
1

Network Representation Learning: A Macro and
Micro View
Xueyi Liu and Jie Tang

Abstract—Graph is a universe data structure that is widely used to organize data in real-world. Various real-word networks like the
transportation network, social and academic network can be represented by graphs. Recent years have witnessed the quick development
on representing vertices in the network into a low-dimensional vector space, referred to as network representation learning.
Representation learning can facilitate the design of new algorithms on the graph data. In this survey, we conduct a comprehensive review
of current literature on network representation learning. Existing algorithms can be categorized into three groups: shallow embedding
models, heterogeneous network embedding models, graph neural network based models. We review state-of-the-art algorithms for each
category and discuss the essential differences between these algorithms. One advantage of the survey is that we systematically study
the underlying theoretical foundations underlying the different categories of algorithms, which offers deep insights for better
understanding the development of the network representation learning field.

Index Terms—Network Representation Learning, Graph Neural Networks, Graph Spectral Theory

F

1 INTRODUCTION

Graph is a highly expressive data structure, based on
which various networks exist in the real-world, like the
social networks [1], [86], citation networks [109], biological
networks [80], chemistry networks [81], traffic networks, and
others. Mining information from real-world networks plays
a crucial role in many emerging applications. For example, in
social networks, classifying people into social communities
according to their profile and social connections is useful
for many related task, like social recommendation, target
advertising, user search [162], etc. In communication net-
works, detecting community structures can help understand
information diffusion. In biological networks, predicting
the role of protein can help us reveal the mysteries of life;
predicting molecular drugability can promote new drug
development. In chemistry networks, predicting the function
of molecules can help with the synthesis of new compound
and new material. The way in which networks are generally
represented cannot supply effective analysis. For example,
the only structural information we can get from an adjacency
matrix about one node is just its neighbours and the weight
of the edges between them. It is not informative enough with
respect to the neighbourhood structure and its role in the
graph, and also of high space complexity (i.e., O(N) for one
node, where N is the number of nodes in the network). It is
also hard to design an efficient algorithm based just on the ad-
jacency matrix. Taking community detection as an example,
most existing algorithms will involve calculating the spectral
decomposition of a matrix [79], whose time complexity is

• Xueyi Liu is with the Department of Computer Science and Technology,
Tsinghua University, Beijing, China.
E-mail: xueyi-li18@mails.tsinghua.edu.cn

• Jie Tang is with the Department of Computer Science and Technology,
Tsinghua University, and Tsinghua National Laboratory for Information
Science and Technology (TNList), Beijing, China, 100084.
E-mail: jietang@tsinghua.edu.cn, corresponding author.

Fig. 1: A toy example for network embedding task. Vertices
in the network lying in the left part are embedded into d-
dimensional vector space, where d is much smaller than the
total number of nodes |V | in the network. Vertices with the
same color are structurally similar to each other. Basic struc-
tural information should be kept in the embedding space
(e.g., Structurally similar vertices E and F are embedded
closer to each other than structurally dissimilar vertices C
and F).

always at least quadratic with respect to the number of
vertices. Existing graph analytical methods, like distributed
graph data processing framework (e.g., GraphX [40], and
GraphLab [77]) suffer from high computational cost and
high space complexity. This complexity makes the algorithms
hard to be applied to large-scale networks with millions of
vertices.

Recent years have seen the rapid development of network
representation learning algorithms. Their purpose is to learn
latent, informative and low-dimensional representations for
network vertices, which can preserve the network structure,
vertex features, labels and other auxiliary information [13],
[162], as Fig. 1 illustrates. The vertex representations can
help design efficient algorithms since various vector based
machine learning algorithms can thus be easily applied to
vertex representation vectors.



2

Isomap
[Tenenbaum et al. Science]

LLE
[Roweis et al. Science]
Spectral Clustering

[Ng et al. & Shi, Malik]

Spectral Partitioning
[Donath & Hoffman]

1973
Eigenmap

[Belkin et al., NIPS’02]

Graph Theory, Spectral,  
Dimensionality Reduction

Graph Neural Network
[Gori et al., IJCNN’05]

First Proposed

word2vec
[Mikolov et al., ICLR’13]

Skip-Gram, Sequence  
Embedding Model

DeepWalk
[Perozzi et al., KDD’14]

node2vec
[Grover et al., KDD’16]

Two-stage Embedding

GraRep
[Cao et al., CIKM’15]

M-NMF
[Wang et al., AAAI’17]

Matrix Factorization

Graph Convolution Network
[Duvenaud et al., NIPS’15]

[Kipf & Welling et al., ICLR’17]

FastGCN
[Velickovic et al., ICLR’18]

ASGCN
[Huang et al., NIPS’18]

Sampling

BVAT
[Deng et al., 2019]

DropEdge
[Rong et al., ICLR’20]

Regularization 

ACR-GNN
[Barcelo et al., ICLR’20]

GIN
[Xu et al., ICLR’19]

Theory 

NetMF
[Qiu et al., WSDM’18]

ProNE
[Zhang et al., IJCAI’19]

Unifying MF and RW

Spectral Enhancement

GNNs Improvements

Improvement of Shallow Models

2000

Fig. 2: A brief summary of the development of network embedding techniques. Left Channel: Shallow (Heterogeneous)
Neural Embedding Models; Mid Channel: Matrix Factorization Based Models; Right Channel: Graph Neural Network Based
Models.

Such works date back to the early 2000s [162], when the
proposed algorithms were part of dimensionality-reduction
techniques (e.g., Isomap [123], LLE [106], Eigenmap [7], and
MFA [150]). These algorithms firstly calculate the affinity
graph (e.g., k-nearest-neighbour graph) for the input of high-
dimensional data. Then, the affinity graph is embedded into
a lower dimensional space. However, the time complexity of
those methods is too high to scale to large networks. Later on,
there is an emerging number of works [15], [92], [159] focus-
ing on developing efficient and effective embedding method
to assign each node a low dimensional representation vector
that is aware of structural information, vertex content and
other information. Many efficient machine learning models
can be designed for downstream tasks based on the learned
vertex representations, like node classification [10], [172],
link prediction [38], [72], [78], recommendation [146], [158],
similarity search [74], visualization [118], clustering [79], and
knowledge graph search [73]. Fig. 2 shows a brief summary
of the development history of graph embedding models.

In this survey, we provide a comprehensive up-to-date re-
view of network representation learning algorithms, aiming
to give readers a macro, covering the some common basic
insights under different kinds of embedding algorithms and
the relationship between them, as well as a micro, lacking
no details of different algorithms and also theories behind
them, view on previous effort and achievements in this area.
We group existing graph embedding methods into three
major categories based on the development dependencies
among those algorithms, from shallow embedding models,
whose objects are basic homogeneous graphs (Def. 1) with
only one type of nodes and edges1, to heterogeneous embedding
models, most of whose basic ideas are inherited from shallow

1. The word “homogeneous” is omitted in the category name “shallow
embedding models” for brevity.

embedding models designed for homogeneous graphs with
the range of graph objects expanded to heterogeneous graphs
with more than one types of nodes or edges and also often
node or edge features, then further to graph neural network
based models, many of whose insights are able to be found in
shallow embedding models and heterogeneous embedding
models, like the inductive learning and neighbourhood
aggregation [17], spectral propagation [33], [163], and so
on. Though it is hard to say the ideas of which methods are
inspired by whose thoughts, the similarity and connections
between them can help us understand them better and also
always offer some interesting rethinking of the common field
they belong to, which are also what the survey focuses on
beyond reviewing existing graph embedding techniques.

Table 1 lists some typical graph embedding models and
some of their related information, which can help readers
get a fast glimpse of existing graph embedding models, their
inner mechanisms and underlying relations. Shallow embed-
ding models can be roughly grouped into two main categories,
shallow neural embedding models and matrix factorization
based models. Shallow neural embedding models (S-N)
are characterized by embedding look-up tables, which are
updated to preserve various proximities lying in the graph.
Typical models are DeepWalk [92], node2vec [42], LINE [120]
and so on. Matrix factorization (S-MF) based models aim
to factorize matrices related with graph structure and other
side information to get high-quality node representation
vectors. Based on shallow embedding models designed
for homogeneous networks, embedding techniques (e.g.
PTE [119], metapath2vec [31], GATNE [17]), are designed
for heterogeneous networks and we refer these models to
heterogeneous (SH) embedding models. Different from shallow
embedding models, graph neural networks (GNNs) are kind
of techniques characterized by deep architectures to extract
meaningful structural information into node representation



3

vectors. In addition to the discussion of the above-mentioned
types of models, we also focus on their inner connections,
advantages and disadvantages, optimization methods and
some related theoretical foundations.

Finally, we summarize some existing challenges and
propose possible development directions that can help
with further design. We organize the survey as follows.
In Section 2, we first summarize some useful definitions
which can help readers understand the basic concepts, and
then propose our taxonomy for the existing embedding
algorithms. Then, in Section 4, 5, and 6, we review typical
embedding methods falling into those three categories. In
Section 7 and 8 we discuss some relationships within those
algorithms of different categorizes and related optimization
methods. We then go further to discuss some problems and
challenges of existing graph embedding models in Section 9.
At last, we discuss some further development directions for
network representation learning in Section 10.

2 PRELIMINARIES

We summarize related definitions as follows to help readers
understand the algorithms discussed in the following parts.

First we introduce the definition of a graph, which is the
basic data structure of real-world networks:

Definition 1 (Graph). A graph can be denoted as G =
(V, E), where V is the set of vertices and E is the set of
edges in the graph. When associated with the node type
mapping function Φ : V → O mapping each node to its
specific node type and an edge mapping function Ψ : E → R
mapping each edge to its corresponding edge type, a graph
G can be divided into two categories: homogeneous graph
and heterogeneous graph. A homogeneous graph is a graph
G with only one node type and one edge type (i.e., |O| = 1
and |R| = 1). A graph is a heterogeneous graph when
|O|+ |R| > 2.

Graphs are basic data structure for many kinds of real-
world networks, like transportation network [102], social
networks, academic networks [104], [152], and so on. They
can be modeled by homogeneous graphs or heterogeneous
graphs, based on the knowledge we have on nodes and edges
in those networks. In the survey, we use graph embedding and
network representation learning alternatively, both of which are
high-frequency terms appeared in the literature [17], [42],
[92], [153], [163] and both denote the process of generating
representative vectors of a finite dimension for nodes in a
graph or a network. When we use the term graph embedding,
we focus mainly on the basic graph models, where we simply
care about nodes and edges in the graph, and when we use
network representation learning, our focus is more on networks
in real-world.

Since there is a large number of embedding algorithms
based on modeling vertex proximities, we briefly summarize
the proposed vertex similarities as follows [162]:

Definition 2 (Vertex Proximities). Various vertex prox-
imities can exist in real-world networks, like first-order prox-
imity, second-order proximity and higher-order proximities.
The first-order proximity can measure the direct connectivity
between two nodes, which is usually defined as the weight of
the edge between them. The second-order proximity between

Tibmmpx!Fncfeejoh!Npefmt
DeepWalk
node2vec

LINE
…

Matrix Factorization

ProNE (MF, Spectral…)
Ifufsphfofpvt!Fncfeejoh!Npefmt

metapath2vec
PTE

…
GATNE (Inductive Learning)

Basic GNN Models

…

Ifufsphfofpvt

Sfbm.xpsme
Ofuxpslt

Hsbqi!Ofvsbm!Ofuxpsl!Fncfeejoh!Npefmt

Sampling Strategies

Attention Mechanism

…
GNN Models

Regularization

SSLNAS
…

Hp!Up!Effq

Node-wise, Layer-wise…
DropEdge, DropNode,  
Virtual Attack…

Fig. 3: An overview of existing graph embedding models
and their correlation.

two vertices can be defined as the distance between the
distributions of their neighbourhood [135]. Higher-order
proximities between two vertices v and u can be defined
as the k-step transition probability from vertex v to vertex
u [162].

Definition 3 (Structural Similarity). Structural simi-
larity [33], [50], [75], [94], [102] refers to the similarity
of the structural roles of two vertices in their respective
communities, although they may not connect with each other.

Definition 4 (Intra-community Similarity). The intra-
community similarity originates from the community struc-
ture of the graph and denotes the similarity between two
vertices that are in the same community. Many real-life
networks (e.g., social networks, citation networks) have
community structure, where vertex-vertex connections in
a community are dense, but sparse for nodes between two
communities.

Since graph Laplacian matrices are based for understand-
ing embedding algorithms based on graph spectral, or adopt
the graph spectral way, which is also a crucial development
direction for embedding algorithms, we briefly introduce
them as follows:

Definition 5 (Graph Laplacian). Following notions
in [51], L = D − A, where A is the adjacency matrix,
D is the corresponding degree matrix, is the combinational
graph laplacian, L = I − D−

1
2AD−

1
2 is the normalized

graph Laplacian, Lrw = I −D−1A is the random walk graph
Laplacian. Meanwhile, let Ã = A+σI denotes the augmented
adjacency matrix, then, L̃, L̃, L̃rw are the augmented graph
Laplacian, augmented normalized graph Laplacian, augmented
random walk graph Laplacian respectively.

3 OVERVIEW OF GRAPH EMBEDDING TECH-
NIQUES

In this section, we will give graph embedding techniques of
each category a brief introduction to help readers get a better
understanding of the overall architecture of this paper. Fig. 3
shows a panoramic view of existing embedding models and
their connections.

Shallow Embedding Models. These models can be divided
into two main streams: shallow neural embedding models
and matrix factorization based models. Though there are



4

Model Type Neural Heter. A/L O-S Proximity Matrix Filter
DeepWalk [92]

S-N

X × × SGNS,G

H-O

TABLE 2 DeepWalk h(λ) = 1
T

∑T
r=1 λ

r

node2vec [42] X × × SGNS,G TABLE 2 node2vec -
Diff2vec [107] X × × PS - -
Walklets [93] X × × SGNS,G - -
Rol2Vec [2] X × A SGNS,G I-C - -
LINE [120] X × × PS,NS,D,G F-O,S-O TABLE 2 LINE h(λ) = 1− λ
pRBM [138] X × A PS,G F-O - -

UPP-SNE [161] X × A SGNS,G H-O - -

DDRW [70] X × L SGNS,SVM
D,G H-O TABLE 2 DeepWalk h(λ) = 1

T

∑T
r=1 λ

r

TLINE [165] X × L PS,NS,SVM
D,G

F-O
S-O TABLE 2 LINE h(λ) = 1− λ

GraphGAN [137] X × × G,D F-O - -
struct2vec [102] X × × SGNS,D ST - -

PTE [119]

SH

X X × PS,NS,G S-O Eq. 13 -
metapath2vec [31] X X × SGNS H-O - -

HIN2vec [37] X X × SGNS H-O - -
GATNE [17] X X A SGNS H-O - -

HERec [111] X X L SGNS
MF H-O user rating matrix R -

HueRec [142] X X L SGNS H-O - -
HeGAN [54] X X × G,D F-O - -

M-NMF [139]

S-MF

× × × Iter-Update F-O,S-O,
I-C S = S(1) + ηS(2), H -

NetMF [97] × × × tSVD H-O TABLE 2 DeepWalk h(λ) = 1
T

∑T
r=1 λ

r

ProNE [163] × × × r-tSVD F-O Eq. 5 -
GraRep [14] × × × tSVD H-O Eq. 6 -
HOPE [88] × × × JDGSVD [52] H-O General -

TADW [151] × × A I-MF H-O(without
homophily)

k-step transition
matrix M -

HSCA [160] × × A Iter-Update H-O k-step transition
matrix M -

ProNE [163]
S-SS

× × × H-O IN −Ug(Λ)U−1 g(λ) = e−
1
2
[(λ−µ)2−1]θ

GraphZoom [28] × × A Spectral
Propagation H-O (D̃

− 1
2 ÃD̃

− 1
2 )k h(λ) = (1− λ)k

GraphWave [33] × × × ST - gs(λ) = e−λs

GCN [65]

GNN

X × A,L SGD H-O D̃
− 1

2 ÃD̃
− 1

2 h(λ) = 1− λ
GraphSAGE [45] X × A,L SGD H-O Depend on A-M -

FastGCN [19] X × A,L SGD H-O ÃQ(Qii = 1

q
(l)
vi

) h(λ) = 1− λ

ASGCN [59] X × A,L SGD H-O ÃQ(Qii = qi
q∗vi

) h(λ) = 1− λ

GAT [130] X × A,L SGD H-O PÃ+ ÃQ [5] -
GIN [148] X × A,L SGD H-O Ã = A+ IN -

gfNN [51] X × A,L SGD H-O (D̃
− 1

2 ÃD̃
− 1

2 )k h(λ) = (1− λ)k

SGC [145] X × A,L SGD H-O (D̃
− 1

2 ÃD̃
− 1

2 )k h(λ) = (1− λ)k

ACR-GNN [6] X × A,L SGD H-O - -

RGCN [170] X × A,L SGD H-O D̃
− 1

2 ÃD̃
− 1

2 -

BVAT [29] X × A,L Adversarial,
SGD H-O - -

DropEdge [105] X × A,L SGD H-O Âdrop = N (A−A′) [105] -
R-GCN [108] X X A SGD H-O - -

HetGNN [157] X X A SGNS H-O - -
GraLSP [62] X X A SGNS H-O,ST - -

TABLE 1: An overview of network representation learning algorithms (selected). Symbols in some formulas can refer to Def.
5. For others, “A” ∼ w/o vertex attributes;“L” ∼ w/o vertex labels; “Heter.” ∼ heterogeneous networks. Abbreviations
used: “F-O”, “S-O”, “H-O”, “I-C”, “ST” refer to First-Order, Second-Order, High-Order, Intra-Community and Structural
similarities; “SN”, “SHN”, “MF”, “SS” refer to Shallow Neural Embedding models, Shallow Heterogeneous Network
Embedding Model, Matrix Factorization Based models and Shallow Spectral models; “O-S” denotes optimization strategies,
in which “PS”, “NS” refer to positive sampling and negative sampling; “(r)-(t)SVD” refers to (randomized)-(truncated)
singular value decomposition; “SGNS” refers to “Skip-Gram with Negative Sampling”; “Iter-Update” refers to iteratively
updating; “I-MF” refers to inductive matrix factorization [87]; “G” ∼ generative method; “D” ∼ discriminative methods;
“A-M” ∼ aggregation methods.



5

some differences between those two embedding genres,
it has been shown that some shallow embedding based
models, especially those adopt random walk to sample
vertex sequences and perform skip-gram model to get
vertex embeddings, have close connections with matrix
factorization models: they are actually implicitly factorizing
their equivalent matrices [97], to be specific.

Besides, matrices being factorized by shallow embedding
models also have close relationship with graph spectral
theories. Apart from models like GraphWave [33] which are
based on graph spectral directly (see Sec. 4.4), other models
like DeepWalk [92], node2vec [42], LINE [120] can also be
proved to have close relationship with graph spectral by
proving that their equivalent matrices are filter matrices [97].

Then, the explicit combination of traditional shallow
embedding methods like matrix factorization and spectral
embedding models, can be seen in the embedding model
ProNE [163], where vertex embeddings are firstly obtained
by factorizing a sparse matrix and then propagated by band-
pass filter matrix in the spectral domain. Moreover, such
close connections can also be seen int the university of
spectral propagation technique proposed in ProNE, which is
proved to be a universal embedding enhancement method,
improving the quality of vertex embeddings obtained by
other shallow embedding models effectively [163].

Such associations enable some basic ideas of those
shallow embedding models can be regarded as the basis
of GNN models.

Heterogeneous Embedding Models. Based on shallow
embedding models, many embedding models for hetero-
geneous networks can be developed by some techniques,
like metapath2vec [31], which applies certainty constrictions
on the random sampling process and PTE [119] which splits
the heterogeneous graph into several homogeneous graphs.

Moreover, various graph content in heterogeneous mod-
els, like vertex and edge features and labels evokes the
thoughts on how to effectively utilize graph content in the
embedding process and also how to become inductive when
being applied on dynamic graphs, which is a common feature
of real-world graphs. For example, the proposed embedding
model GATNE [17] applies attention mechanism on vertex
features during the embedding process, and try to learn the
transformation function applied on vertex contents to make
the model become inductive (GATNE-I).

Such design ideas can be seen as basic models for Graph
Neural Networks.

Graph Neural Networks. Different from above mentioned
shallow embedding models, Graph Neural Networks (GNNs)
are some kind of deep, inductive embedding models, which
can utilize graph contents better and can also be trained
with supervised information. The basic idea of GNNs is
iteratively aggregating neighbourhood information from
vertex neighbours to get a successive view over the whole
graph structure.

Based on vanilla GNN models, there is a huge amount of
works focusing on developing enhancement techniques [35],
[53], [59], [105] to improve the efficiency and effectiveness of
GNN models.

Despite the advantages of GNN models, there are also
many problems lying in GNN architecture, with also meth-

ods proposed to solve such problems, most of which focus
on graph regularisation [29], [133], basic theories [6], self-
supervised learning [57], [95], architecture search [169] and
so on.

4 SHALLOW EMBEDDING MODELS

4.1 Neural Based

There is a kind of model that is characterized by looking-up
embedding tables containing node embeddings as row or
column vectors, which are treated as parameters and can
be updated during the training process. There are many
approaches for updating vertex embeddings. Some extract
vertex-context pairs by performing random walks on the
graph (e.g., DeepWalk [92], node2vec [42]). They tend to
maximize the log-likelihood of observing context vertices for
the given target node. These methods are treated as genera-
tive models in [137]. In generative models, it is assumed that
there existing a true connectivity distribution ptrue(·|v) for
each node v and the graph is generated by the connectivity
distribution. The co-occurrence frequencies for the vertex-
context pairs are then treated as the observed empirical
distributions for the underlying connectivity distribution.
Some try to model edges directly through the similarities
between vertex embeddings of each connected pair (e.g., first-
order proximity in LINE [120]) or training a discriminative
model (or a classifier) to predict their existence.

In this section, we will review a large class of methods
based on random walk, make comparisons between different
random walk strategies and examine some models adopting
other methods.

4.1.1 Random Walk Family
Random walk and its variants are kind of effective methods
transferring the sub-linear structure of graph to the linear
structure (i.e.,node sequences), since the generated walks
can well preserve structural information of the original
graph [76], [82].

Random walk strategy is firstly used to generate node
sequences in DeepWalk [92], and we refer to the proposed
random walk technique as Vanilla Random Walk. It can be
seen as a Markov process on the graph and has been well
studied [76]. Readers can refer to [76] for more details. After
node sequences are generated, the Skip-Gram model [83] is
applied to extract positive vertex-context pairs from them.
Based on the distributional hypothesis [47], the Skip-Gram
model is first proposed in [83] to capture semantic similarity
between words in natural language. It is then generalized
to networks based on the hypothesis that vertices that share
similar structural contexts tend to be close in the embedding
space.

Development of Random Walks. Based on the vanilla
random walk, which is proposed in DeepWalk [92] and
has achieved the state-of-the-art performance at that time
when applied to downstream tasks (e.g., multi-label node
classification), the biased random walk is proposed in [42]
by introducing a return parameter p, and a in-out parameter
q in the calculation for the transition probability at each
step (Fig. 4 Right Channel). Thus, it is also the second-order
random walk, whose transition probability also depends on



6

Fig. 4: An illustration for the transition probabilities in
vanilla and biased random walk. Right Panel: Assuming
the previous node is t and the current node is v, then
αpa(v, x) for node x1, x2, x3 depend on their distances from
the previous node t. The transition probability from current
node v to node x is calculated by πvx = αpq(t, x) · wvx,
where wvx is the weight of edge (v, x). Left Panel: The vanilla
random walk can be regarded as a special case of the biased
random walk, where p = q = 1. Adapted from [42].

the previous node. Euler walk is proposed in Diff2Vec [107],
which perform a euler tour in the diffusion subgraph
centered at each node. Walklets is proposed to separated
mixed node proximities information from each order in [93].
Thus, it can get embeddings with successively coarser node
proximity information preserved as the order k increases.
Besides, attribute random walk is proposed in Rol2Vec [2] to
design a kind of random walk that can incorporate vertex
attributes and structural information.

Comparison and Discussion. Compared with the vanilla
random walk, the introduced parameters p and q can help the
biased random walk interpolate smoothly between DFS and
BFS [24]. Thus, the biased random walk can explore various
node proximities that may exist in the real-world network
(e.g., second-order similarity, structural equivalence). It can
also fit in a new network more easily by changing parameters
to change the preference of proximities being explored since
different proximities may dominate in different networks [42].
But these two parameters will need tuning to fit in a new
graph if there is no labeled data that can be used to learn
them.

Both biased random walk and vanilla random walk need
calculating transition probabilities for each adjacent node of
the current node at each step, which is time-consuming [107].
Compared with them, Euler tour is easy to find in the
subgraph [144]. It can also get a more comprehensive view
over the neighbourhood since the Euler tour will include
all the adjacencies in the subgraph. Thus, fewer diffusion
subgraphs and fewer Euler walks need generating centered at
each node, compared with vanilla random walks, which tend
to revisit a vertex many times, thus producing redundant
information [4], [107]. However, the BFS strategy which is
used to generate diffusion subgraphs is rather rigid, and
cannot explore the various node proximities flexibly. Besides,
the effectiveness of Diff2Vec is not well proved, since its
performance in popular downstream tasks that are widely
used in previous works (e.g., node classification and link
prediction) [33], [42], [92], [97], [120], [163] have not been
studied [107].

TABLE 2: Matrices that are implicitly factorized by Deep-
Walk, LINE and node2vec, same with [97]. “DW” refers to
DeepWalk, “n2v” refers to node2vec.

Model Matrix

DW log
(

vol(G)( 1
T

∑T
r=1(D−1A)r)D−1

)
− log b

LINE log
(
vol(G)D−1AD−1

)
− log b

n2v log

(
1

2T

∑T
r=1

(∑
u Xw,uP r

c,w,u+
∑

u Xc,uP r
w,c,u

)
(
∑

u Xw,u)(
∑

u Xc,u)

)
− log b

4.1.2 Others Methods
Random walk based methods can be seen as kinds of genera-
tive models [137]. There are also other methods coming out of
the random walk and Skip-Gram range, which can be seen as
discriminative models, or as implicitly both generative and
discriminative (e.g., LINE [120]), or as adversarial generative
training method [41] (e.g., GraphGAN [137]).

In LINE, both the existence of edges and the connectivity
distribution for each node are modeled, which can be seen as
its discriminative and generative parts respectively. Existence
of edges is modeled by maximizing following probability for
each two connected node pair (vi, vj):

p1(vi, vj) =
1

1 + exp(−~uTi · ~uj)
, (1)

where ~ui is the vertex embedding for node vi. The connec-
tivity distribution for each node p2(·|vi)(can be calculated by
Eq. 3) is forced to be similar with the empirical distribution
p̂2(·|vi) by minimizing the following objective to model the
second-order proximity:

O2 =
∑
i∈V

λid(p̂2(·|vi), p2(·|vi)), (2)

where d(·, ·) is the distance between two distributions, λi is
the weight for each node, which represents its prestige in
the network and can be measured by vertex degree or other
algorithms (e.g. PageRank [89]).

p2(vj |vi) =
exp(~u

′T
j · ~ui)∑|V |

k=1 exp(~u
′T
k · ~ui)

(3)

4.2 Matrix Factorization Based.

Matrix factorization is an effective method to get high-quality
vertex embedding vectors.

Matrices to be factorized can be defined to preserve
various node proximities, like the first-order, second-order
and intra-community proximities preserved in M-NMF [139],
the asymmetric high-order node proximity preserved in
HOPE [88]. Or they can be defined as the matrix implicitly
factorized by shallow neural embedding models discussed
before, since some of these methods are proved to be
inherently related to matrix factorization. It will be discussed
in the next subsection.

Moreover, there are many techniques to factorize the
matrix. In addition to making the factor matrices obtained by
factorizing preserve the properties of the original matrix, time
efficiency is also of great importance for matrix factorization
methods. Detailed discussion can be seen in Section 8.2.



7

4.3 Connection between Neural Based and Matrix Fac-
torization Based Models

Recent years have seen many works focusing on the ex-
ploring the equivalence between some of shallow neural
embedding models and matrix factorization models by
proving that some neural based models are factorizing
matrices implicitly. Such connections can also help with
the analysis of robustness of random walk based embedding
models [11]. Moreover, it is empirically proved that em-
bedding vectors obtained by factorizing the corresponding
matrix can preform better in downstream tasks than those
optimized by stochastic gradient descent in DeepWalk [97].

4.3.1 Matrices in Natural Language Models

This concern for equivalence does not originate from graph
representation learning models. It is proposed in [69] that the
word2vec model [84] or the SGNS procedure in it is implicitly
factorizing the following word-context matrix:

MSGNS
ij = log

(
#(w, c) · |D|
#(w) ·#(c)

)
− log(k), (4)

where #(w, c) is the number of co-occurrence of the word
pair (w, c) in the corpus, which is selected by sliding a certain
length of window over word sequences, #(w) is the number
of occurrences of the word w. It is worth noting that the
term log

(
#(w,c)·|D|
#(w)·#(c)

)
is actually the well known pointwise

mutual information (PMI) of the word pair (w, c) and has
been widely used in word embedding models [23], [25], [127],
[128].

Moreover, PMI is also the basis for deriving the matrices
factorized by random walk based models in [97], which are
finally presented in matrix form.

4.3.2 From Natural Language to Graph

For graph representation learning models, some typical
algorithms (e.g. DeepWalk [92], node2vec [42], LINE [120])
can also be shown to factorize their corresponding matrices
implicitly (TABLE 2 ). Based on SGNS’s implicit matrix
MSGNS (Eq. 4), the proof focuses on building the bridge
between PMI of word-context pair (w, c) and the transition
probability matrix of the network.

Factorizing Log-Empirical-Distribution Matrices. Theo-
retical results for the connections between shallow neural
embedding algorithms and matrix factorization open a new
direction for the optimization process of some neural based
methods. Since each entry for this kind of matrices can be
seen as the empirical connectivity preference [137] between
the corresponding vertex-context pair (w, c), we refer to these
matrices as Log-Empirical-Distribution Matrices. In [97], Qiu
et al. try to factorize the matrix of DeepWalk [92] directly.
Embedding vectors generated this way can outperform the
embedding vectors obtained by the SGNS process employed
in the original DeepWalk algorithm in the downstream tasks.
In the matrix factorization part of ProNE [163], a matrix
(Eq. 5, where λ is the negative sampling ratio and PD,j are
negative samples associated with node vj .) with only the
first-order node proximities preserved (thus a sparse one) is

generated through a similar way in [69] and is factorized to
get raw embedding vectors.

Mi,j =

{
ln pi,j − ln(λPD,j), (vi, vj) ∈ D

0, (vi, vj) /∈ D
(5)

In GraRep [14], SGNS matrices preserving each k-order
proximity:

Y ki,j = log

(
Aki,j∑
tA

k
i,j

)
− log(β), (6)

where A is the adjacency matrix, are generated and then
factorized to get the embedding vectors preserving each
k-order proximities. These embedding vectors, preserving
different orders of node proximity, are then concatenated
together to get the final embedding vectors for each node.

4.3.3 Differences Between Neural Based Embedding and
Matrix Factorization Based Models
Although SGNS can be shown to implicitly factorize a matrix,
there are also many differences between them.

SGNS needs to sample node pairs explicitly, which is
time-consuming if we want to preserve high-order node
proximities. At the same time, the matrix being generated is
also a dense one, if high-order proximites are preserved. But a
dense matrix can sometimes be approximated or replaced by
a sparse one and then adopt other refinement methods [96],
[163]. Thus, matrix factorization methods are more likely
to be scaled to large-scale networks since complexity for
factorizing a sparse matrix can be controlled to O(|E|)
with the development of numerical computation [36], [163].
Besides, factorizing matrices does not require tuning learning
rates or other hyper-parameters.

However, factorizing matrices always suffer from unob-
served data, which can be weighted naturally in sampling
based methods [69]. In contrast, exactly weighting for matrix
factorization is a hard computational problem.

4.4 Enhancing via Graph Spectral Filters
Apart from the shallow neural embedding models and
models which adopt matrix factorization to generate vertex
embeddings, recent literature has seen the wide application
of graph spectral filters in generating high-quality and
structure-aware vertex embeddings.

For example, in ProNE [163], the band-pass filter g(λ) =

e−
1
2 [(λ−µ)2−1]θ [46], [114] is designed to propagate raw

vertex embedding vectors generated by factorizing a sparse
matrix (Eq. 5) in the first stage. The propagation operation
is also empirically proved to be an effective and universal
method that can improve the quality of vertex embedding
vectors obtained by many other embedding algorithms (e.g.
DeepWalk [92], node2vec [42], GraRep [14], HOPE [88],
LINE [120]).

In the embedding refinement stage of GraphZoom [28], it
is found that the solution of the refinement problem:

min
E
‖Ei − Êi‖22 + tr(ET

i LiEi), (7)

where Êi is the embedding matrix to be refined, Ei is the
desired matrix after refinement, Li is the corresponding
graph Laplacian, is:

Ei = (I +Li)
−1Êi. (8)



8

It is equal to passing the original vertex embeddings through
the low-pass filter h(λ) = (1 + λ)−1 in the spectral domain.
The filter h(λ) = (1 + λ)−1 is further approximated by its
first-order approximation h̃(λ) = 1−λ and then generalized
to the k-order multiplication form: h̃k(λ) = (1 − λ)k. Its

matrix form (D̃
− 1

2 ÃD̃
− 1

2 )k, where Ã is the augmented
adjacency matrix, is used to filter the embedding matrix Êi

to get the refined embedding matrix Ei.
In GraphWave [33], the low-pass filter gs(λ) = e−λs is

used to generate the spectral graph wavelet Ψa for each node
a in the graph:

Ψa = Udiag(gs(λ1), . . . , gs(λN ))UT δa, (9)

where U , λ1, ..., λN are the eigenvector matrix and eigen-
values of the combinational graph Laplacian L respectively,
δa = 1(a) is the one hot vector for node a. And m-th wavelet
coefficient of this column vector Ψa is denoted by Ψma. By
characterizing the distribution via empirical characteristic
functions:

Φa(t) =
1

N

N∑
m=1

eitΨma , (10)

and concatenating Φa(t) at d evenly spaced points t1, . . . , td
as follows (Eq. 11), a 2d-dimension embedding vector for
node a can be generated:

χa = [Re(Φa(ti)), Im(Φa(ti))]t1,...,td . (11)

It can be proved that the k-hop structural equivalent and
similar nodes a and b will have ε-structural similar wavelets
Ψa and Ψb, where ε is the K-th order polynomial approxima-
tion error of the low-pass kernel gs(λ). Thus, the embedding
vectors generated by wavelets can preserve the structural
similarity.

Universal Graph Spectral Filters. Graph spectral filters
have close connections with spatial properties. In fact, many
models have the corresponding spectral filters as their
kernels, which are further discussed in Section 7.1. Readers
can refer to [46], [113], [115], [125], [134] for more details.

5 HETEROGENEOUS EMBEDDING MODELS

Although the embedding models discussed above are de-
signed for homogeneous networks, they are actually the basis
of many heterogeneous networks.

Heterogeneous networks are widespread in real-world,
which have more than one type of vertices or edges. Thus,
algorithms for heterogeneous network embedding are sup-
posed to not only incorporate vertex attributes or labels with
structural information, but also leverage vertex types, edge
types, and also the semantic information that lies behind
the connections between two vertices [32]. This is exactly
where the challenge of heterogeneous network representation
learning lies in.

Since there are already surveys for heterogeneous net-
works representation learning algorithms [16], [32], we
will focus on the correlations between heterogeneous and
homogeneous network embedding techniques in this section.

5.1 Heterogeneous LINE

In PTE [119], the heterogeneous network that has words,
documents, labels as its vertices and the connections within
them as the edges, is projected to three homogeneous net-
works first (word-word network, word-document network
and word-label network). Then, for each bipartite network
G = (VA ∪ VB , E), where VA and VB are two disjoint vertex
sets, E is the edge set, the conditional probability of vertex
vj in set VA generated by vertex vi in set VB is defined as:

p(vj |vi) =
exp(~uTj · ~ui)∑
k∈A exp(~uTk · ~ui)

, (12)

similar with p2(vj |vi) (Eq. 3) in LINE [120]. Then the condi-
tional distribution p(·|vj) is forced to be close to its empirical
distribution p̂(·|vj) by jointly minimizing the corresponding
loss function similar with the one in LINE (Eq. 2).

Moreover, it is also proved in [97] that the implicit matrix
factorized by PTE is in the following form:

log

 αvol(Gww)(Dww
row
−1)Aww(Dww

col
−1)

βvol(Gdw)(Ddw
row
−1)Adw(Dww

col
−1)

γvol(Glw)(Dlw
row
−1)Alw(Dww

col
−1)

− log b,

(13)
where Gww, Gdw, Glw are word-word, document-word,
label-word graphs respectively, with Aww, Adw, Alw as their
adjacency matrices and Dww, Ddw, Dlw as their degreee
matrices respectively, vol(G) = ΣiΣjAij = Σidi is the
volume of the weighted graph G.

5.2 Heterogeneous Random Walk

The proposed meta-path based random walk in [31] provides
a natural way to transform the heterogeneous networks
into vertex sequences with both structural information and
semantic information underlying different types of vertices
and edges preserved. The key idea is to design specific meta
paths which can restrict transitions between only specified
types of vertices. To be specific, given a heterogeneous
network G = (V, E) and a meta path scheme P : V1

R1−−→
V2

R2−−→ V3 · · ·Vt
Rt−−→ · · · Rl−1−−−→ Vl, where Vi ∈ O are vertex

types in the network, the transition probability is defined as:

Pvi+1,vit,P =


1

|Nt+1(vit)|
(vi+1, vit) ∈ E ,Φ(vi+1) = t+ 1

0 (vi+1, vit) ∈ E ,Φ(vi+1) 6= t+ 1

0 (vi+1, vit) /∈ E
(14)

where Φ(vit) = Vt, Nt+1(vit) is the Vt+1 type of neighbour-
hood of vertex vit. Then the SGNS framework is applied to
the generated random walks to optimize vertex embeddings.
Moreover, the type-dependent negative sampling strategy is
also proposed to better capture the structural and semantic
information in heterogeneous networks.

Combined with Neighbourhood Aggregation. Different
from the paradigm where node embedding and edge em-
bedding vectors are defined directly as parameters to be
optimized, attention mechanism is used in GATNE [17] to
calculate embedding vectors for each node based on neigh-
bourhood aggregation operation. Two embedding methods



9

are introduced: GATNE-T (transductive) and GATNE-I (in-
ductive).

In GATNE, the overall embedding of node vi on edge
r is split into base embedding which is shared between
different edge types and edge embedding. The k-th level
edge embedding u(k)

i,r ∈ Rs, (1 ≤ k ≤ K) of node vi on edge
type r is aggregated from neighbours’ edge embeddings:

u
(k)
i,r = aggregator(u

(k−1)
j,r ),∀vj ∈ Ni,r, (15)

where Ni,r is the neighbours of node vi on edge type r.
After the K-th level edge embeddings are calculated, the
overall embedding vi,r of node vi on edge type r is computed
by applying self-attention mechanism on the concatenated
embedding vector of node vi:

Ui = (ui,1, ui,2, ..., ui,m). (16)

The base embedding bi for node vi is then added as the
embedding bias on the self-attention result.

The difference between transductive model (GATNE-
T) and the inductive model (GATNE-I) lies in how the 0-
th level edge embedding vector of each node vi on each
edge type r and the base embedding vector of each node
vi is calculated. In GATNE-T, they are optimized directly
as parameters, while in GATNE-I, they are computed by
applying transformation functions hz and gz,r on the raw
feature xi of each node vi: bi = hz(xi), u

(0)
i,r = gz,r(xi).

Transformation functions hz and gz,r are optimized during
the training process.

The neighbourhood aggregation mechanism increases the
model’s inductive bias and also make it easier combining
with node features, which is similar with the core idea
of inductive embedding models based on graph neural
networks.

Meta Paths Augmentation. Meta-paths can also be treated
as the relations or ”edges” between the corresponding
connected vertices to augment the network. In HIN2vec [37],
meta-paths are treated as the relations between vertices con-
nected by them with learnable embeddings. Then probability
of the two vertices x and y connected by meta-path r is
modeled by:

P (r|x, y) = sigmoid
(∑

W ′
X~x�W

′
Y ~y � f01(W ′

R~r)
)
,

(17)
where WX , W Y are vertex embedding matrices, WR is the
relation embedding matrix, W ′

X is the transpose of matrix
WX , ~x, ~y, ~r are one-hot vectors for two connected vertices
x, y and the relation between them respectively, f01(·) is
the regularization function. Parameters are optimized by
maximizing the following objective:

logOx,y,r(x, y, r) = L(x, y, r) logP (r|x, y)+

(1− L(x, y, r)) log(1− P (r|x, y)),
(18)

where L(x, y, r) = 1 if vertices x, y is connected by relation
r, otherwise L(x, y, r) = 0.

In TapEM [21], the proximity between two vertices i, j
on two sides of the given meta-path of type r is explicitly
preserved by modeling the conditional probability P (j|i; r),
where i, j are vertices on two sides of the meta-path, r is the
type of the meta-path.

In HeteSpaceyWalk [49], the heterogeneous personalized
spacey random walk algorithm is proposed, which is a
space-friendly and efficient approximation for meta-path
based random walks and can converge to the same limiting
stationary distribution.

Summary. Compared with PTE, random walk for hetero-
geneous networks can capture the structural dependencies
between different types of vertices better and also preserve
higher-order proximities. But they both need manual design
with expert knowledge in advance (how to separate networks
in PTE and how to design meta paths). Moreover, just using
the information of types of the meta path between two
connected vertices may lose some information (e.g., vertex
or edge types, vertex attributes) passing through the meta
path [53].

5.3 Other Models
Apart from the random walks and Skip-Gram framework,
there are also many other homogeneous embedding models
that can be used in heterogeneous network embedding
algorithms (e.g., label propagation, matrix factorization, gen-
erate adversarial approach applied in GraphGAN [137]). The
assumption of label propagation in homogeneous networks
that “two connected vertices tend to have the same labels” is
generalized to the heterogeneous networks in LSHM [60] by
assuming that two vertices of the same type connected by a
path tend to have similar latent representations. GAN [41] is
used in HeGAN [54] with relation-aware discriminator and
generator to perform better negative sampling.

Moreover, supervised information can also be added
for downstream tasks. For example, the idea of PTE, meta
paths and matrix factorization are combined in HERec [111]
with supervised information from recommendation task. To
be specific, vertex and item embedding vectors are firstly
generated by performing meta path-based random walks on
the graph and then the user-item rating matrix is introduced
to help learn fusion functions on those embeddings.

6 GRAPH NEURAL NETWORK BASED MODELS

Graph neural networks (GNNs) are kind of powerful feature
extractor for graph structured data and have been widely
used in graph embedding problems. There are some inherent
problems in shallow embedding models, which will be
discussed in later sections, and the presence of GNNs can
alleviate these problems to some extent.

Past few years have seen the rapid development of Graph
Neural Networks in graph mining tasks. GNNs’ architecture
can enable them to effectively model structural and relational
data. Compared with shallow embedding models that have
been discussed before, GNNs have a deep architecture and
can model vertex attributes as well as network structure
naturally. These are typically neglected, or cannot be modeled
efficiently in shallow embedding models.

There are two main streams in designing GNNs. The first
is in the graph spectral fashion, in which the convolutional
operation can be seen as passing vertex features through a
low-pass filter in the spectral domain. We refer to these GNNs
as graph spectral GNNs. The classical graph convolution
network (GCN) [64], [65], ChebyNet [27], FastGCN [19],



10

Model T S A-M Aggregation Function Appendix

GCN [65] E × × H(l+1) = D̃
− 1

2 ÃD̃
− 1

2H(l)Θ Ã = A+ IN

GraphSAGE [45] E N ×
hkN (v)

← AGGREGATEk({hk−1
u , ∀u ∈ N (v)})

hkv ← σ
(
W k · CONCAT

(
hk−1
v , hkN (v)

)) AGGREGATE ∈
{MAX POOL,MEAN,LSTM}

FastGCN [19] E L ×
H(l+1)(v, :) = σ

 1

tl

tl∑
j=1

Â(v, u
(l)
j )H(l)(u

(l)
j , :)W (l)

q(u
(l)
j )

 ,

u
(l)
j ∼ q, l = 0, 1, . . . ,M

(19) q(u) =
‖Â(:,u)‖2∑

u′∈V ‖Â(:,u′)‖2
, u ∈ V

ASGCN [59] E L ×
h(l+1)(vi) = σW (l)

N(vi)
1

n

n∑
j=1

p(ûj |vi)
q(ûj |v1, . . . , vn)

h(l)(ûj)


ûj ∼ q(ûj |v1, . . . , vn)

(20) Eq. 26; g(x(uj)) = W gx(uj)

GAT [130] A × X h
(l+1)
i = CONCATKk=1

[
σ
(∑

j∈Ni
αkijW

kh
(l)
j

)]
Eq. 27

RGCN [170] E × ×
M (l+1) = ρ

(
D̃
− 1

2 ÃD̃
− 1

2

(
M (l) �A(l)

)
W

(l)
µ

)
Σ(l+1) = ρ

(
D̃
−1
ÃD̃

−1
(
Σ(l) �A(l) �A(l)

)
W

(l)
σ

) A(l) = exp(−γΣ(l))

SGC [145] E × × YSGC = softmax
(

(D̃
− 1

2 ÃD̃
− 1

2 )KXΘ

)
Ã = A+ IN

GIN [148] A × × h
(l+1)
v = MLP(l+1)

((
1 + ε(l+1)

)
· h(l)v +

∑
u∈N (v) h

(l)
u

)
-

ACR-GNN [6] A × × Eq. 31 -

R-GCN [108] A × × h
(l+1)
i = σ

(∑
r∈R

∑
j∈Nr

i

1
ci,r

W
(l)
r h

(l)
j +W

(l)
0 h

(l)
i

)
W

(l)
r =

∑B
b=1 a

(l)
rb V

(l)
b

or W (l)
r
⊕B
b=1Q

(l)
br

GraLSP [62] A N X

a
(k)
i = MEANw∈W(i),p∈[1,rw ]

(
λ
(k)
i,w

(
q
(k)
i,w � h

(k−1)
wp

))
h
(k)
i = ReLU

(
U (k)h

(k−1)
i + V (k)a

(k)
i

)
, k = 1, 2, ...,K

hi = h
(K)
i

(21)
λi,w : attention coefficient

qi,w : amplification coefficient
rw : receptive window, Eq. 24

TABLE 3: A summary of Graph Neural Networks. Part of the symbols in the formula can refer to Def. 5. For others, H(l)

denotes to the feature matrix in layer l, hkv denotes feature vector of node v in layer k, h(l)(vi) or h(l)
i denotes feature vector

of node vi (or i) in layer l, Θ and W are trainable parameters, M (l) and Σ(l) are mean and variance matrices of vertex
features in layer l respectively, N (v) denotes the set of node v’s neighbours or the sampled neighbours, hkN (v) denotes
the feature vector aggregated from node v’s sampled neighbours in layer k, q(·) denotes the sampling distribution. For
abbreviations used, “E” denotes “Spectral”, “A” denotes “Spatial”, “A-M” denotes “Attention Mechanism”, “T” denotes
“Type”, “S” denotes “Sampling Strategy”, “N” refers to “Node-Wise Sampling”, “L” refers to “Layer-Wise Sampling”.

ASGCN [59], GWNN [147] and the graph filter network
(gfNN) proposed in [51] are examples of graph spectral
GNNs. The convolution process is performed in the spectral
domain in such GNNs, in which node features are first
transferred to spectral domain and then multiply with a
spectral filter matrix. Desired spectral convolution process
should be economic in computation and also localized
in spatial domain [27], [147]. Then, the second type is
graph spatial GNNs, which operate on vertex features in the
spatial domain directly. They update each node’s features by
linearly combining (or aggregating) its neighbours’ features.
It is similar to the spatial convolution discussed in [46].
GraphSAGE [45], Graph Isomorphism Network (GIN) [148],
and MPNN [39] are examples for this kind of GNNs.

Compared with spectral GNNs, the spatial convolution
employed in the spatial GNNs usually just focus on 1-st
neighbours of each node. However, the local property of
spatial convolution operation can help spatial GNNs be
inductive.

Compared with shallow embedding models, GNNs can
better combine the structural information with vertex at-
tributes, but the need for vertex attributes also make GNNs
hard to be applied to homogeneous networks without vertex
features. Although it has been proposed in [65] that we

can set the feature matrix X = IN , where IN ∈ RN×N
is the identity matrix and N is the number of vertices, for
featureless graphs, it cannot be scaled to large networks.

Apart from GNNs’ advantages in content augmentation,
they can also be trained in the supervised or semi-supervised
fashion easily (in fact, GCN is proposed for semi-supervised
classification). Label augmentation can improve the discrim-
inative property of the learned features [162]. Moreover,
neural network architecture can help with the design of an
end-to-end model, fitting in downstream tasks better.

6.1 GNN Models

While the powerful CNNs can also be effectively applied to
data that can be organized in grid structures (e.g. images [66],
sentences [63], and videos [122]), they cannot be generalized
to graphs directly. Inspired by the effectiveness of CNNs
in extracting features from grid structures, many previous
works focus on properly defining the convolution operation
for graph data to capture structural information.

To the best of our knowledge, it was in [12] that convo-
lutions for graph data were first introduced based on graph
spectral theory [27] and graph signal processing [113], where
both multilevel convolutional neural networks in spectral
and spatial domains were built with few parameters to



11

learn, which preserve nice qualities for CNNs. The spectral
convolution operation in [12] is actually a low-pass filtering
operation, consistent with the ideas for building graph neural
networks in the following works [45], [51], [65], [130].

GCN is proposed in [65], which uses the first-order
approximation of the graph spectral convolution and the
augmented graph adjacency matrix to design the feature
convolution layer’s architecture.

After the proposition of GCN [65], many GNN models are
designed based on it. They try to make some improvements,
such as introducing sampling strategies [19], [45], [59],
adding attention mechanism [124], [130], or improving the
filter kernel [51], [145]. We briefly summarize parts of existing
GNN models in TABLE 3 and discuss some examples in the
following parts.

6.1.1 Sampling
Sampling techniques are introduced to reduce the time
complexity of GCN or introduce the inductive bias. There are
various sampling strategies and we will introduce some
of them in the following parts, such as node-wise sam-
pling [45], [62], layer-wise sampling [19], [59] and subgraph
sampling [156].

Node-Wise Sampling. Based on GCN, GraphSAGE [45]
introduces node-wise sampling to randomly sample a fixed
size neighbourhood for each node in each layer and also shift
to the spatial domain to help it become inductive.

However, as proposed in ASGCN [59], its node-wise
sampling strategy would probability lead to the number
of sampled nodes grows exponentially with the number of
layers. If the depth of the network is d, then the number
of sampled nodes in the input layer will increase to O(nd),
where n is the number of sampled neighbours of each node,
leading to significant computational burden for large d.

Different from the random sampling strategy introduced
in GraphSAGE, an adaptive node-wise sampling strategy
is proposed in GraLSP [62]. In GraLSP, the vertex v’s
neighbourhood is sampled by performing random walks of
length l starting at vertex v. The aggregation process is also
combined with attention mechanism. Structural information
is preserved by introducing Random Anonymous Walk [82],
which is calculated based on the sampled random walk
w = (w1, w2, ..., wl):

aw(w) = (DIS(w, w1),DIS(w, w2), ...,DIS(w, wl)), (22)

where DIS(w, wi) denotes the number of distinct nodes in
w when wi first appears in w:

DIS(w, wi) = |{w1, w2, ..., wp}|, p = min
j
{wj = wi}. (23)

Then the adaptive receptive radius is defined as:

rw =

⌊
2l

max(aw(w))

⌋
, (24)

where max(aw(w)) is equal to the number of distinct nodes
visited by walk w. Then, the first rw nodes in the random
walk w started at node v are chosen to pass their features to
node v.

Layer-Wise Sampling. Different from node-wise sampling
strategies, nodes in the current layer are sampled based on

all the nodes in the previous layer. To be specific, layer-
wise sampling strategies aim to find the best and tractable
sampling distribution q(·|v1, . . . , vtl−1

) for each layer l based
on nodes sampled in layer l−1: {v1, . . . , vtl−1

}. The sampling
distributions aim to minimize the variance introduced by
performing sampling. However, the best sampling distribu-
tions are always cannot be calculated directly, thus some
tricks and relaxations are introduced to obtain sampling
distributions that can be used in practice [19], [59]. The
sampling distribution is

q(u) = ‖Â(:, u)‖2/
∑
u′∈V

‖Â(:, u′)‖2, u ∈ V, (25)

in FastGCN [19] and

q∗(uj) =

∑n
i=1 p(uj |vi)|g(x(uj))|∑N

j=1

∑n
i=1 p(uj |vi)|g(x(uj))|

, (26)

in ASGCN [59], where g(x(uj)) is a linear function (i.e.,
g(x(uj)) = Wgxuj

) applied on vertex features of node uj .

Subgraph Sampling. Apart from node-wise and layer-wise
sampling strategies, which sample a set of nodes in each
layer, a subgraph sampling strategy is proposed in [156],
which samples a set of nodes and edges in each training
epoch and perform the whole graph convolution operation
on the sampled subgraph.

Edge sampling rates are proposed aiming to reduce
the variance of node features in each layer introduced
by performing subgraph sampling strategy. It is set to
pu,v ∝ 1

deg(u) + 1
deg(v) in practice. Based on edge sampling

rates, different samplers can be designed to sample the
subgraph. For random edge sampler, edges are sampled
just using the edge sampling distribution discussed above.
For random node sampler, a certain number of nodes are
sampled under the node sampling rate P (u) ∝ ‖Ã:,u‖2,
where Ã is the normalized graph adjacency matrix. For
random walk based sampler, the sampling rate for the node
pair (u, v) is set to pu,v ∝ Bu,v + Bv,u, where B = Ã

L

and L is the length of the random walk. Besides, there are
also many other random walk based samplers proposed in
previous literature [56], [68], [101], which can also be used to
sample the subgraph.

6.1.2 Attention Mechanism

Introducing an attention mechanism can help improve mod-
els’ capacities and interpretability [130] by assigning different
weights to nodes in a same neighborhood explicitly. It is in-
teresting that the attention mechanism used in GAT [130] will
make the model easy to be attacked due to the aggregation
process’s dependency on neighbours’ features. But the one
used in RGCN can help improve model’s robustness by
assigning features with a larger variance lower weights.

Besides, the comparison between attention mechanism
and the sampling and LSTM-aggregation strategy used
in GraphSAGE can cast some similar insights with the
comparison between RNN based models and attention based
models for sequence modeling in NLP domain. Attention
mechanism can obtain a more comprehensive view over
nodes’ neighbourhood than RNN based aggregation strate-
gies.



12

Fig. 5: Illustration for WL test and the relationship with
GNNs. Middle Panel: rooted subtree of the blue node in
the left panel. Right Panel: if a GNN’s aggregation function
can capture the full multiset of node neighbours, then it can
capture the rooted subtree and be as powerful as WL test in
distingusihing different graphs. Reprinted from [148]

Fig. 6: Examples where max aggregator and mean aggregator
will fail. For each subimage, node v and node v′ will get the
same embeddings under corresponding aggregators even
though their neighbourhood structures are different from
each other. Reprinted from [148]

Performing attention mechanism on neighbours’ features
can also be seen as a feature rescaling process, which can be
used to unify GNN models in a same framework. The choice
of specific attention strategy depends on our purpose and
practice.

In GAT [130], the calculation for k-th head’s attention
weight αkij between two nodes i and j is Eq. 27, where
~hi ∈ Rd×1 is the feature vector for vertex i, W k ∈ Rd×d

′
,

~α ∈ R2d′×1 are corresponding parameters, d, d′ are the
dimension for feature vector in the previous layer and current
layer respectively. Different from GAT, the attention weight
between nodes i and j is calculated based on the cosine
similarity between their hidden representations (Eq. 28,
where β(l) are trained attention-guided parameters of layer
l.) in [124], where cos(·, ·) represents the cosine similarity.

αkij =
exp(LeakyReLU(~aT [W k~hi‖W k~hj ]))∑

k∈Ni
exp(LeakyReLU(~aT [W k~hi‖W k~hk]))

(27)

αij =
exp(β(l)cos(Hi, Hj))∑

j∈Ni
exp(β(l)cos(Hi, Hj))

(28)

Besides, attention mechanism is also widely used in
heterogeneous network embedding algorithms, by applying
which the various semantic information underlying different
kind of connections between vertices. More discussions can
be seen in Section 6.1.4.

6.1.3 Discriminative Power

Weisfeiler-Lehman (WL) Graph Isomorphism Test. GNN’s
inner mechanism is similar with the Weisfeiler-Lehman (WL)
graph isomorphism test (Fig. 5) [45], [110], [143], [148], which
is a powerful test [110] known to distinguish a broad class of
graphs, despite of some corner cases. Comparisons between
GNNs and WL test allow us to understand the capabilities
and limitations of GNNs more clearly.

It is proved in [148] that GNNs are at most as powerful
as the WL test in distinguishing graph structures and can

be as powerful as WL test only if using proper neighbour
aggregation functions and graph readout functions ( [148]
Theorem 3). Those functions are applied on the set of
neighbours’ features, which can be treated as a multi-set [148].
For neighbourhood aggregation functions, it is concluded
that other multi-set functions like mean, max aggregators are
not as expressive as the sum aggregator (Fig. 6).

One kind of powerful GNNs is proposed by taking “SUM”
as its aggregation function over neighbours’ feature vectors
and MLP as its transformation function, whose feature
updating function in the k-th layer is:

hkv = MLP k((1 + εk) · hk−1
v +

∑
u∈N (v)

hk−1
u ). (29)

Logical Classifier. In [6], Boolean classifiers expressible
as formulas in the logic FOC2, which is a well-studied
fragment of first-order logic, are studied and used to judge
the GNNs’ logical expressiveness. It is shown that a popular
class of GNNs, called AC-GNNs (Aggregate-Combine GNNs,
whose feature updating function can be written as Eq. 30,
where COM = COMBINE, AGG = AGGREGATE, x(i)

v is
the feature vector of vertex v in layer i) in which the features
of each node in the successive layers are only updated in
terms of node features of its neighbourhood, can only capture
a specific part of FOC2 classifiers.

x(i)
v = COM(i)(x(i−1)

v ,AGG(i)({x(i−1)
u |u ∈ NG(v)})),

for i = 1, . . . , L
(30)

By simply extending AC-GNNs, another kind of GNNs
are proposed (i.e., ACR-GNN(Aggregate-Combine-Readout
GNN)), which can capture all the FOC2 classifiers:

x(i)
v = COM(i)(x(i−1)

v ,AGG(i)({x(i−1)
u |u ∈ NG(v)}),

READ(i)({x(i−1)
u |u ∈ G})), for i = 1, . . . , L,

(31)

where READ = READOUT. Since the global computation
can be costly, it is further proposed that just one readout
function together with the final layer is enough to capture
each FOC2 classifier instead of adding the global readout
function for each layer.

6.1.4 From Homogeneous to Heterogeneous
Different from GNN models for homogeneous networks,
GNNs for heterogeneous networks concern how to aggregate
vertex features of different vertex types or connected with
edge of different types. Attention mechanism is widely
used in the design process of GNNs for heterogeneous
networks [140], [174].

In [108], the relational graph convolution network (R-
GCN) is proposed to model large-scale relation data based on
the message-passing frameworks. Different weight matrices
are used for different relations in each layer to aggregate
and transform hidden representations from each node’s
neighbourhood.

In HetGNN [157], a feature type-specific LSTM model
is used to extract features of different types for each node,
followed by another vertex-type specific LSTM model which
is used to aggregate extracted feature vectors from different
types of neighbours. Then, the attention mechanism is used
to combine representation vectors from different types of
neighbours.



13

Heterogeneous Graph Attention Network (HAN) is
proposed in [140], where meta paths are treated as edges
between the connected two nodes. Here an attention mech-
anism based on meta paths and nodes is used to calculate
neighbourhood aggregation vector and embedding matrix.

Heterogeneous Graph Transformer is proposed in [174]. A
node type-specific attention mechanism is used and weights
for different meta paths are learned automatically.

Apart from embedding different types of nodes to the
same latent space, it is also proposed in HetSANN [53]
to assign different latent dimensions to them. During the
aggregation process, transformation matrices are applied
on the feature vectors of the target node’s neighbours to
transform them to the same latent space with the target node.
Then, the attention based aggregation process is applied on
the projected neighbourhood vectors.

7 THEORETICAL FOUNDATIONS

Understanding different models in a universal framework
can cast some insights on the design process of corresponding
embedding models (like the powerful spectral filters). Thus,
in this section, we will review some theoretical basis and
recent understandings for models discussed above, which
can benefit the further development of related algorithms.

7.1 Underlying Kernels: Graph Spectral Filters

We want to show that most of the models discussed above,
whether in a shallow architecture or based on graph neural
networks, have some connections with graph spectral filters.

For shallow embedding models, it has been shown in
[97] that the some neural based models (e.g. DeepWalk [92],
node2vec [42], LINE [120] ) are implicitly factorizing matrices
(TABLE 2). Furthermore, DeepWalk matrix can also be seen
as filtering [97].

Moreover, the convolutional operation in spectral GNNs
can be interpreted as a low-pass filtering operation [51],
[145]. The understanding can also be easily extended to
spatial GNNs since the spatial aggregation operation can be
transferred to the spectral domain, according to [113].

Apart from those implicitly filtering models, graph filters
have also been explicitly used in ProNE [163], Graph-
Zoom [28] and GraphWave [33] to refine vertex embeddings
or generate vertex embeddings preserving certain kind of
vertex proximities.

7.1.1 Spectral Filters as Feature Extractors
Spectral filters can be seen and used as the effective feature
extractors based on their close connection with graph spatial
properties.

For example, the band-pass filter g(λ) = e−
1
2 [(λ−µ)2−1]θ

is used in ProNE [163] to propagate vertex embeddings
obtained by factorizing a sparse matrix in the first stage. The
idea for “band-pass” is inspired by the Cheeger’s inequality:

λk
2
≤ ρG(k) ≤ O(k2)

√
λk, (32)

where ρG(k) is the k-way Cheeger constant, a smaller value
of which means a better k-way partition. A well-known
property can be concluded from Eq. 32 when setting λk = 0:

0.0 0.5 1.0 1.5 2.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

h(
x)

k = 1
k = 2
k = 3
k = 5

0.5 1.0 1.5 2.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

h(
x)

T = 1
T = 2
T = 5
T = 6

Fig. 7: Image of the filter function hk(x) = (1 − x)k, k ∈
{1, 2, 3, 5} (Left Panel) and DeepWalk matrix filter function
h(x) = −(−x−1 +1+x−1(1−x)T+1), T ∈ {1, 2, 5, 6} (Right
Panel). Left Panel: Increasing the value of k can increase the
band-stop characteristic of the filter function. Right Panel:
The effect of increasing the window size T on the filter
function.

the number of connected components in an undirected graph
is equal to the number of eigenvalue zero in the graph
Laplacian [22]. Then the band-pass filter is hoped to extract
the both global and local network information from raw
embeddings.

In addition, heat kernel gs(λ) = e−λs is used in Graph-
Wave [33] to generate wavelets for each vertex (Eq. 9), based
on which vertex embeddings are calculated via empirical
characteristic functions. More importantly, structural similar-
ities can be preserved by calculating vertex embeddings in
this way.

Apart from band-pass filters and heat kernels, low-
pass filters are kind of more widely used filters not only
in shallow embedding models [163], but the aggregation
matrices in GNNs can be seen as low-pass matrices and the
corresponding graph convolution operations can be treated
as low-pass filtering operations [51], [145].

For shallow embedding models, the low-pass filter
h̃k(λ) = (1−λ)k is used to propagate the embedding matrix
Êi to get the refined embedding matrixEi in the embedding
refinement statement of GraphZoom [28].

As for GNNs, passing vertex features through the matrix

D̃
− 1

2 ÃD̃
− 1

2 = IN − L̃ in GCN [65], where N is the number
of vertices, is equal to filtering features with the filter h(λ) =
1 − λ in the spectral domain (Eq. 33), where Λ, U are the
eigenvalue matrix and eigenvector matrix of L̃ respectively.

Z = D̃
− 1

2 ÃD̃
− 1

2XΘ = U(IN −Λ)UTXΘ (33)

The filter h(λ) = 1 − λ is a low-pass filter since the
eigenvalues of the normalized graph Laplacian satisfy the
following property:

0 = λ0 < λ1 ≤ · · · ≤ λmax ≤ 2, (34)

and λmax = 2 if and only if the graph has a bipartite
subgraph as its connected component [51], [97], [113].

The low-pass property of propagation matrices in GNNs
is further explored in [51], [145]. It is proved that two
techniques can enhance the low-pass property for the filters.
Let λi(σ) be the i-th smallest generalized eigenvalue of the
augmented normalized graph Laplacian (D̃, L̃) = D + σI ,



14

then λi(σ) is a non-negative number, and monotonically
decreases as the non-negative value σ increases (λi(σ) = 0
for all the σ > 0 if λi(0) = 0). Thus, the high frequency
components will be gradually attenuated by the corres-
bonding spectral filtering operation as σ increases. Besides,
increasing the power of the graph filter hk(λ) = (1 − λ)k

(i.e., stacking several GCN layers or directly using the filter
hk(λ) = (1 − λ)k, k > 1 in SGC [145] and gfNN [51]) can
help increase the low-pass property of the spctral filter (Fig. 7
Left channel).

Moreover, the propagation matrix used in gfNN is k-th
power of the augmented random walk adjacency matrix
Ã
k

rw = (D̃
−1
Ã)k, whose corresponding spectral filter is

hk(λ) = (1−λ)k, where λ is the generalized eigenvalues and
matrix Λ = UT D̃L̃rwU . U is the generalized eigenvector
matrix with the property UT D̃U = I . The generalized
eigenpair (λ, u) satisfies Lu = λD̃u. They are also solutions
of the generalized eigenvalue problem in variation form [51],
which aims to find u1, . . . , un ∈ Rn such that for each
i ∈ 1, . . . , n, ui is a solution of the following optimization
problem:

minmize ∆(u) subject to (u, u)D̃ = 1, (u, uj)D̃ = 0,

j ∈ 1, . . . , n
(35)

where ∆(u) = uTLu is the variantion of the signal u and
(u, uj)D̃ = uT D̃u is the inner product between signal u and

uj . If (λ, u) is a generalized eigenpair, then (λ, D̃
1/2
u) is an

eigenpair of L̃.
Compared with the eigenvalues and eigenvectors of the

normalized graph Laplacian, generalized eigenvectors with
smaller generalized eigenvalues are smoother in terms of the
variation ∆.

Solution for Optimization Problems. The embedding
refinement problem in GraphZoom has seen that the low-
pass filter matrix can serve as the close form solution of the
optimization problem related with Laplacian regularization.

Another example is the Label Propagation (LP) problem
for graph based semi-supervised learning [9], [168], [173], the
close form of whose optimization objective function (Eq. 36)
is Eq. 37, where Y is the label matrix and Z is the objective
of LP that is consistent with the label matrix Y as well as
being smoothed on the graph to force nearby vertices to have
similar embeddings.

Z = arg min
Z

‖Z − Y ‖22 + α · tr(ZTLZ) (36)

Z = (I + αL)−1Y (37)

7.1.2 Spectral Filters as Kernels of Matrices being Factor-
ized
We want to show that some matrices being factorized by
matrix factorization algorithms can also be seen as filter
matrices.

Take the matrix factorized by DeepWalk [92] as an
example. It has been shown in [97] that the matrix term(

1
T

∑T
r=1P

r
)
D−1 in DeepWalk’s matrix can be written as(

1

T

T∑
r=1

P r

)
D−1 =

(
D−

1
2

)(
U

(
1

T

T∑
r=1

Λr

)
UT

)(
D−

1
2

)
,

(38)

Fig. 8: Filtering characteristic of DeepWalk matrix’s function.
Left Panel: Image of the function f(x) = 1

T

∑T
r=1 x

r with
domf = [−1, 1], T = 1, 2, 5, 10. Right Panel: Eigenvalues of
D−

1
2AD−

1
2 , U

(
1
T

∑T
r=1 Λ

r
)
UT ,

(
1
T

∑T
r=1P

r
)
D−1 for

Cora network (T = 10). Reprinted from [97].

where Λ, U are the eigenvalue matrix and eigenvector
matrix of the matrix D−

1
2AD−

1
2 = I −L respectively. The

matrix U
(

1
T

∑T
r=1 Λ

r
)
UT has eigenvalues 1

T

∑T
r=1 λ

r
i , i =

1, . . . , n, where λi, i = 1, . . . , n are eigenvalues of the matrix
D−

1
2AD−

1
2 , which can be seen as the transformation(a kind

of filter) applied on the eigenvalue λi. This filter has the two
properties (Fig. 8): (1) it prefers positive large eigenvalues;
(2) the preference becomes stronger as the T (the window
size) increases.

Besides, we also want to show the relationship between
the DeepWalk matrix and the its corresponding normalized
graph Laplacian. Since D−1A = I −Lrw and the eigenvec-
tors and eigenvalues of Lrw and L have the following rela-
tionship: if (λi, ui) is an eigenvalue-eigenvector pair for nor-
malized graph Laplacian L, then LrwD

− 1
2ui = λiD

− 1
2ui.

Thus, we can write Lrw in the following form (Eq. 39) for L
can be written as L = UΛUT .

Lrw = D−
1
2UΛUTD

1
2 (39)

For each r the term (D−1A)r can be written as (I−Lrw)r =
I−C1

rLrw+C2
rL

2
rw+· · ·+(−1)rLrrw, adding all the terms for

different rs up and using a simple property for combinational
number: Cm−1

n−1 + Cmn−1 = Cmn , we can have:

T∑
r=1

(D−1A)r = TI − C2
T+1Lrw + C3

T+1L
2
rw

+ · · ·+ (−1)TCT+1
T+1L

T
rw.

(40)

Then viewing Eq. 40 as the binomial expansion with some
transformation, it is equal to:

−D−
1
2U(−Λ−1 + I + Λ−1(I −Λ)T+1)UTD

1
2 (41)

Then the equivalent filter function in the spectral domain can
be written as h(λ) = −(−λ−1 + 1 + λ−1(1− λ)T+1), which
can be seen as a low-pass filter(Fig. 7, Right channel).

The matrix in the log term of DeepWalk’s matrix(TABLE 2
DeepWalk) can be written as−D−

1
2U(−Λ−1 +I+Λ−1(I−

Λ)T+1)UTD−
1
2 , where U is the eigenvector matrix for the

normalized graph Laplacian.
The matrix factorized by LINE [120] is a trivial example.

Ignoring constant items and taking the matrix in the log item,
we can have the following form D−1AD−1, which is equal
to D−

1
2 (I −L)D−

1
2 . (I −L) can be seen as the filter matrix

with the filter function h(λ) = 1− λ, and the multiplication
items D−

1
2 can be seen as the signal rescaling matrices.



15

7.2 Universal Attention Mechanism
Attention mechanisms are both explicitly and implicitly
widely used in many algorithms.

For shallow embedding models, the positive sampling
strategy, like sliding a window in the sampled node se-
quences obtained by different kind of random walks on the
graph [42], [92] or just sample the adjacent nodes for each
target node [120], can be seen as applying different attention
weights on different nodes. Meanwhile, the negative sam-
pling distribution given a positive sampling distribution for
each node, which can also be seen as performing attention
mechanism on different nodes, is proposed with the negative
sampling strategy in [84] and further discussed in [153]. It is
also closely related with the performance of the generated
embedding vectors.

The positive samples and negative samples are then
used in the optimization process and can help maintain
the corresponding node proximities.

For GNNs, following the idea in an unsubmitted
manuscript [5], by writing the aggregation function in the
following universal form:

H = σ(N (LQHW ), (42)

where Q is a diagonal matrix, L is the matrix related with
graph adjacency matrix, N (·) is the normalization function,
σ(·) is the non-linearity transformation function perhaps
with post-propagation rescaling, the aggregation process of
graph neural networks can be interpreted and separated as
the following four stages: pre-propagation signal rescaling,
propagate, re-normalization, and post-propagation signal
rescaling.

The proposed paradigm for GNNs can help with the
design of neural architecture search algorithms for GNNs.
The search space can be designed based on the pre- and post-
propagation rescaling matrices, the normalization function
N (·), and feature transformation function σ(·), and so on.

The pre-propagation signal rescaling process is usually
used as the attention mechanism in many GCN variants,
like the attention mechanism in GAT [130], whose pre-
propagation rescaling scheme can be seen as multiplying a
diagonal matrixQ to the right side of the matrixL = A+IN ,
with each of the element in matrix Qjj = (WH~q)j , where
~q ∈ Rd×1 is a trainable parameter. Besides, the post-
propagation signal rescaling can also be combined with
attention mechanism, which can be seen as left multiply-
ing a diagonal matrix P to the propagated signal matrix
N (LQ)HW . For example, the edge attention can be per-
formed by setting P = 1

LQ~1
, k-hop edge attention can be

performed in the similar form: P = 1
LkQ~1

, matrix P for
k-hop path attention can have the following form:

L′ = LQkLQk−1...LQ1, ~p =
1

L′~1
. (43)

Moreover, the aggregation process in RGCN [170], where
features with large variance can be attenuated, can also
be seen as the attention process applied on vertex feature
variance and can help improve the robustness of GCN.

8 OPTIMIZATION METHODS

The optimization strategies we choose for a certain embed-
ding model will affect its time and space efficiency and

Fig. 9: An illustration for hierarchical softmax.Left Panel:
A toy example of random walk with window size w = 1.
Right Panel: Suppose we want to maximize the probability
Pr(v3|Φ(v1)) and Pr(v5|Φ(v1)), they are factorized out over
sequences of probability distributions corresponding to the
paths starting at the root and ending at v3 and v5 respectively.
Adapted from [92].

even the quality of embedding vectors. Some tricks and
rethinkings can help reinforce the theoretical basis of related
algorithms and further improve their expressiveness as well
as reduce the time consumption. Thus, in this section, we will
review optimization strategies of some typical embedding
models, which are also of great importance in the design
process.

8.1 Optimizations for Random Walk Based Models

Optimization strategies for random walk based models can
start with those for natural language embedding problems,
which focus on word sequences. We refer these optimization
problems to Sequence Optimization Problems, which can date
bask to the classical N-gram models. But since the the
calculation complexity will increase significantly as the word
sequence’s length grows [92], the problem is relaxed in [83]
with two proposed models, CBOW and Skip-Gram.

Skip-Gram. We will focus on the Skip-Gram model, which
uses the target node to predict context nodes by maximizing
the following probability:

Pr({vi−w, ..., vi+w}/{vi}|Φ(vi)), (44)

where {vi−w, ..., vi+w} are context vertices chosen by a
sliding window over the node sequence with window size
w. By applying the i.i.d. assumption and ignoring the order
of context nodes, Eq. 44 can be factorized to

Π
i−w≤j≤i+w,j 6=i

Pr(vj |Φ(vi)). (45)

The order independent assumption can better capture the
”nearness” in graph structures [92].

However, the calculation for the probability Pr(vj |Φ(vi))
is also time-consuming (O(|N |), N is the number of nodes in
the graph), which is always in the form of softmax (Eq. 46).
Thus, two strategies are proposed to alleviate this problem,
that is hierarchical softmax [83] and negative sampling [84].

8.1.1 Hierarchical Softmax

In hierarchical softmax (Fig. 9), node embeddings that
need optimizing are orgnized into a binary tree and then
calculation for Eq. 46 is transferred into the multiplication
of softmax in the path from root to the target context



16

vertex (Eq. 47). Then the time complexity can be reduced to
O(log |V |).

Pr(vj |Φ(vi)) =
eαi·βj∑

vk∈V e
αi·βk

(46)

Pr(uk|Φ(vi)) =
log |V |

Π
l=1

Pr(bl|Φ(vj)) (47)

8.1.2 Negative Sampling
An alternative for hierarchical softmax is Noise Contrastive
Estimation (NCE) as proposed in [44], based on which the
Negative Sampling strategy is introduced in [84] and has
gain a wide application [42], [92], [120].

The objective of NCE can be shown to approximately
maximize the log probability of the softmax [84]. Negative
Sampling strategy is a simplified NCE concerned only with
learning high-quality vector representations. Eq. 48, where
wI is the target word, wO is the context word, wi is the
sampled negative word, v′wO

is the context embedding
vector for wordwO and vwI

is the word embedding vector for
word wI , Pn(·) is the negative sampling distribution, can be
used to replace every logP (wO|wI) term in the Skip-Gram
objective. Maximizing Eq. 48 can be seen as distinguishing
the target word wO from k negative samples drew from the
noise distribution Pn(w) using logistic regression.

log σ(v′
T
wO
vwI

) +
k∑
i=1

Ewi∼Pn(w)[log σ(−v′Twi
vwI

)] (48)

The negative sampling distribution Pn(w) is a free param-
eter, which is set to the unigram distribution U(w) raised to
3/4rd power (i.e., U(w)3/4/Z) in [84] since it can outperform
significantly the unigram and the uniform distributions.

Further Understanding for Negative Sampling (NS). How-
ever, neither the unigram distribution nor the 3/4rd power
of the unigram ditribution that is employed in word2vec [84]
is the best negative sampling distribution. In [153], it is
theoretically proved that the best negative sampling distribu-
tion should be positively but sub-linearly correlated to the
corresponding positive sampling distribution.

Although the proposed design principle seems contrary
to the intuition that nodes with high positive sampling rates
should have lower negative sampling rates, NS distribution
designed by following this theory can indeed improve the
performance of existing algorithms.

In [69], it is proved that the optimal dot-product of the
word-context pair’s representations should take the form of
PMI (Eq. 4) by replacing the NS distribution with the uniform
distribution. Keeping the negative sampling distribution
term, the close form of ~uT~v, where ~v is the representation
vector of node v, is as follows:

~uT~v = − log

(
k · pn(u|v)

pd(u|v)

)
, (49)

from which it can be seen that the positive and negative
sampling distribution (pd and pn) have the same level
influence on embedding results.

The effect of negative sampling can be further seen
from the process of derivating the optimal NS distribution.
The best NS distribution should minimize the gap be-
tween the theoretical solution of corresponding parameters:

θ =
[
~uT0 ~v, . . . , ~u

T
N−1~v

]
, and their empirical solution, since

only limited positive and negative samples can be obtained
in practice. One way is to minimize the mean square error
between the theoretical and empirical results of ~uT~v:

E[‖(θT − θ∗)u‖2] =
1

T
(

1

pd(u|v)
− 1 +

1

kpn(u|v)
− 1

k
). (50)

It claims that nodes with high positive sampling rates
should also be negatively sampled sufficiently, otherwise
the expectation of the mean square error would increase.

By setting the NS rate for node u given node v positively
but sub-linearly correlated to its positive sampling rate, i.e.,
pn(u|v) ∝ pαd (u|v), the dot-product ~uT~v can also have the
following monotonicity:

~uTi ~v = log pd(ui|v)− α log pd(ui|v) + c

> (1− α) log pd(uj |v) + c = ~uTj ~v,
(51)

if pd(ui|v) > pd(uj |v).

8.2 Optimization Strategies for Matrix Factorization

8.2.1 SVDs
SVD is a basic algorithm from linear algebra which is used
to factorize matrix M into the product of three matrices
U ·Σ ·V T , where Σ is the diagonal singular value matrix,U
and V are orthogonal matrices with each of their row vector
as an unit vector. The time complexity of the economic SVD
on m× n matrix is O(mnmin(m,n)).

One property is that the optimal rank d approximation
of matrix M can be obtained by taking Md = Ud ·Σd ·V T

d ,
where Σd is the diagonal matrix formed from the top d
singular values, Ud and V d are matrices formed by selecting
the corresponding columns from U and V . To be specific,
Md = arg min

Rank(M ′)=d

‖M ′ −M‖2.

Truncated Singular Value Decomposition (tSVD) aims
to find the matrix factorization results Ud,Σd,V d given a
specific d.

r-tSVD. Randomized matrix method can be used to ac-
celerate the basic tSVD algorithm. The idea is to find an
orthogonal matrix Q by performing the iterative QR decom-
position on the random projected matrix H = MΩ, where
Ω is a Gaussian random matrix with fewer columns than
M . Then tSVD can be preformed on the matrix B = QTM ,
which will cost less time than performing tSVD directly on
matrix M , since B is a small matrix with less rows than
M . Then Ud = QUd, Σd, V d are the approximated results
of tSVD on the matrix M , where [Ud,Σd,V d] = tSVD(B).
r-tSVD is used in the sparse matrix factorization stage in
ProNE [163], whose time complexity is linear with respect to
the number of edges in the graph (i.e., O(|E|)).

8.2.2 Acceleration of rPCA for Sparse Matrix
PCA is similar with tSVD when being used to factorize
a specific matrix M [36]. Some methods can be used to
accelerate the calculation process of the basic rPCA algorithm
due to the sparse matrices’ properties, like replacing the QR
decomposition in the iteration process of rPCA with LU
decomposition, replacing the Gaussian random matrix Ω
with the uniform random matrix, and so on.



17

For example, two acceleration versions (frPCA and its
variant frPCAt) of rPCA are proposed in [36] based on the
modified power iteration scheme, which is faster than rPCA
and can also provide more flexible trade-off between runtime
and accuracy. Actually, they can accelerate ProNE by about
5-10 times.

8.2.3 Iterative Updating Strategy
Apart from tSVD and its variants, the target matrix can
be obtained by iteratively updating corresponding matrices
after the optimization objective is defined, like algorithmes
for non-negative matrix factorization proposed in [67] and
the joint non-negative matrix factorization method stated
in [3]. Their applications can be seen in M-NMF [139].

8.3 Optimization Strategies for GNNs
Optimization strategies for GNNs focus on defining cor-
responding objective functions, which are then optimized
under the stochastic gradient descent paradigm. The objec-
tive function can be supervised or unsupervised, which can
be defined according to downstream tasks. In this subsection,
we will only focus on the design of unsupervised objective
functions.

Vertex Proximity Based. For example, the Laplacian reg-
ularization term (Eq. 52) is widely used in [8], [168], [173]
based on the assumption that connected nodes tend to share
the same label.

Oreg =
∑
i,j

Aij‖f(Xi)− f(Xj)‖2 = f(X)TLf(X) (52)

However, as stated in [65], this assumption may restrict
the modeling capacity, since graph edges are always half
observed and are not necessarily encode node similarity.

The random walk-like loss function is used in [45] to
encourage vertices with high co-occurrence frequency to
have similar representations:

O(zu) = − log(σ(zTu zv))−Q · Evn∼Pn(v) log(σ(−zTu zvn)),
(53)

where zu is output representation of node u, v is a node that
co-occurs near u in a fixed-length random walk.

Others. Graph information can also be utilized differently.
For instance, Graph Infomax [131] and InfoGraph [116]
maximize the mutual information between vertex represen-
tations and the pooled graph representation. In Variational
Graph Auto-Encoder [64], vertex representations are used to
reconstruct the graph structure.

9 CHALLENGES AND PROBLEMS

9.1 Shallow Embedding Modles

Random Walk Based Models. Despite the theoretical bound
lying behind shallow embedding models, which give them
connections with the matrix factorization models [97]. The
equivalent can be satisfied only when the walk length goes to
infinite, which leading that fact that random walk based mod-
els cannot outperform matrix factorization based methods,
which has also been shown empirically [97]. Moreover, the
sampling process is time-consuming if high order proximities
are wished to be preserved [107].

Fig. 10: The classification performance in terms of Micro-F1
(%). Repring from [163].

Matrix Factorization Based Models. Factorizing matrices
which encode high-order node proximities, structural infor-
mation and other side information is guaranteed to obtain
high-quality vertex embeddings. However, factorizing large,
dense matrices is still time-consuming, though it has been
proved that the factorizing process can be accelerated by
random matrix theory when the matrix is sparse [36], [163].
And matrices being factorized are destined to be dense ones
if high-order vertex proximities, and structural information
are wished to be preserved.

Summary. Ways to solve problems of shallow embedding
models mentioned above can be found in an embedding
model ProNE [163], where a spare matrix is designed to be
factorized to get raw node embeddings, then the spectral
propagation process is applied on the obtained embeddings
to make sure that the propagated embeddings are aware
of high-order vertex and structural information. Since the
matrix being factorized is a spare one, and the propagation
process is also economical based on some mathematical
properties, the model ProNE is a fast and effective model,
combining advantages of different embedding models and
also staying time-efficient (Fig. 10).

However, there are also some inherent problems lying in



18

shallow embedding models:
In the first place, the look-up embedding table in shallow

neural embedding models and matrices in matrix factoriza-
tion based embedding methods decide that those models
are inherently transductive. Generating embedding vectors
for new nodes needs to be calculated from scratch or it
will take a long time. Moreover, if there are encoders in
such models, they are relatively simple, and it is hard to
incorporate vertex content in the encoding process. Even
though the deep neural encoders are adopted in DNGR [15]
and SDNE [135], features that are fed into the encoders
are |V |-dimensional connectivity proximity vectors and the
reconstruction architecture makes it hard to encode vertex
content with connectivity information.

Those problems can be partly solved by Graph Neural
Network based models.

9.2 Graph Neural Networks
Compared with shallow embedding models, GNNs present
their potential in exploring graph structures [148], exploiting
content information of nodes and edges [129], [130], being in-
ductive [17], as well as dealing with heterogeneous structures
better [17], [140], [157]. Although they can solve problems
of shallow embedding models to some extend, generating
node features that are more meaningful, better aware of node
structural information and content information, there are
some inherent problems lying in GNNs’ architecture [29],
[105], [167], [170]: (1) GNN models always tend to increase
the number of GNN layers to capture information from
high-order neighbours, which can lead to three problems:
• over-fitting. Since the signal propagation process is

always coupled with non-linear transformation. Thus,
increasing the number of layers will lead to increasing
the number of parameters at the same time, which will
raise the risk of over-fitting;

• over-smoothing, it has been proved that the convolution
operation is essentially a special form of Laplacian
smoothing [71]. The spatial form of the convolution
operation centered at a target node is just linearly
aggregating features from its neighbourhood. Thus,
directly stacking many layers will make each node
incorporate too many features from others but lose
specific information of itself [18], [167], leading to the
over-smoothing problem;

• non-robust, which comes from the propensity to over-
fitting towards noisy part of input features [51] as the
number of parameters increases.

(2) The propagation process in GNN models will always
make each node too dependent on its neighbours, thus
leading to the non-robust problem as stated above. Moreover,
since edges in real-world networks are always only partially
observed, even with false edges, it will make the model
be more sensitive to adversarial attack on graph data and
hard to learn true features for each node [170]. The attacker
can indirectly attack the target node by just manipulating
long-distance neighbours [178]. (3) Moreover, different from
shallow embedding models, like random walk based models,
matrix factorization based models, which rely more on graph
structures the advantages that GNNs have over shallow
embedding like easily incorporating with node and edge

features, labels, also make GNNs rely on labels too much.
Thus it is hard for GNNs to perform well when there are
only scarce labels available. (4) Designing the best GNN for
a certain task requires manual tuning to adjust the network
architecture and hyper-parameters, such as the attention
mechanism in the neighbourhood aggregation process, the
activation functions and the number of hidden dimensions.
Apart from those problems regard to the architecture of GNN
models mentioned above, huge parameters in GNNs that
require tuning also lead to the heavy manual labors in GNNs’
design process, which is also a common problem in deep
learning community.

Proposed Solutions. Problems stated above are also oppor-
tunities to help us design better models. There are many
works aiming to tackle the problems for graph neural
networks [29], [105], [133], [167], [170]. We will discuss some
basic insights later.

9.2.1 Graph Regularization

Random Propagation. Just as the effectiveness of Dropout
for the training process of neural networks, which can be seen
an adaptive L2 regularization strategy, introducing random
factors in the feature propagation process of GNNs [35], [105]
has been proved as an effective way to help improve the
model’s robustness, alleviate over-fitting and over-smoothing
problems. In DropEdge [105], a certain rate of edges will be
droped out in each training epoch, while in DropNode [35],
a certain rate of nodes’ features will be droped out. Both of
them can help block the some information propagation ways,
reduce vertices’ dependency on certain neighbours and thus
can help the model go deep, alleviate the over-smoothing
problem and improve the robustness.

Compared with DropEdge, dropping out the entire
features of some nodes in the training epoch can further help
decouple the feature propagation and transformation process,
which are closely connected in the deterministic GNN
architectures. Moreover, the consistency loss is introduced to
help force the model output similar predictions with different
augmentations (with different nodes randomly dropped) as
input, whose effectiveness is empirically proved.

Data Augmentation. Data augmentation can help increase
data varieties, thus helping avoid over-fitting problems.

For example, a graph data interpolation method is
used in GraphMix [133] to augment data. Moreover, the
random propagation [35], [105] can also be seen as a data
augmentation technique since random deformed copies of
the original graph can increase the randomness and diversity
of the input data. Thus, it can help increase data varieties
and help avoid over-fitting problems.

Moreover,several data augmentation techniques are pro-
posed in [141] to improve the performance of GNNs during
inference time. A consistency loss is introduced and mini-
mized to make the prediction of node labels under different
augmentations consistent with each other:

LC =
1

|V|
∑
i∈V
DKL

(
p
(
y|Gi, xjj∈Vi , Θ̃

)
‖p
(
y|Ĝi, x̂jj∈V̂i , Θ̃

))
,

(54)
where Gi is the subgraph of node vi, which corresponds to the
receptive field of node vi, Vi is the node set of the subgraph,



19

xi denotes the attributes of node vi, Θ is the parameter set.
Ĝi is the subgraph of node vi after augmentation, Θ̃ is a fixed
copy of the current parameter Θ, indicating that the gradient
is not propagated through Θ.

In addition, a ”parallel universe” data augmentation
scheme is introduced to conduct data augmentation for differ-
ent nodes individually and separately, since the modification
on the subgraph of a node vi will influence the input features
of other nodes.

Adversarial Virtual attack. Performing adversarial virtual
attacks and introducing corresponding loss term to the
optimization objective can help improve the smoothness
of output vectors with respect to perturbation around the
local structure [29].

BVAT. In [29], two virtual attack strategies are proposed to
improve the adversarial virtual attack techniques in VAT [85],
to get close to worst-case attack for each node. The first one
is S-BVAT, where a set of nodes VS ⊂ V is sampled. The
receptive field for each node in the set will not overlap with
other nodes’ receptive fields. Then the regularization term
for training is the average LDS loss over nodes in VS :

Rvadv(VS ,W) =
1

B

∑
u∈VS

LDS(Xu,W, rvadv,u), (55)

where W is the trainable parameters, Xu is the input
feature matrix of all nodes in node u’s receptive field. Then,
Rvadv(VS ,W) can be seen as an approximate estimation of
Rvadv(V,W). The second one is called O-BVAT, where the
average LDS loss with respect to the whole perturbation
matrix R corresponding to the whole feature matrix X is
maximized by solving:

max
R

1

N

∑
u∈V

DKL(p(y|Xu, Ŵ)‖p(y|Xu+Ru,W))−γ·‖R‖2F ,

(56)
where ‖R‖F is the Frobenius norm ofR to make the optimal
perturbation have a small norm and γ is a hyper-parameter to
balance the loss terms.R is optimized for T iterations, which
is more powerful than one-step gradient-based methods.

RGCN. Different from VAT and BVAT, which introduce
perturbation to the training process deliberately, a robust
GCN model (RGCN) is introduced to improve model’s
robustness by reducing aggregation of features with large
variance. The basic idea of RGCN is replacing direct message
propagation processes in GCN and message passing GNN
models with the convolutional operation on Gaussian distri-
butions. The technique to avoid attacking on GNNs models
was an attention mechanism, which assigns different weights
to features according their variances since larger variances
may indicate more uncertainties in the latent representa-
tions and larger probability of having been attacked [170].
Meanwhile, the “reparameterization trick” [30] is used to
optimize the loss function using back propagation and an
explicit regularization term was used to constrain the latent
representations in the first layer to Gaussian distribution:

Lreg1 =
N∑
i=1

KL(N (µ
(1)
i ,diag(σ

(1)
i ))‖N (0, I)), (57)

where µ(1)
i is the mean vector for i-th feature in the first

layer, σ(1)
i is the variance vector for i-th feature in the first

Fig. 11: Experiment results of several GNN models in node
classification tasks on three public datasets. “Our methods”
denotes GRAND model [35]. Reprint from [35].

layer, N (µ, σ) is the normal distribution with µ as its mean
vector and σ as its covariance matrix, and KL(·‖·) is the
KL-divergence between two distributions.

Summary. Fig. 11 taken from [35] summarizes and compares
the experiment results with regard to different GNN models’
effectiveness on several public datasets in node classification
task. Moreover, it is also shown that graph regularization
techniques can address non-robust, over-smoothing and over-
fitting problems to some extend, which demonstrates the
effectiveness of these methods as a way to improve GNN
models.

9.2.2 Self-supervised Learning for GNNs
Self-supervised learning (SSL) is an effective technique that
is widely adopted in NLP and computer vision domain to
extract expressive representations for words, sentences and
images.

Recently, SSL on graph data has attracted a lot of interests,
especially for GNNs.

Self-supervised learning for GNNs focuses on defining
proper pretext tasks and training techniques.

Basic pretext tasks are defined on characteristics of graph
data, such as attribute completion [57], [61], [164], [171],
edge prediction [57], [61], [171]. Some models try to define
pretext tasks based on graph topology, like vertex distance
prediction [61], context prediction [57], graph structure
recovery [164], pair-wise proximity prediction [91], and so
on. Moreover, Graph Contrastive Coding (GCC) is proposed
in [95] based on the contrastive learning paradigm [20], [48].
A generative pre-training model (GPT-GNN) is proposed
in [58] to pre-train GNNs based on vertex attributes genera-
tion and edge generation tasks. Labels are also combined in
the pretext tasks in [61] to align with down stream tasks.

As for training techniques, pre-training under pretext
tasks and fine-tuning on down stream tasks is a widely used
paradigm [57], [164]. Besides, self-training is also a effective
training technique and is used in [155]. It pre-trains a model



20

in the labeled data and then uses it to generate pseudo-labels
for unlabeled data, which are included into labeled data
for the next round of training [175]. Moreover, the multi-
task training can also be defined to combine self-supervised
pretext tasks and down stream supervised tasks.

In conclusion, self-supervised learning broadens the idea
of training GNNs and expands our exploration space.

9.2.3 Neural Architecture Search for GNNs
Aiming to alleviate the heavy manual tuning labors lying in
GNNs’ design process, the developing of neural architecture
search (NAS) on GNN models focus on how to automatically
design GNN architectures [169]. Designing the best GNN for
a certain task requires manual tuning to adjust the network
architecture and hyper-parameters, such as the attention
mechanism in the neighbourhood aggregation process, the
activation functions and the number of hidden dimensions.
Thus, the developing of neural architecture search (NAS) on
GNN models focus on how to automatically design GNN
architectures [169].

Although neural architecture search has rose a lot of
interests [34] and has outpreformed handcrafted ones at
many other domains or tasks (e.g., image classification [176],
[177], image generation [136]), it is not a trivial thing to
generate such strategies to design auto-GNN models as
stated in [169].

A neural architecture search model should define the
searching space, a controller which is used to judge the most
prosperous models and are also supposed to do efficient
parameter sharing, which can avoid training a new model
from scratch. However, as for the search space, search space
for GNNs is different from those of existing NAS work.
For example, the search space in CNN models involves the
kernel size and the number of convolutional layers, while in
GNN models, the search space is defined on the activation
functions, aggregation strategies, etc. Moreover, the tradi-
tional controller is inefficient to discover the potentially well-
performed GNN architectures due to the inherent property
of GNN models which determines the performance of GNNs
varies significantly with slight architecture modification. The
problem partly comes from the difficulty of evaluating GNN
models, which reveals the importance of understanding
GNN models deeply and defining good evaluation methods
as a recent paper does [126] in NLP domain. Thirdly, the
widely adopted techniques such as the parameter sharing is
not suitable for heterogeneous GNN models which will have
different weight shapes or output statistics [43].

Thus, in [169], an efficient controller is designed based
on the property of GNNs and define the concept of het-
erogeneous graph neural networks and permit parameter
sharing only between two homogeneous GNNs. Given the
best architecture at the time, the architecture modification
is realized by the following three steps: (1) For each class,
remove it and treat the remaining GNN architecture as the
current stage. Then, use a RNN encoder to generate actions
of this class for each layer. (2) Use an action guider to sample
a list of classes to be modified based on the decision entropy
of each class. The decision entropy of class c is defined as
follows:

Ec ,
n∑
i=1

mc∑
j=1

−Pij logPij , (58)

where n is the number of layers, mc is the number of
actions that can be chosen from in class c, ~Pi is the action
probability distribution in layer i of class c. (3) Modify the
GNN architecture of each class in the generated class list.

Besides, regrading the network architecture search of
deep convolutional neural networks in the field of computer
vision, a recent paper [100] moves from the traditional design
paradigm which focuses on designing individual network
instances tuned to a single setting to searching design
spaces [99] which aims to discover general and interpretable
design principles.

The discovery of the general design principles can better
guide the future design of individual well-performed net-
works, which is also a meaningful direction that the neural
architecture search for GNNs can focus on.

10 FUTURE DEVELOPMENT DIRECTIONS

In Section 9 we summarize the existing challenges and prob-
lems in both shallow and GNN based embedding models.
Although there have already been some works trying to solve
those challenges, they still cannot be addressed completely
and elegantly. Designing an embedding algorithm which is
both effective and efficient is not an easy thing.

In this section, we will further review challenges of
designing embedding algorithms on real-world networks
and also some promising developing directions, hoping to
be helpful for the future development.

Dynamic. Networks in the real world are always evolving,
such as new users (new vertices) in social networks, new
citations (new edges) in citation networks. Although there
are some works trying to develop embedding algorithms
for evolving networks, there are also many underlying chal-
lenges in such researches since the corresponding embedding
algorithms should deal with the changing networks and be
able to update embedding vectors efficiently [162].

Robustness. In the past two years, attacks and defenses
on graph data have attracted widespread attention [117].
It is shown that whether unsupervised models or models
with supervision from downstream tasks can be fooled even
by unnoticeable perturbations [11], [178]. Moreover, edges
and vertices in real-world networks are always uncertain
and noisy [162]. It is crucial to learn representations that
are robust with respect to those uncertainties and possible
adversarial attacks on graphs. Some universal techniques
are widely adopted to improve the embedding robustness,
like using the adversarial attack as a regularizer (e.g.,
ANE [26], ATGA [90] VBAT [29]), modeling graph structure
using probability distribution methods (e.g., URGE [55] and
RGCN [170]).

Generating Real-World Networks. Generating real-world
networks is a meaningful thing. For example, generating
molecular graphs can help with the drug design and dis-
covery process [112], [154], generating real-world citation
networks or social networks can help design more reason-
able benchmarks and defend adversarial attacks. However,
designing efficient density estimation and generating models
on graphs is a challenging thing due to graphs’ inherent
combinational property and worth researching on.



21

Reasoning Ability of GNNs. Recently, there are also some
works digging into the reasoning ability of GNNs. They try to
explore GNNs’ potential in executing algorithms [132], [149],
or focus on the logical expressiveness of GNNs [6], [166]. Both
of them can help us better understand the internal mech-
anism of GNNs and thus help promote the development
of GNN models to generate more expressive and powerful
vertex embeddings. There are also attempts trying to combine
GNNs with the statistical relational learning (SRL) problem,
which have been well explored in Markov networks [121],
Markov logic networks [103] usually based on conditional
random field, to help GNNs model relational data [98].

REFERENCES

[1] C. C. Aggarwal. An introduction to social network data analytics.
In Social network data analytics. 2011.

[2] N. K. Ahmed, R. Rossi, J. B. Lee, T. L. Willke, R. Zhou, X. Kong,
and H. Eldardiry. Learning role-based graph embeddings, 2018.

[3] Z. Akata, C. Thurau, and C. Bauckhage. Non-negative matrix
factorization in multimodality data for segmentation and label
prediction. 2011.

[4] N. Alon, C. Avin, M. Koucky, G. Kozma, Z. Lotker, and M. R.
Tuttle. Many random walks are faster than one, 2007.

[5] Anonymous. Understanding graph convolutional networks as
signal rescaling. 2020.

[6] P. Barceló, E. V. Kostylev, M. Monet, J. Pérez, J. Reutter, and J. P.
Silva. The logical expressiveness of graph neural networks. In
ICLR, 2020.

[7] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In NIPS, 2002.

[8] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization:
A geometric framework for learning from labeled and unlabeled
examples. Journal of machine learning research, 2006.

[9] Y. Bengio, O. Delalleau, and N. Le Roux. Label propagation and
quadratic criterion. 2006.

[10] S. Bhagat, G. Cormode, and S. Muthukrishnan. Node classification
in social networks. In Social network data analytics. 2011.

[11] A. Bojchevski and S. Günnemann. Adversarial attacks on node
embeddings via graph poisoning. In ICML, 2019.

[12] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks
and locally connected networks on graphs. arXiv, 2013.

[13] H. Cai, W. V. Zheng, and C.-C. K. Chang. A comprehensive survey
of graph embedding: Problems, techniques and applications.
TKDE, 2018.

[14] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations
with global structural information. In CIKM, 2015.

[15] S. Cao, W. Lu, and Q. Xu. Deep neural networks for learning
graph representations. In AAAI, 2016.

[16] Y. Carl, X. Yuxin, Z. Yu, S. Yizhou, and H. Jiawei. Heterogeneous
network representation learning: Survey, benchmark, evaluation,
and beyond. 2020.

[17] Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, and J. Tang. Represen-
tation learning for attributed multiplex heterogeneous network.
KDD, 2019.

[18] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. Measuring and
relieving the over-smoothing problem for graph neural networks
from the topological view, 2019.

[19] J. Chen, T. Ma, and C. Xiao. Fastgcn: Fast learning with graph
convolutional networks via importance sampling, 2018.

[20] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple
framework for contrastive learning of visual representations.
ICML, 2020.

[21] T. Chen and Y. Sun. Task-guided and path-augmented hetero-
geneous network embedding for author identification. WSDM,
2017.

[22] F. R. Chung and F. C. Graham. Spectral graph theory. American
Mathematical Soc., 1997.

[23] K. Church and P. Hanks. Word association norms, mutual
information, and lexicography. Computational linguistics, 1990.

[24] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
algorithms, 2nd edition. 2001.

[25] I. Dagan, F. Pereira, and L. Lee. Similarity-based estimation of
word cooccurrence probabilities. arXiv, 1994.

[26] Q. Dai, Q. Li, J. Tang, and D. Wang. Adversarial network
embedding. 2017.

[27] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering.
In NIPS, 2016.

[28] C. Deng, Z. Zhao, Y. Wang, Z. Zhang, and Z. Feng. Graphzoom:
A multi-level spectral approach for accurate and scalable graph
embedding. ICLR, 2020.

[29] Z. Deng, Y. Dong, and J. Zhu. Batch virtual adversarial training
for graph convolutional networks. arXiv, 2019.

[30] C. Doersch. Tutorial on variational autoencoders. arXiv, 2016.
[31] Y. Dong, V. N. Chawla, and A. Swami. metapath2vec: Scalable

representation learning for heterogeneous networks. KDD, 2017.
[32] Y. Dong, Z. Hu, K. Wang, Y. Sun, and J. Tang. Heterogeneous

network representation learning. IJCAI, 2020.
[33] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec. Spectral graph

wavelets for structural role similarity in networks. CoRR, 2017.
[34] T. Elsken, H. J. Metzen, and F. Hutter. Neural architecture search:

A survey. Journal of Machine Learning Research, 2019.
[35] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang,

E. Kharlamov, and J. Tang. Graph random neural network. NIPS,
2020.

[36] X. Feng, Y. Xie, M. Song, W. Yu, and J. Tang. Fast randomized pca
for sparse data, 2018.

[37] T.-Y. Fu, W.-C. Lee, and Z. Lei. Hin2vec: Explore meta-paths in
heterogeneous information networks for representation learning.
CIKM, 2017.

[38] S. Gao, L. Denoyer, and P. Gallinari. Temporal link prediction by
integrating content and structure information. In Proceedings of
the 20th ACM international conference on Information and knowledge
management, 2011.

[39] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl.
Neural message passing for quantum chemistry. In ICML, 2017.

[40] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica. Graphx: Graph processing in a distributed dataflow
framework. In 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14), 2014.

[41] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversar-
ial networks, 2014.

[42] A. Grover and J. Leskovec. node2vec: Scalable feature learning
for networks. In KDD, 2016.

[43] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun.
Single path one-shot neural architecture search with uniform
sampling. CVPR, 2019.

[44] M. U. Gutmann and A. Hyvärinen. Noise-contrastive estimation
of unnormalized statistical models, with applications to natural
image statistics. Journal of Machine Learning Research, 2012.

[45] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation
learning on large graphs. In NIPS, pages 1024–1034, 2017.

[46] D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets
on graphs via spectral graph theory. Applied and Computational
Harmonic Analysis, 2011.

[47] Z. S. Harris. Distributional structure. Word, 1954.
[48] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast

for unsupervised visual representation learning. CVPR, 2019.
[49] Y. He, Y. Song, J. Li, C. Ji, J. Peng, and H. Peng. Hetespaceywalk:

A heterogeneous spacey random walk for heterogeneous informa-
tion network embedding. Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, 2019.

[50] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu,
L. Akoglu, D. Koutra, C. Faloutsos, and L. Li. Rolx: Structural role
extraction mining in large graphs. In KDD, 2012.

[51] N. Hoang and T. Maehara. Revisiting graph neural networks: All
we have is low-pass filters. arXiv, 2019.

[52] M. E. Hochstenbach. A jacobi-davidson type method for the
generalized singular value problem. Linear Algebra Its Applications,
2009.

[53] H. Hong, H. Guo, Y. Lin, X. Yang, Z. Li, and J. Ye. An attention-
based graph neural network for heterogeneous structural learning.
AAAI, 2020.

[54] B. Hu, Y. Fang, and C. Shi. Adversarial learning on heterogeneous
information networks. 2019.

[55] J. Hu, R. Cheng, Z. Huang, Y. Fang, and S. Luo. On embedding
uncertain graphs. In CIKM, 2017.

[56] P. Hu and C. W. Lau. A survey and taxonomy of graph sampling.
CoRR, 2013.



22

[57] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and
J. Leskovec. Strategies for pre-training graph neural networks. In
ICLR, 2020.

[58] Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun. Gpt-gnn:
Generative pre-training of graph neural networks. In KDD, 2020.

[59] W. Huang, T. Zhang, Y. Rong, and J. Huang. Adaptive sampling
towards fast graph representation learning, 2018.

[60] Y. Jacob, L. Denoyer, and P. Gallinari. Learning latent represen-
tations of nodes for classifying in heterogeneous social networks.
WSDM, 2014.

[61] W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang. Self-
supervised learning on graphs: Deep insights and new direction.
arXiv, 2020.

[62] Y. Jin, g. song, and C. Shi. Gralsp: Graph neural networks with
local structural patterns. AAAI, 2020.

[63] Y. Kim. Convolutional neural networks for sentence classification.
arXiv, 2014.

[64] T. N. Kipf and M. Welling. Variational graph auto-encoders. arXiv,
2016.

[65] T. N. Kipf and M. Welling. Semi-supervised classification with
graph convolutional networks. ICLR, 2017.

[66] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In NIPS,
2012.

[67] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix
factorization. In NIPS, 2001.

[68] J. Leskovec and C. Faloutsos. Sampling from large graphs. KDD,
pages 631–636, 2006.

[69] O. Levy and Y. Goldberg. Neural word embedding as implicit
matrix factorization. In NIPS, 2014.

[70] J. Li, J. Zhu, and B. Zhang. Discriminative deep random walk for
network classification. In ACL, 2016.

[71] Q. Li, Z. Han, and X.-M. Wu. Deeper insights into graph
convolutional networks for semi-supervised learning. In AAAI,
2018.

[72] D. Liben-Nowell and J. Kleinberg. The link prediction problem for
social networks. In Proceedings of the Twelfth International Conference
on Information and Knowledge Management, 2003.

[73] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and
relation embeddings for knowledge graph completion. In AAAI,
2015.

[74] Z. Liu, V. W. Zheng, Z. Zhao, F. Zhu, K. C.-C. Chang, M. Wu, and
J. Ying. Distance-aware dag embedding for proximity search on
heterogeneous graphs. In AAAI, 2018.

[75] F. Lorrain and H. C. White. Structural equivalence of individuals
in social networks. Social Networks, 1977.

[76] L. Lovász et al. Random walks on graphs: A survey. Combinatorics,
Paul erdos is eighty, 1993.

[77] B. LowY et al. Distributedgraphlab: aframeworkformachine-
learninganddata mininginthecloud. ProceedingsoftheVLDBEndow-
ment, 2012.

[78] L. Lü and T. Zhou. Link prediction in complex networks: A survey.
Physica A: statistical mechanics and its applications, 2011.

[79] F. D. Malliaros and M. Vazirgiannis. Clustering and community
detection in directed networks: A survey. Physics reports, 2013.

[80] Marinka, Zitnik, Rok, Sosič, Marcus, W, Feldman, Jure, and
Leskovec. Evolution of resilience in protein interactomes across
the tree of life. Proceedings of the National Academy of Sciences of the
United States of America, 2019.

[81] I. F. Martins, A. L. Teixeira, L. Pinheiro, and A. O. Falcao. A
bayesian approach to in silico blood-brain barrier penetration
modeling. Journal of Chemical Information and Modeling, 2012.

[82] S. Micali and A. Z. Zhu. Reconstructing markov processes
from independent and anonymous experiments. Discrete Applied
Mathematics, 2016.

[83] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation
of word representations in vector space, 2013.

[84] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.
Distributed representations of words and phrases and their
compositionality. In NIPS, 2013.

[85] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. Virtual ad-
versarial training: a regularization method for supervised and
semi-supervised learning. PAMI, 2018.

[86] S. A. Myers, A. Sharma, P. Gupta, and J. Lin. Information network
or social network? the structure of the twitter follow graph. In
WWW, 2014.

[87] N. Natarajan and I. S. Dhillon. Inductive matrix completion for
predicting gene–disease associations. Bioinformatics, 2014.

[88] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. Asymmetric
transitivity preserving graph embedding. In KDD, 2016.

[89] L. PAGE. The pagerank citation ranking : Bring-
ing order to the web, online manuscript. http://www-
db.stanford.edu/backrub/pageranksub.ps, 1998.

[90] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang. Adversari-
ally regularized graph autoencoder for graph embedding. 2018.

[91] Z. Peng, Y. Dong, M. Luo, X.-M. Wu, and Q. Zheng. Self-
supervised graph representation learning via global context
prediction. arXiv, 2020.

[92] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning
of social representations. In KDD, 2014.

[93] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena. Don’t walk, skip!
online learning of multi-scale network embeddings, 2016.

[94] N. Pizarro. Structural identity and equivalence of individuals in
social networks: Beyond duality. International Sociology, 2007.

[95] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang,
and J. Tang. GCC: Graph Contrastive Coding for Graph Neural
Network Pre-Training. KDD, 2020.

[96] J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and J. Tang.
Netsmf: Large-scale network embedding as sparse matrix factor-
ization. WWW, 2019.

[97] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang. Network
embedding as matrix factorization: Unifying deepwalk, line, pte,
and node2vec. In WSDM, 2018.

[98] M. Qu, Y. Bengio, and J. Tang. Gmnn: Graph markov neural
networks. 2019.

[99] I. Radosavovic, J. Johnson, S. Xie, W.-Y. Lo, and P. Dollaacute;r.
On network design spaces for visual recognition. ICCV, pages
1882–1890, 2019.

[100] I. Radosavovic, P. R. Kosaraju, R. Girshick, K. He, and P. Dollár.
Designing network design spaces. CVPR, 2020.

[101] F. B. Ribeiro and F. D. Towsley. Estimating and sampling graphs
with multidimensional random walks. internet measurement
conference, pages 390–403, 2010.

[102] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo. struc2vec:
Learning node representations from structural identity. In KDD,
2017.

[103] M. Richardson and P. Domingos. Markov logic networks (vol 62,
pg 107, 2006). Machine Learning, 2006.

[104] S. C. Ritchie, S. Watts, L. G. Fearnley, K. E. Holt, G. Abraham, and
M. Inouye. A scalable permutation approach reveals replication
and preservation patterns of network modules in large datasets.
Cell systems, 2016.

[105] Y. Rong, W. Huang, T. Xu, and J. Huang. Dropedge: Towards deep
graph convolutional networks on node classification, 2019.

[106] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction
by locally linear embedding. science, 2000.

[107] B. Rozemberczki and R. Sarkar. Fast sequence-based embedding
with diffusion graphs, 2020.

[108] M. Schlichtkrull, N. T. Kipf, P. Bloem, v. d. R. Berg, I. Titov, and
M. Welling. Modeling relational data with graph convolutional
networks. ESWC, 2018.

[109] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad. Collective classification in network data. AI Magazine, 2008.

[110] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn,
and K. M. Borgwardt. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research, 2011.

[111] C. Shi, B. Hu, X. W. Zhao, and S. P. Yu. Heterogeneous information
network embedding for recommendation. TKDE, 2019.

[112] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation.
ICLR, 2020.

[113] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst. The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other
irregular domains. IEEE, 2013.

[114] D. I. Shuman, B. Ricaud, and P. Vandergheynst. Vertex-frequency
analysis on graphs. Applied and Computational Harmonic Analysis,
2016.

[115] I. D. Shuman, B. Ricaud, and P. Vandergheynst. Vertex-frequency
analysis on graphs. Applied and Computational Harmonic Analysis,
2013.



23

[116] F.-Y. Sun, J. Hoffmann, and J. Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual
information maximization. arXiv, 2019.

[117] L. Sun, Y. Dou, C. Yang, J. Wang, P. S. Yu, and B. Li. Adversarial
attack and defense on graph data: A survey. arXiv, 2020.

[118] J. Tang, J. Liu, M. Zhang, and Q. Mei. Visualizing large-scale and
high-dimensional data. In WWW, 2016.

[119] J. Tang, M. Qu, and Q. Mei. Pte: Predictive text embedding
through large-scale heterogeneous text networks. KDD, 2015.

[120] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line:
Large-scale information network embedding. In WWW, 2015.

[121] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic
models for relational data. Proc.conf.on Uncertainty in Artificial
Intelligence, 2012.

[122] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional
learning of spatio-temporal features. In European conference on
computer vision, 2010.

[123] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global
geometric framework for nonlinear dimensionality reduction.
science, 2000.

[124] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li. Attention-
based graph neural network for semi-supervised learning. arXiv,
2018.

[125] N. Tremblay and P. Borgnat. Graph wavelets for multiscale
community mining. IEEE Transactions on Signal Processing, 2014.

[126] M. R. Tulio, W. Tongshuang, G. Carlos, and S. Sameer. Beyond
accuracy: Behavioral testing of nlp models with checklist. ACL,
2020.

[127] P. D. Turney. Mining the web for synonyms: Pmi-ir versus lsa on
toefl. In European conference on machine learning, 2001.

[128] P. D. Turney and P. Pantel. From frequency to meaning: Vector
space models of semantics. Journal of artificial intelligence research,
2010.

[129] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In
NIPS, 2017.

[130] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio. Graph attention networks. ICLR, 2018.

[131] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and
R. D. Hjelm. Deep graph infomax. In ICLR, 2019.

[132] P. Veličković, R. Ying, M. Padovano, R. Hadsell, and C. Blundell.
Neural execution of graph algorithms. In ICLR, 2020.

[133] V. Verma, M. Qu, A. Lamb, Y. Bengio, J. Kannala, and J. Tang.
Graphmix: Regularized training of graph neural networks for
semi-supervised learning. arXiv, 2019.

[134] U. Von Luxburg. A tutorial on spectral clustering. Statistics and
computing, 2007.

[135] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding.
In KDD, 2016.

[136] H. Wang and J. Huan. Agan: Towards automated design of
generative adversarial networks. CoRR, 2019.

[137] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo. Graphgan: Graph representation learning with
generative adversarial nets. TKDE, 2017.

[138] S. Wang, J. Tang, F. Morstatter, and H. Liu. Paired restricted
boltzmann machine for linked data. In Proceedings of the 25th
ACM International on Conference on Information and Knowledge
Management, 2016.

[139] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang. Community
preserving network embedding. In AAAI, 2017.

[140] X. Wang, H. Ji, C. Shi, B. Wang, P. Cui, S. P. Yu, and Y. Ye.
Heterogeneous graph attention network. WWW, 2019.

[141] Y. Wang, W. Wang, Y. Liang, Y. Cai, J. Liu, and B. Hooi. Nodeaug:
Semi-supervised node classification with data augmentation.
KDD, 2020.

[142] Z. Wang, H. Liu, Y. Du, Z. Wu, and X. Zhang. Unified embedding
model over heterogeneous information network for personalized
recommendation. IJCAI, 2019.

[143] B. Weisfeiler and A. A. Lehman. A reduction of a graph to
a canonical form and an algebra arising during this reduction.
Nauchno-Technicheskaya Informatsia, 1968.

[144] D. B. West. Introduction to graph theory, 2nd ed. Networks, 2001.
[145] F. Wu, T. Zhang, A. H. d. Souza Jr, C. Fifty, T. Yu, and K. Q.

Weinberger. Simplifying graph convolutional networks. ICML,
2019.

[146] M. Xie, H. Yin, H. Wang, F. Xu, W. Chen, and S. Wang. Learning
graph-based poi embedding for location-based recommendation.

In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, 2016.

[147] B. Xu, H. Shen, Q. Cao, Y. Qiu, and X. Cheng. Graph wavelet
neural network. ICLR, 2019.

[148] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are
graph neural networks? ICLR, 2019.

[149] K. Xu, J. Li, M. Zhang, S. S. Du, K.-i. Kawarabayashi, and S. Jegelka.
What can neural networks reason about? ICLR, 2020.

[150] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin. Graph em-
bedding and extensions: A general framework for dimensionality
reduction. PAMI, 2007.

[151] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang. Network
representation learning with rich text information. In IJCAI, 2015.

[152] J. Yang and J. Leskovec. Defining and evaluating network
communities based on ground-truth. Knowledge and Information
Systems, 2015.

[153] Z. Yang, M. Ding, C. Zhou, H. Yang, J. Zhou, and J. Tang. Un-
derstanding negative sampling in graph representation learning,
2020.

[154] J. You, B. Liu, R. Ying, S. V. Pande, and J. Leskovec. Graph
convolutional policy network for goal-directed molecular graph
generation. NeurIPS, 2018.

[155] Y. You, T. Chen, Z. Wang, and Y. Shen. When does self-supervision
help graph convolutional networks? arXiv, 2020.

[156] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna.
Graphsaint: Graph sampling based inductive learning method.
ICLR, 2020.

[157] C. Zhang, D. Song, C. Huang, A. Swami, and V. N. Chawla.
Heterogeneous graph neural network. 2019.

[158] C. Zhang, K. Zhang, Q. Yuan, H. Peng, Y. Zheng, T. Hanratty,
S. Wang, and J. Han. Regions, periods, activities: Uncovering
urban dynamics via cross-modal representation learning. In
WWW, 2017.

[159] D. Zhang, J. Yin, X. Zhu, and C. Zhang. Collective classification via
discriminative matrix factorization on sparsely labeled networks.
In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, 2016.

[160] D. Zhang, J. Yin, X. Zhu, and C. Zhang. Homophily, structure, and
content augmented network representation learning. In ICDM,
2016.

[161] D. Zhang, J. Yin, X. Zhu, and C. Zhang. User profile preserving
social network embedding. In IJCAI, 2017.

[162] D. Zhang, J. Yin, X. Zhu, and C. Zhang. Network representation
learning: A survey. IEEE transactions on Big Data, 2018.

[163] J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding. Prone: fast and
scalable network representation learning. In IJCAI, 2019.

[164] J. Zhang, H. Zhang, L. Sun, and C. Xia. Graph-bert: Only attention
is needed for learning graph representations. arXiv, 2020.

[165] X. Zhang, W. Chen, and H. Yan. Tline: Scalable transductive
network embedding. In Asia Information Retrieval Symposium,
2016.

[166] Y. Zhang, X. Chen, Y. Yang, A. Ramamurthy, B. Li, Y. Qi, and
L. Song. Can graph neural networks help logic reasoning?, 2019.

[167] L. Zhao and L. Akoglu. Pairnorm: Tackling oversmoothing in
gnns, 2019.

[168] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf.
Learning with local and global consistency. In NIPS, 2004.

[169] K. Zhou, Q. Song, X. Huang, and X. Hu. Auto-gnn: Neural
architecture search of graph neural networks, 2019.

[170] D. Zhu, Z. Zhang, P. Cui, and W. Zhu. Robust graph convolutional
networks against adversarial attacks. In KDD, 2019.

[171] Q. Zhu, B. Du, and P. Yan. Self-supervised training of graph
convolutional networks. arXiv, 2020.

[172] S. Zhu, K. Yu, Y. Chi, and Y. Gong. Combining content and link
for classification using matrix factorization. In SIGIR, 2007.

[173] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In ICML,
2003.

[174] H. Ziniu, D. Yuxiao, W. Kuansan, and S. Yizhou. Heterogeneous
graph transformer. WWW, 2020.

[175] B. Zoph, G. Ghiasi, T.-Y. Lin, Y. Cui, H. Liu, E. D. Cubuk, and Q. V.
Le. Rethinking pre-training and self-training. CVPR, 2020.

[176] B. Zoph and V. Q. Le. Neural architecture search with reinforce-
ment learning. ICLR, 2017.

[177] B. Zoph, V. Vasudevan, J. Shlens, and V. Q. Le. Learning
transferable architectures for scalable image recognition. computer
vision and pattern recognition, 2018.



24

[178] D. Zügner, A. Akbarnejad, and S. Günnemann. Adversarial attacks
on neural networks for graph data. In KDD, 2018.


	Introduction
	Preliminaries
	Overview of Graph Embedding Techniques
	Shallow Embedding Models
	Neural Based
	Random Walk Family
	Others Methods

	Matrix Factorization Based.
	Connection between Neural Based and Matrix Factorization Based Models
	Matrices in Natural Language Models
	From Natural Language to Graph
	Differences Between Neural Based Embedding and Matrix Factorization Based Models

	Enhancing via Graph Spectral Filters

	Heterogeneous Embedding Models
	Heterogeneous LINE
	Heterogeneous Random Walk
	Other Models

	Graph Neural Network Based Models
	GNN Models
	Sampling
	Attention Mechanism
	Discriminative Power
	From Homogeneous to Heterogeneous


	Theoretical Foundations
	Underlying Kernels: Graph Spectral Filters
	Spectral Filters as Feature Extractors
	Spectral Filters as Kernels of Matrices being Factorized

	Universal Attention Mechanism

	Optimization Methods
	Optimizations for Random Walk Based Models
	Hierarchical Softmax
	Negative Sampling

	Optimization Strategies for Matrix Factorization
	SVDs
	Acceleration of rPCA for Sparse Matrix
	Iterative Updating Strategy

	Optimization Strategies for GNNs

	Challenges and Problems
	Shallow Embedding Modles
	Graph Neural Networks
	Graph Regularization
	Self-supervised Learning for GNNs
	Neural Architecture Search for GNNs


	Future Development Directions
	References

