�Department of Computer Science and Technology, Tsinghua University

†Tsinghua National Laboratory for Information Science and Technology (TNList)
‡Electronics and Computer Science, University of Southampton, UK

jietang@tsinghua.edu.cn, wh@ecs.soton.ac.uk

Abstract

We study the problem of cross-domain ranking, which ad-
dresses learning to rank objects from multiple interrelated do-
mains. In many applications, we may have multiple interre-
lated domains, some of them with a large amount of train-
ing data and others with very little. We often wish to utilize
the training data from all these related domains to help im-
prove ranking performance. In this paper, we present a unified
model: BayCDR for cross-domain ranking. BayCDR uses a
latent space to measure the correlation between different do-
mains, and learns the ranking functions from the interrelated
domains via the latent space by a Bayesian model, where
each ranking function is based on a weighted average model.
An efficient learning algorithm based on variational inference
and a generalization bound has been developed. To scale up
to handle real large data, we also present a learning algo-
rithm under the Map-Reduce programming model. Finally,
we demonstrate the effectiveness and efficiency of BayCDR
on large datasets.

Introduction

Cross-domain ranking addresses a common situation that
arises when applying machine learning to many emerging
applications over interrelated domains on the Web. In such
applications, it may be possible to collect ample training
data (e.g., user-rated reviews) for some domains, but at the
same time little or no data for the other domains. This leads
to a situation where some ranking functions perform well for
some domains, but poorly for the other domains. Therefore,
it becomes highly desirable to find a way to pool together
the training data across the interrelated domains, in order to
improve the ranking accuracy over all domains.

While much related work has been conducted—for exam-
ple, transfer learning (Bickel, Brückner, and Scheffer 2007;
Dai et al. 2007), domain adaptation (Ben-David et al. 2006),
multi-task learning (Argyriou, Evgeniou, and Pontil 2006;
Crammer, Kearns, and Wortman 2006), learning to rank
(Herbrich, Graepel, and Obermayer 2000)—there are only
a few theoretical studies of the cross-domain ranking prob-
lem. The major difference between the cross-domain rank-
ing problem and the learning to rank (Herbrich, Grae-
pel, and Obermayer 2000) is that (1) cross-domain rank-
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ing needs consider all the interrelated domains, which may
have a different feature space or different feature distribu-
tions; (2) the numbers of labeled training examples in the
interrelated domains may be very unbalanced (e.g., thou-
sands versus a few). Cross-domain ranking is also different
from transfer learning (Bickel, Brückner, and Scheffer 2007;
Dai et al. 2007), whose goal is to utilize the training data
from a source domain to help learn a model for the target
domain.

The problem of cross-domain ranking is non-trivial and
poses challenges, because the pooled training data may im-
prove the performance of a ranking function or may make
the ranking performance worse. A fundamental issue is how
to measure the correlation between different domains and
how to learn all the ranking functions by taking advantage
of the correlation.

To address these challenges, we propose a unified cross-
domain ranking model: BayCDR. BayCDR uses a latent fea-
ture space defined across multiple interrelated domains to
measure the correlation between domains. Examples from
different domains are mapped onto the latent space via a
projection matrix, where a common feature set is discov-
ered by using a regularization method. Given a prior dis-
tribution of the ranking model and a ranking rule based on
a weighted average over an ensemble of ranking models,
BayCDR adopts an EM-style algorithm to learn a poste-
rior distribution of the ranking model in the latent space.
We show that learning multiple ranking functions simulta-
neously can reduce the ranking errors. In addition, to scale
to large datasets, BayCDR is designed with an efficient dis-
tributed learning algorithm that is implemented and tested
under the Map-Reduce framework. Experimental results on
several real ranking tasks show the effectiveness and effi-
ciency of BayCDR.

Problem Formulation

The cross-domain ranking problem can be formalized as
follows.
Input: Let T be the number of domains, and for each do-
main t ∈ {1, . . . , T}, we are given nt retrieved objects for
query q: {(xq

t1, y
q
t1), . . . , (x

q
t1, y

q
tnt

)} ∈ RK × R, where
xq
ti is expressed as a K-dimensional feature vector, and

yqti ∈ {r1, . . . , rlt} denotes the ranking level assigned to
the object for the query q. Notation lt denotes the number of

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2618



ranking levels in domain t. The ranking levels for domain t
have: r1 � r2 � · · · � rlt , where � denotes the preference
relationship.

The underlying assumption of the cross-domain ranking
problem is that the multiple input domains are related, but
allow examples from different domains to have different fea-
ture distributions.
Learning: The goal of cross-domain ranking is to learn T
ranking functions {ft}Tt=1, with ft : RK → R for predict-
ing the rank levels of unlabeled examples. A commonly used
ranking function is linear—that is, ft(x

q
ti) = w�

t x
q
ti + b—

where wt are parameters to be estimated from the train-
ing data and b is a bias term, which can be further ab-
sorbed by adding one dimension (as b) to wt and one di-
mension (of value 1) to xti. Thus we have a simple form:
ft(x

q
ti) = w�

t x
q
ti. Extensions to nonlinear functions can be

done, for example, by using kernel tricks (Herbrich, Grae-
pel, and Obermayer 2000). Let us denote by W the K × T
matrix whose columns are the vector wt.

The ranking function can be learned independently from
each domain, but learning all the ranking functions simul-
taneously is often desirable, and it can improve the rank-
ing performance (Argyriou, Evgeniou, and Pontil 2006;
Crammer, Kearns, and Wortman 2006).
Ranking: Based on the learned ranking functions {ft}, we
can predict the ranking level of a new object from, for ex-
ample, domain t, for the query q by ft(x

q
ti).

BayCDR: Cross-domain Ranking via Latent

Space and Bayesian Learning

The goal of cross-domain ranking is to capture the follow-
ing information: correlation between different domains and
ranking preference relationships in each domain. In addition,
the approach should be able to scale up to a large dataset.
Following this thread, we propose a BayCDR model to in-
corporate all the information into a unified Bayesian model.
Second, we propose a variational inference algorithm for
model learning with Laplace priors. Third, we discuss how
to do distributed learning in the Map-Reduce framework.

The BayCDR Model

Let us first consider only one domain (say domain t). To
learn the parameter wt, we can define the objective function:

min
wt

1

2
‖wt‖22

s.t. ∀q, yqti � yqtj : w
�
t (φ(x

q
ti)− φ(xq

tj)) ≥ 1, (1)

where the constraint corresponds to the empirical loss—i.e.,
we have the loss L(xq

ti, y
q
ti) = I(yqti � yqtj)w

�
t (φ(x

q
ti) −

φ(xq
tj)) − 1; here I(yqti � yqtj) is an indicator function that

equals to 1 if the argument is true and 0 otherwise; φ(x) is
a transformation function that projects the example x onto a
new space.

To generalize the problem to multiple interrelated do-
mains, we have two main ideas: first, we use a K×K matrix
U to describe the correlation between features. The inner

product of the examples is then defined as x�
i UU�xj , us-

ing the matrix. Such parameterization is equivalent to pro-
jecting every example x onto a latent space spanned by
U : x → U�x. Second, we take a Bayesian approach to
learn a parameter distribution p(wt), rather than a point esti-
mate of wt. The Bayesian approach results in a weighted av-
eraging model for ranking, which enjoys a desirable smooth-
ing effect. Thus the empirical loss can be redefined as
L(xq

ti, x
q
tj) = 〈I(yqti � yqtj)w

�
t (φ(x

q
ti)− φ(xq

tj))〉p(wt) − 1,
where 〈.〉p = Ep[.] denotes the expectation operator w.r.t.
distribution p. Now, the problem is to find the best distri-
bution p(wt) from the possible space. In Bayesian learning,
a common way, according to the maximum entropy prin-
ciple (Jaakkola, Meila, and Jebara 1999), to solving this
problem is to minimize the relative entropy of the distribu-
tion w.r.t. some chosen prior p0. The relative entropy can
be measured by Kullback-Leibler divergence, KL(p||p0) =
〈log(p/p0)〉p. Therefore, for the cross-domain ranking prob-
lem, we can define the objective function as:

min
{p(wt)}

∑
t

KL(p(wt)||p0(wt))

s.t. ∀t, q, yqti � yqtj : 〈U�(xq
ti − xq

tj)〉p(wt) ≥ 1

∀t :
∫

p(wt)dwt = 1, (2)

where KL(p||p0) = 〈log(p/p0)〉p represents the KL diver-
gence between the learned distribution p and the prior dis-
tribution p0. An optimal distribution of p can be obtained by
minimizing its relative entropy w.r.t. the prior p0. We can add
a slack variable ξij to absorb errors in the training data; thus,
the optimization problem in Eq. 1 is extended as 1

2‖wt‖22 +
C
∑

ξ and Eq. 2 as
∑

t KL(p(wt)||p0(wt)) +B(ξ), where
C is a constant and B(ξ) can be defined as any closed proper
convex function over the slack variables.

From the above discussion, we can see that we use an av-
erage model weighted by the distribution p(wt) as the rank-
ing function; each example x is transformed into a latent
space by the projection matrix U , which is shared across all
domains. This elegant combination of the latent space and
the Bayesian learning offers a number of important advan-
tages. For example, the Bayesian learning can be interpreted
as posterior model estimates by assuming a Laplace prior
on the model parameters, which introduces useful sparsity
effects; the ranking based on the weighted averaging model
also enjoys a desirable smoothing effect; the sparse and la-
tent space also offer a principled way to interpret the corre-
lation between different domains.

Learning Algorithm

In BayCDR, we do not simply want to learn the ranking
function ft for each domain, but also to learn the matrix
U . The matrix reflects a projection to the latent space, in
which it is desirable to leave out features that are not rele-
vant. Traditionally, this has been done by using the L1 norm.
However, in some applications, the L1 will also leave out
features that are not completely irrelevant, which hurts the
regularization ability (Zhu, Xing, and Zhang 2008).
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In Bayesian learning, to favor a sparse estimate, a Laplace
prior can be adopted for wt. We apply a common prior
λ to parameters {wt}t of all domains; that is, p(wt|λ) =∏K

k=0

√
λ
2 e−

√
λ|wtk| = (

√
λ
2 )ke−

√
λ‖wt‖1 . The Laplace den-

sity is heavy-tailed and peaked at zero; hence, it encodes
prior belief that the distribution of all wt is strongly peaked
around zero. In addition, the Laplace density is log-convex,
and can be used to get convexity estimates of the posterior
density (Kabán 2007; Park and Casella 2008).

Generally, the Laplacian prior is equivalent to a two-
level hierarchical-Bayes model: zero-mean Gaussian priors
with independent, exponentially distributed variances. This
equivalence has been previously used to derive EM algo-
rithms for discriminative learning (Figueiredo 2003) and
discrimination Markov networks (Zhu, Xing, and Zhang
2008). More specifically, let us consider that each wtk has
a zero-mean Gaussian prior p(wtk|τtk) = N (wtk|0, τtk),
with its own variance τtk, and that each τtk has an exponen-
tial (hyper)prior

p(τtk|λ) = λ

2
e−

λ
2 τtk , for τtk ≥ 0. (3)

Then, by integrating out τtk, we have

p0(wt|λ) =
K∏

k=1

∫
p(wtk|τtk)p(τtk|λ)dτtk

=

∫
p(wt|τt)p(τt|λ)dτt,

(4)

where p(wt|τt) =
∏K

k=1 p(wtk|τtk) and p(τt|λ) =∏K
k=1 p(τtk|λ) are joint distributions and dτt �

dτt1 · · · τtK . Using the hierarchical representation of
the Laplace prior and applying the Jensen’s inequality, we
get an upper bound of the KL-divergence,

KL(p‖p0) = −H(p)− 〈log
∫

p(w|τ)p(τ |λ)〉p

≤ −H(p)− 〈
∫

q(τ)log
p(w|τ)p(τ |λ)

q(τ)
〉p

� E(p(w), q(τ)),

(5)

where q(τ) is a variational distribution which is used to ap-
proximate p(τ |λ).

Substituting this upper bound for KL into Eq. 2, we can
obtain a new objective function with the same constraints:

min
{p(wt)},{q(τt)}

∑
t

E(p(wt), q(τt)). (6)

Directly solving the above objective function (involving
solving parameters {p(wt)}, {q(τt)}, U is intractable. But
as both the KL-divergence and the projection matrix U are
convex, we can obtain a dual form of the problem, and solve
the dual problem with an iterative minimization algorithm,
as outlined in Algorithm 1, and detailed as follows.

Input: training data from T domains {(xq
ti, y

q
ti)}t,i,q and

constant γ
Output: posterior mean for each domain: {〈wt〉p(wt)},

and the projection matrix U

Initialize {〈wt〉p(wt)} ← 0, Σwt ← 0, D =
IK×K

K
;1.1

repeat1.2

Step E: Calculate 〈wt〉p(wt) and projection matrix U ;1.3

repeat1.4

Step 1: foreach domain t ∈ {1, . . . , T} do1.5

Compute1.6

wt = argmin
∑

q,y
q
ti�y

q
tj

[1− U�(xq
ti −

1.7

xq
tj)〉p(wt)]+ + γ‖A‖2,1; s.t. A ∈ RK×K ;

end1.8

Step 2: Compute D = (AA�)1/2

trace(AA�)1/2
;1.9

until convergence;1.10

Apply SVD decomposition on D, D = UΣV �;1.11

Construct U with the biggest eigenvalues of D;1.12

Step M: Update Σwt ← diag(

√
〈w2

tk
〉p(wt)

λ
);1.13

until convergence;1.14

Algorithm 1: The learning algorithm for BayCDR.

E-step. Keep {q(τt)} fixed we can optimize Eq. 6 with re-
spect to p(wt). In general, we update {p(wt)} as follows:
(Derivation is omitted due to space limitation.)

p(wt) ∝ exp{
∫

q(τ)logp(wt|τt)dτt − b+ w�
t η − d}

∝ exp{−1

2
w�

t 〈A−1
t 〉q(τt)wt − b+ w�

t η − d}
= N (wt|μwt

,Σwt
),

(7)

where b = 〈logp(τt|λ)〉q(τt) − H(q(τt)); η =∑
q,yq

ti�yq
tj
〈I(yqti � yqtj)U

�(xq
ti − xq

tj)〉p(wt) − 1; d =∑
ti αti; and At = diagτtk. The posterior mean and vari-

ance are μwt
= 〈wt〉p(wt) and Σwt

= (〈At〉−1
q(τt)

)−1 =

〈wtU
�w�

t 〉p(wt) − 〈wtU〉p(wt)〈wtU〉�p(wt)
. Now the prob-

lem is how to estimate the dual parameters α and the projec-
tion matrix U . Because the hinge-loss style (Bishop 2006;
Gentile and Warmuth 1999) objective in the latent space (by
U ) is convex, we can solve the following problem:

min
w,U

T∑
t=1

∑
q,yq

ti�yq
tj

[1− 〈U�(xq
ti − xq

tj)〉p(wt)]+ + γ‖A‖2,1

s.t. A ∈ RK×K ,

where the subscript “+” indicates the positive part; γ is a
parameter that controls the tradeoff between the empirical
loss (the first term) and the penalty (the second term) of
the model complexity; A = W�U , which implies that we
penalize the model complexity in the projected space in-
stead of the original space W . The problem can be solved
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using two sub-steps: Step 1 and 2. In Step 1, we fix U
and update wt for each domain t; and in Step 2, we fix
W and update the matrix U . Specifically, in Step 2, we
first calculate an intermedia matrix D = (AA�)1/2

trace(AA�)1/2
,

where trace(A) =
∑|A|

i=1 Aii; and then apply a SVD de-
composition (Wall, Rechtsteiner, and Rocha 2003) on D;
i.e., D = UΣV �; then the matrix U is constructed with
the biggest eigenvalues of D.

After obtaining α and U , we calculate the posterior mean
of {wt} under p(wt). As p(wt) is a normal distribution, the
posterior mean is the only parameter that is needed for rank-
ing.
M-step. Keep {p(wt)} fixed, we optimize Eq. 6 w.r.t. q(τt).
Taking the derivative of Eq. 6 w.r.t. q(τt) and setting it to
zero, then we get

q(τt) ∝ p(τt|λ) · exp{〈logp(wt|τ)〉p(wt)}. (8)

By exploring the factorization forms of p(wt|τt) and
p(τt|λ), we can get an induced factorization q(τt) =∏K

k=1 q(τtk), and each q(τtk) is computed as follows:

q(τtk) ∝ p(τtk|λ) · exp{〈logp(wtk|τtk)〉p(wt)}
∝ N (

√
〈w2

tk〉p(wt)|0, τtk) · exp(−
1

2
λτtk).

(9)

Such a derivation has been previously used for a
maximum margin Markov network (Zhu, Xing, and
Zhang 2008) and Bayesian classification (Kabán
2007). Similarly we can get the normalization fac-

tor:
∫ N (

√
〈w2

tk〉p(wt)|0, τtk)exp(− 1
2λτtk)dτtk =

√
λ
2 exp(−

√
λ〈w2

tk〉p(wt)). Furthermore, in an analogous
way to (Kabán 2007), we can calculate the expectations
〈τ−1

tk 〉q(τt) which are required in calculating 〈A−1
t 〉q(τt) as

follows,

〈 1

τtk
〉q(τt) =

∫
1

τk
q(τtk)dτtk =

√
λ

〈w2
tk〉p(wt)

. (10)

We run the above E and M steps iteratively until con-
vergence. Then we use the posterior distribution p(wt) to
predict the ranking level for domain t. For irrelevant fea-
tures, the variances should converge to zero and thus lead to
a sparse estimation. The generalization bound of the algo-
rithm is given in the supplementary file.

Distributed Learning

BayCDR has a complexity of O(M(K2 + K + (2L +
1)KNlog(N))), where M is the number of EM iterations,
L is the number of the two sub-step iterations, and N is the
total number of examples from all domains. The complexity
is high and it is impractical to scale up to large datasets. To
address this challenge, we deploy the learning task on a dis-
tributed system under the map-reduce programming model
(Dean and Ghemawat 2004). Map-Reduce is a programming
model for distributed processing of large datasets. In the map

stage, each machine (called a process node) receives a subset
of data as input and produces a set of intermediate key/value
pairs. In the reduce stage, each process node merges all in-
termediate values associated with the same intermediate key
and outputs the final computation results.

Generally, BayCDR consists of two steps—i.e., E and M
steps. In the E step, the learning algorithm needs to solve a
quadratic optimization problem, which is actually the major
computational cost in BayCDR. The quadratic optimization
problem is similar to Support Vector Machine (Cortes and
Vapnik 1995), which has been parallelized by (Chu et al.
2006). Therefore, we define the map stage and the reduce
stage as follows. In the map stage, each process node calcu-
lates the gradient descent for wt on a subset of the example
pairs: ∇ = 2wt+2 1

λ

∑
sub(yti�ytj)

〈(xti−xtj)
�UU�(xti−

xtj)〉p(wt). Thus the key/value pair corresponds to the in-
stance pair (i, j) and the partial gradient. In the reduce stage,
each process node collects all values associated with each
intermediate key (i, j) and sums up the partial gradient to
update wt for each domain. Next it calculates the matrix D
and U and finally updates Σwt

.

Experiments

We evaluate BayCDR on three different genres of datasets:
homogeneous data, heterogeneous data, and heterogeneous
tasks; and compare it with RankSVM (Joachims 2002),
RankSVM1 (learning only one ranking function by com-
bining training examples from all domains), and multi-task
learning (MultiTL) (Argyriou, Evgeniou, and Pontil 2006),
which tries to learn the classification/regression models for
multi-tasks.

Datasets and Evaluation Criteria

The first (homogeneous) dataset is LETOR 2.0 (Liu et al.
2007), a public dataset for learning to rank research. LETOR
consists of three sub datasets (i.e., TREC2003, TREC2004,
and OHSUMED), with 50, 75, and 106 queries, respec-
tively. Given a query, the task is to identify which docu-
ments are relevant to the query. There are three rank lev-
els in LETOR—i.e., relevant � partially relevant � non-
relevant. The second (heterogeneous) dataset is an academic
dataset, which is also publicly available. The dataset con-
tains 14,134 authors, 10,716 papers, and 1,434 conferences.
Given a query, the goal is to find experts, top conferences,
and authoritative papers for the query. There are 44 queries
and four rank levels in the dataset. The third dataset is the
same as the second one, but it has two different ranking
tasks: finding experts and finding best supervisors. An expert
can be a good supervisor, but not necessarily. Therefore, the
two tasks are related but different. In the first dataset, there
are six domains (two for each data subset), with each data
subset consisting of 5,726-13,761 training examples. In the
second dataset, the numbers of training examples from dif-
ferent domains vary from 312 to 3,717. In the third dataset,
we sent 732 emails to ask related researchers for the ground
truth of “best supervisors”. Finally, we obtained 270 train-
ing examples. The difference of feature distribution on the
first dataset is relative small (2.42, 0.69, and 2.20 in terms
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Figure 1: Ranking accuracy on the three tasks of the LETOR data.
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Figure 2: Ranking accuracy on the academic data. (a) finding experts, top conferences, authoritative papers; (b) finding experts
and best supervisors.

of KL-divergence, respectively for the three data subsets),
while the difference in the other two datasets is relative large
(5.72 and 1.26 in terms of KL-divergence). As an evaluation
measure, we utilize NDCG@n (Normalized Discounted Cu-
mulative Gain) (Järvelin and Kekäläinen 2002). In all the ex-
periments, we conduct five-fold cross-validation for all the
methods.

Accuracy Performance

Figure 1 shows the ranking accuracy of the different meth-
ods, in terms of NDCG@n on the three data subsets
in LETOR. BayCDR clearly outperforms the comparison
methods. Figure 2 (a) shows the average performance of
ranking the three objects (experts, conferences, and papers)
on the academic data, and Figure 2 (b) shows the average
performance of the two different ranking tasks (finding ex-
perts and finding the best supervisors). BayCDR achieves

higher performance than the three comparison methods.
From the experiments, we can see an interesting pattern:

when the differences of the interrelated domains are large
(e.g., TREC2003 and OHSUMED), independent learning
(RankSVM) and multi-task learning (MultiTL) perform bet-
ter than learning only one ranking function (RankSVM1).
On the other hand, when the difference is relative small,
RankSVM and MultiTL underperform RankSVM1. Bay-
CDR results in a balanced performance and consistently out-
performs all the comparison methods. The result suggests
that it is better to learn the ranking functions and domain cor-
relation simultaneously. RankSVM1 only learns one ranking
function, thus with the domains’ difference increasing, the
ranking performance decreases. RankSVM learns a rank-
ing function for each domain; however, it does not consider
the correlation between domains, and thus cannot utilize the
knowledge from “related” domains.
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Figure 3: Speedup results on the three datasets.

Scalability Performance

We evaluate the speedup of the distributed learning algo-
rithm on the three datasets using 1-6 computer nodes (since
we did not have access to a large number of computer
nodes). It can be seen from Figure 3 that on the large dataset
(LETOR), the distributed learning shows a good parallel ef-
ficiency (speedup > 4×, as Figure 3 (a)); on the other two
relative small datasets, the speedup also shows reasonable
parallel efficiency (≥ 2.8×, as Figure 3 (b) and (c)). This
confirms that the distributed learning algorithm is necessary
on large-scale datasets.

Related Work

Considerable work has been conducted for supervised learn-
ing to rank. Existing approaches include pointwise ap-
proach, pairwise approach and listwise approach. In point-
wise approaches, the ranking problem aims at predicting the
rank level of an object. In pairwise approaches, the rank-
ing problem can be reduced to a classification problem by
comparing the rank levels of each instance pairs. Rank-
ing SVM (Herbrich, Graepel, and Obermayer 2000), Rank-
Boost and RankNet (Burges et al. 2005) are three state-of-
the-art algorithms in this category. Other methods can be
also found in (Wauthier, Jordan, and Jojic 2013). In listwise
approaches, the ranking problem is formulated to directly
optimize some listwise performance measures of informa-
tion retrieval (Xu and Li 2007; Yue et al. 2007). There is
also some work on ranking by semi-supervised learning and
transductive learning. For example, Duh and Kirchhoff pro-
pose a framework for ranking problem in the transductive
setting (Duh and Kirchhoff 2008). Amini et al. propose a
semi-supervised rankboost algorithm (Amini, Truong, and
Goutte 2008). Hoi and Jin propose a semi-supervised en-
semble ranking with a SVM-like formulation (Hoi and Jin
2008). Some work takes the relations between objects to be
ranked into consideration. Agarwal et al. propose a frame-
work for ranking networked entities based on a maximum
entropy flow algorithm with weight function for different

types of edges (Agarwal, Chakrabarti, and Aggarwal 2006).
There are also many applications of learning to rank such
as ranking paraphrases from query logs (Figueroa and Neu-
mann 2013), recommendation (Pan, Xiang, and Yang 2012),
cross-domain recommendation (Tang et al. 2012), cross-
network link prediction (Dong et al. 2015), and heteroge-
neous entity matching (Yang et al. 2015). However, all these
existing works mainly focus on single domain and do not
consider the cross domain ranking problem.

Another related work is transfer learning, which aims to
transfer knowledge from a source domain to a related tar-
get domain. Two fundamental issues in transfer learning are
“what to transfer” and “when to transfer”. Many approaches
have been proposed by reweighting instances in source do-
main for the use in target domain (Dai et al. 2007). Gao et
al. propose a locally weighted ensemble framework which
can utilize different models for transferring labeled informa-
tion from multiple training domains (Gao et al. 2008). Also
many works have been done based on new feature represen-
tation (Jebara 2004; Lee et al. 2007). There are also other
approaches which transfer information by shared parame-
ters (Bonilla, Chai, and ChrisWilliams 2008) or relational
knowledge.

Conclusion

In this paper, we investigate a novel problem of cross-
domain ranking. We propose a unified ranking model,
named BayCDR, which offers a nice way to integrate the
latent space extraction into the Bayesian learning. An effi-
cient EM-style algorithm based on variational inference has
been developed for BayCDR. We applied BayCDR to three
real-world data sets and experimental results show that Bay-
CDR performs better than the baseline methods. To scale up
to real large data sets, a distributed learning algorithm has
been developed and shows a good parallel efficiency in the
experiments. In future, we plan to further integrate the link
(relational) information into the BayCDR model and also try
to apply BayCDR to other applications.
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Järvelin, K., and Kekäläinen, J. 2002. Cumulated gain-based
evaluation of ir techniques. ACM Transactions on Informa-
tion Systems 20(4):422–446.
Jebara, T. 2004. Multi-task feature and kernel selection for
svms. In ICML’04, 55–62.
Joachims, T. 2002. Optimizing search engines using click-
through data. In KDD’02, 133–142.
Kabán, A. 2007. On bayesian classification with laplace
priors. Pattern Recognition Letters 28(10):1271–1282.
Lee, S.-I.; Chatalbashev, V.; Vickrey, D.; and Koller, D.
2007. Learning a meta-level prior for feature relevance from
multiple related tasks. In ICML’07, 489–496.
Liu, T.-Y.; Xu, J.; Qin, T.; Xiong, W.; and Li, H. 2007. Letor:
Benchmark dataset for research on learning to rank for infor-
mation retrieval. In LR4IR 2007, in conjunction with SIGIR
2007.
Pan, W.; Xiang, E. W.; and Yang, Q. 2012. Transfer learning
in collaborative filtering with uncertain ratings. In AAAI’12,
662–668.
Park, T., and Casella, G. 2008. The bayesian lasso. Journal
of the American Statistical Association 103(482):681–686.
Tang, J.; Wu, S.; Sun, J.; and Su, H. 2012. Cross-domain
collaboration recommendation. In KDD’12, 1285–1294.
Wall, M. E.; Rechtsteiner, A.; and Rocha, L. M. 2003. Sin-
gular value decomposition and principal component analy-
sis. Kluwer: Norwell, MA. 91–109.
Wauthier, F. L.; Jordan, M. I.; and Jojic, N. 2013. Efficient
ranking from pairwise comparisons. In ICML’13, 109–117.
Xu, J., and Li, H. 2007. Adarank: a boosting algorithm for
information retrieval. In SIGIR’07, 391–398.
Yang, Y.; Sun, Y.; Tang, J.; Ma, B.; and Li, J. 2015. Entity
matching across heterogeneous sources. In KDD’15, 1395–
1404.
Yue, Y.; Finley, T.; Radlinski, F.; and Joachims, T. 2007. A
support vector method for optimizing average precision. In
SIGIR’07, 271–278.
Zhu, J.; Xing, E. P.; and Zhang, B. 2008. Laplace maximum
margin markov networks. In ICML’08, 1256–1263.

2624




