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Abstract

Automatic diagnosis systems aim to probe for symptoms (i.e.,
symptom checking) and diagnose disease through multi-turn
conversations with patients. Most previous works formulate it
as a sequential decision process and use reinforcement learn-
ing (RL) to decide whether to inquire about symptoms or
make a diagnosis. However, these RL-based methods heav-
ily rely on the elaborate reward function and usually suffer
from an unstable training process and low data efficiency.
In this work, we propose an effective multi-task framework
for automatic diagnosis called MTDiag. We first reformulate
symptom checking as a multi-label classification task by di-
rect supervision. Each medical dialogue is equivalently con-
verted into multiple samples for classification, which can also
help alleviate data scarcity problem. Furthermore, we design
a multi-task learning strategy to guide the symptom checking
procedure with disease information and further utilize con-
trastive learning to better distinguish symptoms between dis-
eases. Extensive experimental results show that our method
achieves state-of-the-art performance on four public datasets
with 1.7%∼ 3.1% improvement in disease diagnosis, demon-
strating the superiority of the proposed method. Additionally,
our model is now deployed in an online medical consultant
system as an assistant tool for real-life doctors.

Introduction
Artificial intelligence is revolutionizing our life in various
aspects and has the potential to bring new vitality to the
healthcare and medical domain. Automatic diagnosis (Li
et al. 2017; Wei et al. 2018; Xu et al. 2019), which aims
to provide convenient medical care and assist diagnosis, is
one of the most promising applications. The rapidly growing
and aging population brings an increasingly heavy workload
for read-life doctors, especially in countries and areas with
high-density populations. And in the Internet era, people are
also seeking more convenient ways to find medical services
during the COVID-19 pandemic. Thus automatic diagnosis
arises at this moment and is gaining increasing attention in
contemporary research. Currently, the main focus has been
on making more effective diagnostic decisions or building a
diagnostic dialogue system (Shivade et al. 2014; Xia et al.
2020; Chen et al. 2022).
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P: No fever, but I am coughing and sneezing.

P: Yes, I have a sore throat.

Explicit Symptoms:     runny nose: true
expectoration: true

Implicit Symptoms:     fever: false, cough: true
sneeze: true, sore throat: true

Disease:                       rhinitis

P: I have a runny nose and expectoration.

R: Do you have a fever, cough, or sneeze?

R: Is there any discomfort in the throat?

R: I suggest you may have rhinitis.

②Disease Prediction

Symptom
Checking

①

Figure 1: A medical dialogue can be converted to a standard
user goal for automatic diagnosis, including a disease tag,
explicit symptoms, and implicit symptoms.

Specifically, the automatic diagnosis task usually relies on
interactions between an agent and a patient, where the agent
collects necessary symptoms for the diagnosis. This is con-
sistent with the real-world diagnostic procedure. As the ex-
ample in Figure 1 shows, the patient first states a self-report.
Then the doctor checks several related symptoms and finally
gives a diagnostic suggestion to the patient. The medical di-
alogue can be simplified and converted to a corresponding
diagnosis sample (or user goal), consisting of explicit symp-
toms obtained from the user’s self-report, additional implicit
symptoms from inquiries, and a disease tag to be predicted.
Hence, the problem can be viewed as a multi-step reason-
ing task (Chen et al. 2022) and targets inquiring about the
implicit symptoms step by step based on explicit symptoms
and then making the final disease diagnosis. Note that in au-
tomatic diagnosis, the agent only asks about symptoms, and
the patient answers with Yes/No/Not sure, which is quite dif-
ferent from the natural language used in traditional task-
oriented dialogue systems.

Previous works (Wei et al. 2018; Xu et al. 2019; Liao et al.
2020) for automatic diagnosis typically regard the problem
as a Markov Decision Process (MDP) (Young et al. 2013)
and address it via reinforcement learning (RL) (Cuayáhuitl,
Keizer, and Lemon 2015; Yu et al. 2021). For example,
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the dialogue policy can be parameterized with a deep Q-
network (Mnih et al. 2015; Hessel et al. 2018). However,
RL-based methods suffer from potential drawbacks, espe-
cially in the medical domain. On the one hand, RL needs
explicit learning objectives and elaborate rewards, making
it hard to balance symptom checking and disease diagno-
sis. Learning the action merely from the final reward is not
only less data-efficient but also inconsistent with the ac-
tual diagnostic procedure, where doctors would adjust in-
quiries based on instant response. In addition, RL is data-
hungry and usually requires a considerable amount of data
to achieve satisfactory results. Unfortunately, the data is al-
ways sparse and insufficient in the medical domain. Recent
effort (Chen et al. 2022) considers automatic diagnosis as a
sequence generation task and generates implicit symptoms
in an auto-regressive style. Nevertheless, as the symptoms
are intrinsically unordered, it is necessary to preserve this
inductive bias in the algorithm design.

In this work, we propose an effective multi-task frame-
work, MTDiag, to address these challenges. We first refor-
mulate the symptom checking as a multi-label classification
task to keep the unordered setting. A multi-turn dialogue can
be transformed into a set of (input, label) samples, where
the inputs represent the known symptoms, and the labels
are the symptoms to be inquired. To be specific, a dialogue
consisting of k implicit symptoms can be decomposed into∑k

i=0

(
k
i

)
samples. Based on this decomposition, we can

transfer the sequential decision process within one multi-
turn dialogue into multiple independent training samples of
the multi-label classification task. Secondly, we propose an
effective multi-task learning strategy to better capture the re-
lationship between disease and symptom. The intuition is
that in real diagnosis, when checking possible symptoms,
doctors use a combination of their prior experiences of co-
occurring symptoms and their professional knowledge of
what disease might cause the symptoms. To leverage this
prior knowledge, we employ two task-specific attentional
pooling heads for predicting target symptoms and disease
based on a Transformer (Vaswani et al. 2017) encoder. As
contrastive learning can push samples to form better clus-
ters, we also use contrastive learning to differentiate symp-
toms of different diseases. Our model has been deployed on-
line, serving hundreds of thousands of people every day.

Our main contributions are summarized in the following:

• We reformulate symptom checking as a multi-label clas-
sification task while keeping the unordered nature of
automatic diagnosis. Our approach could alleviate data
scarcity in the medical field and speed up training.

• We design a multi-task learning framework to interweave
the learning of symptom and disease prediction. Spe-
cially, we employ contrastive learning to better distin-
guish symptoms among different diseases.

• Extensive experimental results show that the proposed
method achieves state-of-the-art performance on four
public medical diagnosis datasets, demonstrating the ef-
fectiveness of our approach.

input label

es1, es2 [-, -, 1, 1, 0, 0]
es1, es2, is1 [-, -, -, 1, 0, 0]
es1, es2, is2 [-, -, 1, -, 0, 0]
es1, es2, is1, is2 [-, -, -, -, 0, 0]

Table 1: A simple example of decomposing a user goal “E =
(es1, es2) = (s1, s2), I = (is1, is2) = (s3, s4)” of multi-
turn dialogue into multi-label classification, assuming there
are only 6 symptoms in total. The 4 pieces could cover all
the information contained in the user goal. The “-” in the
label represents masked symptoms appearing in the input.

MTDiag Framework
In this section, we first introduce how to reformulate symp-
tom checking into a multi-label classification task. Then we
propose a simple and effective attention-based model and
a multi-task learning strategy to tackle the problem of both
symptom checking and disease diagnosis.

Problem Reformulation
Formally, a sample of automatic diagnosis data contains ex-
plicit symptoms Sex = {es1, ..., esn}, implicit symptoms
Sim = {is1, ..., ism}, and a disease tag Dis. Only the ex-
plicit symptoms are accessible at the beginning. The target
of symptom checking is to obtain as many implicit symp-
toms as possible via limited turns of inquiries since more
implicit symptoms would contribute to a more precise diag-
nosis. For each symptom inquiry, the simulator will output
True or False as an answer for a positive/negative symptom
and not sure for symptom not in the user goal Sex∪Sim. The
objective equals maximizing the likelihood P (Sim|Sex). We
denote the symptoms obtained via inquires as Sadd ⊆ Sim,
and the missed ones as S̄add = Sim − Sadd. Since symp-
toms are naturally orderless, the learning objective can be
formulated as follows:∏

Sadd⊆Sim

P (S̄add|Sex ∪ Sadd) (1)

We model the symptom checking as a multi-label rather
than multi-class classification task to avoid the potential
problem of sequential generation. Afterward, the disease is
predicted based on known symptoms, whose learning objec-
tive is to maximize P (Dis|Sex ∪ Sadd).

Training. In this part, we show how to apply supervised
learning to tackle the problem of multi-step reasoning. Tra-
ditional supervised learning hypothesizes that data samples
are independent. We aim to decompose a multi-turn di-
agnostic dialogue into several independent one-step multi-
label classification data samples while covering all possible
cases and information in the dialogue. According to Equa-
tion 1, to maximize p(Sim|Sex), we could maximize each
P (S̄add|Sex∪Sadd) independently, which corresponds to an
intermediate state before an inquiry of a dialogue: given ex-
plicit symptoms Sex and observed implicit ones Sadd as in-
put, the objective is to predict the remaining implicit symp-
toms S̄add. In such a case, the problem can be converted to
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a multi-label classification task:

Input(Sex ∪ Sadd)
predict−−−−→ Label(S̄add)

If we enumerate all possible Sadd of each dialogue, that
is, all subsets of Sim, any intermediate state would be cov-
ered during training, and we transfer the sequential decision
problem into a multi-label classification task under the set-
ting of supervised learning. Table 1 shows a simple example
of the decomposition of a user goal containing two explicit
and two implicit symptoms. Symptoms in the input should
not appear in the label in order to prevent label leakage and
false negatives. In our implementation, we mask the input
symptoms label during training.

This decomposition also has advantages. A dialogue with
k implicit items can be transformed into

∑k
i=0

(
k
i

)
training

samples at most, which significantly increases the scale of
training data and helps alleviate the problem of data scarcity.
This technique makes more sense in the medical domain be-
cause it is difficult and costly to collect real data. Beyond
this, mini-batch training under a supervised setting runs and
converges much faster than reinforcement learning.

Inference. In the inference, we still follow the multi-turn
setting to imitate the actual medical dialogue scenario. In
each turn, the model accepts Sex ∪ Sadd as inputs, and the
symptom of the highest probability in the prediction is se-
lected as the subsequent inquiry. If the patient answers True
or False, the symptom will be marked and added to the
known set. Otherwise, the next highest probability symptom
will be the subsequent inquiry until finding the implicit one
or stopping. To make the model aware of when to stop, we
set a stop threshold δ ∈ (0, 1) as the minimum probability
boundary. If the probability of all remaining symptoms in
the prediction is all below δ, the model will stop. Then the
explicit symptoms and those obtained via inquiries will be
used for disease diagnosis.

Model
In this part, we introduce our proposed attention-based
model and a multi-task learning strategy to resolve symp-
tom checking and disease diagnosis. The architecture is il-
lustrated in Figure 2.

Model Architecture. In each step, our model maps an in-
put set of known symptoms (s1, ..., sn) to a set of contin-
uous representations and then aggregates them together to
make the prediction. All symptoms are converted to d di-
mension token embeddings, denoted as xi ∈ Rd for symp-
tom si. Explicit and implicit symptoms share the same to-
ken embeddings. We add symptom condition embedding
ci ∈ Rd to indicate it is positive (True) or negative (False),
which works similarly to the positional encoding in Trans-
former (Vaswani et al. 2017).

We first stack multiple Transformer blocks to capture
the interaction between symptoms, as various works have
demonstrated that transformer is powerful in tackling se-
quences of varying lengths. To be concrete, after adding the
condition embeddings, we feed the symptom embeddings to
the transformer encoder to get hidden representations:

[h1, ..,hn] = MH-Attn(fQ(X̃), fK(X̃), fV (X̃)),

true true falsetrue

Attentional Pooling

sym1 sym2 sym3sym4 Symptoms

Multi-head Attention Encoder

Attentional Pooling

Inference

Task 1:
Symptom Prediction 

New 
sym

Task 2: 
Disease Representation Contrast

Dynamic queue

+- -
…

⨁
Condition

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝒒𝒔 ⋅ 𝒉") 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝒒𝒅 ⋅ 𝒉")

sym dis

Sup-contrast
- 1 1- - 0 0

Figure 2: The multi-task learning framework. Our model
first employs a transformer to encode input symptoms and
their conditions. Then we predict the next possible symptom
and disease representation using distinct attentional pooling
heads, respectively.

where X̃ = [x̃1, .., x̃n], x̃i = xi+ci, and f(X̃) denotes the
transformation for query, key, and value. MH-Attn simply
represents stacked multi-head attention block.

Previous studies (Reimers and Gurevych 2019) show
that inserting a special [CLS] token in the sequence often
achieves good performance for sentence-level classification.
In our experiments, we find that aggregating symptoms’ rep-
resentation works better in symptom checking. In this work,
we design a simple and effective attentional pooling to ob-
tain the sequence representation for the final prediction.

We first construct a virtual signal using a shared learnable
vector q ∈ Rd to represent the target disease/symptom. The
signal is employed to calculate the attention scores for ag-
gregation. This works similarly to the self-attention used in
Graph Attention Networks (Veličković et al. 2018), and the
main difference is that our query is a learnable vector rather
than any input representation.

ai =
exp(ϕ(q · hi/α))∑

j∈N
exp(ϕ(q · hj)/α)

, (2)

where N is the set of symptoms in the input set, ϕ(x) is the
LeakyReLU activation and, α ∈ R+ is the temperature. We
obtain the prediction by computing the linear combination of
symptom embeddings and also utilize multi-head attention
to improve the expressiveness:

z = W2(
K

||
k=1

σ(
∑
i∈N

a
(l)
i hi)). (3)

Multi-task Design. From the above description, we aim to
predict the implicit symptoms based on explicit ones. The
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multi-label training objective tends to guide the model to
learn the concurrence of symptoms. Despite the fact that we
always predict diseases based on symptoms in our daily life,
it is the disease itself that causes symptoms to appear. Thus
this inspires us to provide auxiliary information about the
disease to support symptom checking. As illustrated in Fig-
ure 2, we design a multi-task learning strategy to achieve
this goal. In symptom checking, we employ two different at-
tentional pooling heads for symptom and disease prediction
respectively. A transformer serves as a shared bottom en-
coder of the two heads to capture information of two tasks.
For clarity, we denote the output of the symptom prediction
head as z(s) ∈ RC and the disease head z(d) ∈ Rd, where
C is the number of symptoms.

For symptom prediction, binary cross entropy (BCE) is a
traditional solution to multi-label classification for training.
Peng et al. (2020) point out that BCE declines the suppres-
sion between categories and behaves poorly in imbalanced
multi-label distribution. In automatic diagnosis, there could
be hundreds of symptoms in total, but each user goal usually
involves only less than ten symptoms. To tackle the issue, we
use the concurrent softmax proposed in (Peng et al. 2020):

Lsym = −
C∑
i=1

yi log
exp(z

(s)
i )∑C

j=1(1− yj) exp(z
(s)
j ) + exp(z

(s)
i )

For the auxiliary disease prediction, we resort to the idea
of contrastive learning (He et al. 2020). Contrastive learning
implicitly pulls clusters of points belonging to the same class
together while pushing apart samples from different classes.
In our scenario, it agrees with the aim of symptom check-
ing to pull the combination of symptoms belonging to the
same disease together and separate irrelevant ones. Super-
vised contrastive learning (Khosla et al. 2020) generalizes
self-supervised contrastive learning to an arbitrary number
of positive samples. Samples belonging to the same disease
are all viewed as positive:

Laux =
−1

|P (i)|
∑

p∈P (i)

log
exp(z(d) · z(d)

p /τ)∑
a∈N(i)

exp(z(d) · z(d)
a /τ)

.

Here, P (i) includes all positive samples of z(d), N(i) is the
set of negative samples, and τ ∈ R+ is a temperature hyper-
parameter. As demonstrated in (Chen et al. 2020; He et al.
2020), contrastive learning benefits from larger batch size
and more negative samples. However, automatic diagnosis
suffers from insufficient training data and a small batch size.
To alleviate this issue, we adopt a dynamic queue, which
stores representations of previous samples to serve as posi-
tives/negatives. As the training continues, we progressively
update the queue by adding the latest samples and removing
the oldest ones. This enables us to use large negative samples
with limited batch size. Note that in our method, Sex ∪Sadd

is used for symptom prediction while Sex ∪ Sim for disease
prediction. We find that predicting the disease with only par-
tial symptoms would potentially bring extra noise and harm
the diagnosis performance.

Finally, we add the two losses together for the training of
symptom checking with a coefficient λ:

L = Lsym + λ · Laux.

Then the attention head for disease prediction can be directly
used for disease prediction. In our experiments, we find that
training a new attentional head without transformer encoders
from scratch achieves better performance.

Experiments
In this section, we conduct extensive experiments on public
datasets of automatic diagnosis to evaluate our method.

Setup

Datasets. We evaluate our method on four commonly used
public datasets. The MDD dataset is from ICLR 2021 Work-
shop MLPCP Track 2 Medical Dialogue System for Au-
tomatic Diagnosis1. It contains 2,374 user goals and 118
symptoms, covering 12 disease types. All the dialogues in
MDD are derived from real-world patients in offline hos-
pitals, thus closer to the real clinical diagnosis scenario.
Since the test set of the MDD dataset is not available, we
only report the metric in the validation (dev) set. The MZ
dataset (Wei et al. 2018) is collected from the pediatric de-
partment in a Chinese online healthcare community (Baidu
Muzhi). It contains 710 user goals and 66 symptoms, cover-
ing 4 types of diseases. The DXY dataset (Xu et al. 2019)
is collected from a Chinese online healthcare community
(dxy.com) where users ask doctors for medical diagnoses
or professional medical advice. The dataset contains 527
user goals and 41 symptoms, covering 5 types of diseases.
The Synthetic dataset (Liao et al. 2020) is constructed from
a symptom-disease database called SymCat2. It contains
30,000 user goals with 90 diseases.

Baselines. We compare our model with several baselines,
including traditional methods and state-of-the-art methods.
SVM (Chang and Lin 2011) is a commonly used traditional
classifier. “SVM-ex&im” can be viewed as a strong base-
line as it uses all explicit and implicit symptoms. RL-based
methods formulate the medical dialogue as a Markov deci-
sion process with reinforcement learning. The Basic DQN
is from (Wei et al. 2018) and the PPO baseline is pro-
vided by (Teixeira, Maran, and Dragoni 2021). HRL (Liao
et al. 2020) integrates a two-level hierarchical policy learn-
ing strategy. KR-DS (Xu et al. 2019) is an extension of
Basic-DQN and integrates relation encoding to help symp-
tom checking and a knowledge-routed graph branch for ac-
tion decision-making. It also makes use of the self-report
of patients before the dialogue. GAMP (Xia et al. 2020)
integrates the Generative Adversarial Network into the re-
inforcement learning model with policy gradient and uses
mutual information to further enhance the reward function.
Diaformer (Chen et al. 2022) formulates the dialogue-based
diagnosis system as a sequence generation task and designs
a transformer-based framework for automatic diagnosis.

1https://competitions.codalab.org/competitions/29706
2www.symcat.com
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MDD MZ DXY Synthetic

Acc Recall ATurn Acc Recall ATurn Acc Recall ATurn Acc Recall ATurn

SVM-ex 70.3 - - 59.0 - - 64.4 - - 34.1 - -
SVM-ex&im 84.5 - - 71.0 - - 77.9 - - 73.2 - -
Basic DQN 46.4 - - 65.0 30.1 3.1 73.1 32.2 2.9 35.6 2.0 2.0

HRL - - - 69.4 27.6 3.5 69.5 16.1 2.4 49.6 33.8 8.4
KR-DS - - - 73.0 - 3.4 74.0 - 3.4 - - -
GAMP - - - 73.0 - 6.3 76.9 - 3.3 - - -

PPO - - - 73.2 - 6.3 74.6 - 3.3 61.8 - 12.6
Diaformer 86.0 87.4 18.9 74.2 75.2 15.3 82.9 82.7 13.1 73.3 90.6 13.7

MTDiag 89.1 89.2 13.8 75.9 79.4 17.9 85.4 91.3 12.5 75.4 90.7 15.1

We report results from previous works if available. Otherwise, if code is provided and could be run successfully, we implement
them based on the official code and report the results.

Table 2: Experimental results of four datasets in disease diagnosis. “Acc” is the accuracy of diagnosis. “Recall” is the recall of
implicit symptom for symptom checking, and “ATurn” is average turn of inquiry.

Evaluation Metrics. Following the setting of the previous
works (Wei et al. 2018; Xu et al. 2019; Chen et al. 2022), we
evaluate our method by three metrics: accuracy for disease
diagnosis, recall of implicit symptoms, and average inquiry
turns for symptom checking. The accuracy is the key metric
for automatic diagnosis. The recall and average turn could
evaluate the efficiency of the inquiry.

Implementation Details. We implement our model by Py-
Torch and train the model on NVIDIA 2080Ti (11G). We
repeat the experiments five times with random initializa-
tion and report the mean results. For symptom checking, the
maximum number of turns is set to 20. In addition, in train-
ing the diagnosis classifier, explicit symptoms with implicit
symptoms in the input and the ones from symptom check-
ing are viewed as different training samples. This could be
viewed as a data augmentation technique to help enrich the
training data and relieve the problem of data scarcity.

Main Results

Overall Performance. We report results of baselines from
previous works if available. For those results that are not
previously reported, we run the official code if it is publicly
available. All experimental results are shown in Table ??.
Overall speaking, we observe that our approach achieves
state-of-the-art or competitive results on both symptom
checking and disease diagnosis in the four datasets. MTDiag
significantly outperforms reinforcement learning (RL) based
methods, especially in DXY and Synthetic datasets where
the absolute improvement is at least 10.8% and 13.9% in di-
agnosis accuracy. For the non-RL-based method Diaformer,
our method also has an advantage with an average improve-
ment of 1.9% in the four datasets. For symptom checking,
MTDiag tends to request more inquiry runs to achieve a
higher recall of symptoms. This is practical and reasonable
in real scenarios because more symptoms would help the
doctor make a more accurate diagnosis. Compared with Di-
aformer, MTDiag achieves higher recall and diagnosis accu-
racy while consuming fewer turns in MDD and DXY. This

indicates that our method has more potential to provide valid
and informative inquiries of symptoms for diagnosis. Over-
all, these results demonstrate the effectiveness of the pro-
posed learning framework.

Effect of maximum limited turns. As shown in Table ??,
our method, together with Diaformer, tends to request more
inquiry turns than RL-based methods to achieve a higher
recall of symptoms. We conduct experiments with 5/10/15
maximum turns to test the performance within fewer turns.
Due to the limitation that KR-DS, GAMP, and PPO have
not released their code, we compare with two RL baselines
(DQN and HRL) and one sequence-generation-based model
Diaformer. The results are in Table ??. It is observed that
in most cases, MTDiag can outperform baselines in terms of
diagnostic accuracy and recall of implicit symptoms. Specif-
ically, in the setting of 5 limited turns, our method still has a
distinct advantage over two RL-based methods with at least
5% improvement in accuracy and 6% in recall on average.
MTDiag shows an edge over Diaformer, especially when
limited turns are set to 10/15. These results manifest that
the proposed approach can achieve satisfactory performance
within limited turns.

Effect of stop threshold δ. In the inference of symptom
checking, we employ a threshold δ to control when to stop
inquiring. In addition to limiting the maximum turns, adjust-
ing the stop threshold is another way to control the inquiry
turns. We explore the effect of δ in the MDD dataset, and
the results are illustrated in Figure 3. We observe that as the
stop threshold δ increases, the recall of implicit symptoms
and diagnosis accuracy decrease. This is in line with our in-
tuition that higher δ would cause the inquiry to end earlier,
and more implicit symptoms would be overlooked. Besides,
it indicates that higher recall can lead to a more accurate di-
agnosis. Note that the recall drop is more significant than
diagnosis accuracy, which may imply that our method can
inquire about key implicit symptoms in early steps. Overall
speaking, this provides another way to balance the average
turn and effectiveness of diagnosis.
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Turn Model MDD MZ DXY Synthetic
Acc Recall ATurn Acc Recall ATurn Acc Recall ATurn Acc Recall ATurn

5

Basic DQN - - - 64.1 29.2 2.9 64.7 31.1 2.5 35.6 2.0 2.0
HRL - - - 67.6 26.5 2.8 70.2 15.2 1.9 44.3 2.4 4.3

Diaformer 85.3 58.3 4.9 72.2 47.2 5.0 76.6 54.5 4.8 49.4 46.1 4.9
MTDiag 82.8 59.5 5.0 72.6 45.3 5.0 76.1 58.1 5.0 51.1 44.1 5.0

10 Basic DQN - - - 68.3 29.6 3.0 71.5 32.2 2.7 35.6 2.0 2.0
HRL - - - 69.7 26.6 3.3 71.8 15.9 2.3 48.8 30.7 7.4

Diaformer 84.9 75.6 9.0 73.1 65.5 9.8 80.6 77.8 9.6 63.2 73.6 9.6
MTDiag 85.9 80.1 9.6 74.6 63.2 10.0 81.9 82.7 9.6 63.6 72.5 10.0

15 Basic DQN - - - 68.3 29.7 3.0 71.2 32.0 2.7 35.6 2.0 2.0
HRL - - - 70.2 27.2 3.4 71.8 15.9 2.3 49.9 32.2 8.3

Diaformer 85.7 81.8 12.3 74.2 73.1 13.8 82.8 82.6 12.4 71.1 86.6 12.6
MTDiag 87.5 87.2 12.9 74.6 73.5 15.0 85.4 89.8 11.9 73.3 87.9 14.0

Table 3: Results with smaller different limited turns.

MDD MZ DXY Synthetic

Acc Recall ATurn Acc Recall ATurn Acc Recall ATurn Acc Recall ATurn

MTDiag 89.1 89.2 14.4 75.9 79.4 17.9 85.4 91.3 12.5 75.4 90.7 15.1
w/o SupCon 88.1 87.3 12.8 74.2 80.0 18.0 84.0 88.9 12.6 75.6 91.3 15.1
w/ BCE only 88.2 87.9 13.4 73.8 62.6 18.0 84.1 87.7 12.1 74.0 89.5 14.0

w/ BCE+SupCon 88.7 87.6 15.9 74.2 62.8 17.1 84.8 90.3 12.5 74.1 89.2 14.9

Table 4: Ablation study of different training variants. “w/o SupCon” represents training with symptom prediction loss only. “w/
BCE” means replacing concurrent-softmax based loss with binary cross entropy (BCE) loss.

Ablation Study. We conduct a series of ablation studies to
verify the effect of each component in our approach. In this
work, we introduce a multi-task learning strategy to assist
the symptom checking with extra disease information. Ta-
ble ?? indicates that this strategy generally boosts the per-
formance of symptom checking as both the recall of im-
plicit symptoms and diagnosis accuracy increase in MDD,
MZ, and DXY with almost equal average turns. The Syn-
thetic dataset is an exception in which the performance al-
most keeps. One possible assumption is that as its scale is
much larger than the others, the model is capable of learning
well only based on the concurrence of symptoms. We also
conduct experiments using binary-cross-entropy (BCE) as
the loss function, which is widely used in multi-label classi-
fication tasks. The results in Table ?? show that both concur-
rent softmax (CCE) and BCE perform equally well without
disease information. Under the multi-task learning setting,
CCE has a slight edge over BCE. These results indicate that
the multi-task learning strategy help to improve the perfor-
mance of automatic diagnosis.

Case Study. We give an actual example from the MZ
dataset to demonstrate how symptom checking helps the
final diagnosis, as illustrated in Table ??. Our model first
gives an initial but wrong prediction (i.e., Pediatric Diarrhea)
based on explicit symptoms before the checking and then in-
quires about five symptoms step by step. During the 5-turn
inquiries, two implicit symptoms (i.e., loose stool and vomit-

70

80

90

DXY Dataset

0.90.70.50.30.1
threshold 

85

90
MDD Dataset

Recall
Accuracy

Figure 3: Sensitivity of the stop threshold δ in symptom
checking in MDD and DXY datasets. With the increase of δ,
symptom recall drops significantly, and diagnosis accuracy
decreases slightly due to the fewer symptoms.

ing) are found in Turns 2 and 3. When the conditions of two
key symptoms are recognized, our model gives the right dis-
ease prediction, Pediatric Dyspepsia. Finally, our model re-
tains the correct diagnosis after inquiring about two relevant
but unknown symptoms. Although some implicit symptoms
are not found within five inquiries, our method still gives the
right prediction as the final diagnosis.

Online Deployment. Our method is now deployed as an
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Disease tag: Pediatric Dyspepsia
Explicit symptoms: {green stool: True, diarrhea: True}
Implicit symptoms:{loose stool: True, vomiting: True,
flatus: True}

Turns Symptom Inquiry Disease Prediction

Initial - Pediatric Diarrhea
Turn 1 (fever, UNK) Pediatric Diarrhea
Turn 2 (loose stool, True) Pediatric Diarrhea
Turn 3 (vomiting, False) Pediatric Dyspepsia
Turn 4 (watery stool, UNK) Pediatric Dyspepsia
Turn 5 (runny nose, UNK) Pediatric Dyspepsia

Diagnosis Pediatric Dyspepsia

Table 5: Case study of an example chosen from the MZ
dataset with 5-turn inquiries. We report the symptom, its
condition, and the disease prediction in each turn, where
UNK means the condition of the symptom is unknown. After
the symptom checking, our model makes the correct diagno-
sis, Pediatric Dyspepsia.

important component of an online medical consultant sys-
tem as an assistant tool for the real-life doctor, serving hun-
dreds of thousands of users every day. Practically, for each
dialogue, we first extract initial symptoms from the user’s
self-report by named entity recognition and linking tools
from the user’s self-report. Then our model is activated to
perform the multi-turn dialogue to collect implicit symp-
toms. In each turn, our model predicts the top-k most prob-
able symptoms, which are present as a multiple-selection
checkbox. The user could select several symptoms he/she
has, and our method will generate subsequent symptoms.
Some hand-crafted rules are combined with our method to
collect basic information like age and duration of symptoms
and avoid any possible offensive inquiries. After a few inter-
actions, all collected symptoms and the diagnostic sugges-
tion of the disease are provided to the doctor for reference.
And the doctor could adopt the model’s suggestion or in-
quire for more details to help make the final diagnosis.

Related Work
Previous works mostly view automatic diagnosis as a se-
quential decision problem. Tang et al. (2016) formulate auto-
matic diagnosis as symptom checking and disease diagnosis
and firstly adopts reinforcement learning (RL) to tackle the
problem. Kao, Tang, and Chang (2018) introduce medical
context into symptom checking and employ a hierarchical
RL approach to make a joint diagnostic decision. Xu et al.
(2019) incorporate rich prior medical knowledge through a
knowledge graph to guide policy learning. Liao et al. (2020)
classify diseases into distinct groups according to symptom
distribution and builds a hierarchical RL framework to han-
dle inevitably large action space. Xia et al. (2020) borrow
the ideas of generative adversarial networks (Goodfellow
et al. 2014) and mutual information to improve reward func-
tion, thus significantly boosting the performance. Yu et al.
(2021) systematically review the development and applica-
tions of reinforcement learning in automated medical diag-

(a)Interface for user (b) Interface for doctor

Predicted symptoms

Do you have the following symptoms?

Known symptoms
/clinical presentation

Patient 
Information

Self-report

Which of the following patients are you consulting for?

Clinical feature
- Positive:  

- Nasal itch
- runny nose, 
- … 

- Negative: 
- No expectoration

Duration
- Five days

I'm sneezing, coughing and running nosexw

runny nose fever

nasal congestion

sore throat

None

Figure 4: The deployed online medical consultation service.
Our method is used to check symptoms of patients before
they communicate with the doctor.

nosis. However, RL-based methods generally suffer from
low data efficiency, and it is difficult to achieve satisfying
results with very limited data in the medical domain.

Recently, another line of work (Chen et al. 2022) for-
mulates automatic diagnosis as a sequence generation prob-
lem. It generates an implicit symptom sequence conditioned
on the patient’s self-report under the auto-regressive frame-
work. Although it attempts to alleviate the bias resulting
from the discrepancy between the ordered generation and
the intrinsic disorder of golden implicit symptoms via sev-
eral orderless techniques, it is fundamentally plagued by the
challenge of learning specific order of symptoms.

Conclusion and Future Work
In this paper, we propose MTDiag, an effective multi-task
framework for automatic medical diagnosis. We reformu-
late the symptom checking under a multi-label classification
setting and further design a multi-task strategy to guide the
training with disease information. MTDiag achieves state-
of-the-art performance on four public datasets, demonstrat-
ing the effectiveness of our method. As for future work, we
identify the importance of high-quality datasets, since they
play a significant role in advancing a research field. But cur-
rent datasets of automatic medical diagnosis are either too
small or not fully open-source. This greatly hinders the de-
velopment of automatic diagnosis. In the future, we will try
to build a better benchmark to achieve a more reliable eval-
uation of existing methods.

Ethical Statement. Artificial intelligence can assist people
in a variety of patient care and intelligent health systems.
Automatic diagnosis is an important application that helps
patients with self-diagnosis or doctors as auxiliary tools. Al-
though our approach achieves promising results, the predict-
ing errors caused by the inadequate data may bring potential
harm to users when directly applying the method as a diag-
nostic system. Under the ethical considerations, our model
is deployed as an auxiliary tool to offer suggestions and help
doctors check symptoms and make the diagnosis in online
medical consultation, rather than serve the patient directly
and independently.
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