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Intorduction
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Graph in Algorithm and Network in Real-world

Graph is a highly representative data structure and can be used to represent
various networks in real-world:

Social networks

Citation networks

Biological networks

Traffic networks

...
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From traditional analytical methods to representation
learning

Traditional graph analytical methods: spectral partitioning [15];
Spectral clustering [40]; Isomap [60]; Eigenmap [3]. . .

Problems: high computational cost, high space complexity

Learning vertex representations: sequence embedding models [45],
node2vec [23]; matrix factorization based models (M-NMF [67]),
NetMF [48]); GNN based models (FastGCN [9], GIN [72]). . .

Wide usage for learned representations:

Node classification, link prediction, recommendation. . .
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Expectation for learned representations

Keeping vertex proximity

First-order
High-order

Keeping structural similarity

Similarity of the structural roles of two vertices in their respective
communities, although they may not connect with each other.

Keeping Intra-community similarity

Similarity between two vertices that are in the same community.
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Network representation learning

Figure: A toy example for network embedding task. Vertices in the network lying in
the left part are embedded into d-dimensional vector space, where d is much
smaller than the total number of nodes |V | in the network. Vertices with the same
color are structurally similar to each other. Basic structural information should be
kept in the embedding space (e.g., Structurally similar vertices E and F are
embedded closer to each other than structurally dissimilar vertices C and F).
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Preliminaries
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Graph

Definition (Graph)

A graph can be denoted as G = (V, E), where V is the set of vertices and E
is the set of edges in the graph. When associated with the node type
mapping function Φ : V → O mapping each node to its specific node type
and an edge mapping function Ψ : E → R mapping each edge to its
corresponding edge type, a graph G can be divided into two categories:
homogeneous graph and heterogeneous graph. A homogeneous graph is a
graph G with only one node type and one edge type (i.e., |O| = 1 and
|R| = 1). A graph is a heterogeneous graph when |O|+ |R| > 2.
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Proximities

Definition (Vertex Proximities)

Various vertex proximities can exist in real-world networks, like first-order
proximity, second-order proximity and higher-order proximities. The
first-order proximity can measure the direct connectivity between two nodes,
which is usually defined as the weight of the edge between them. The
second-order proximity between two vertices can be defined as the distance
between the distributions of their neighbourhood [64]. Higher-order
proximities between two vertices v and u can be defined as the k-step
transition probability from vertex v to vertex u [76].

11 / 103



Proximities

Definition (Structural Similarity)

Structural similarity [49, 26, 17, 38, 46] refers to the similarity of the
structural roles of two vertices in their respective communities, although
they may not connect with each other.

Definition (Intra-community Similarity)

The intra-community similarity originates from the community structure of
the graph and denotes the similarity between two vertices that are in the
same community. Many real-life networks (e.g., social networks, citation
networks) have community structure, where vertex-vertex connections in a
community are dense, but sparse for nodes between two communities.
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Graph Laplacian

Definition (Graph Laplacian)

Following notions in [27], L = D − A, where A is the adjacency matrix, D
is the corresponding degree matrix, is the combinational graph laplacian,

L = I −D−
1
2AD−

1
2 is the normalized graph Laplacian, Lrw = I −D−1A is

the random walk graph Laplacian. Meanwhile, let Ã = A + σI denotes the
augmented adjacency matrix, then, L̃, L̃, L̃rw are the augmented graph
Laplacian, augmented normalized graph Laplacian, augmented random walk
graph Laplacian respectively.
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A Brief Overview
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Shallow Embedding Models

Shallow neural embedding models

Performing random walks over the graph and converting nodes in the
structured graph to node sequences, e.g., DeepWalk, node2vec. Then
the graph embedding problem is transferred to sequence embedding
problem, which has been researched thoroughly.

Matrix factorization based models

Factorizing different matrices preserving various kinds of information in
the graph to get node embedding vectors aware of such graph-level or
node-level information, e.g., M-NMF, NetMF.

Building relationship between such two methods

Some shallow neural embedding models are actually factorizing their
equivalent matrices [48].
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Heterogeneous Embedding Models

Adopting ideas in shallow embedding models by using some techniques
to adapting them to heterogeneous graphs.

Applying certainty constraints on the random sampling process
(metapah2vec [16]);
Splitting a heterogeneous graph to several homogeneous graphs
(PTE [58]);

Fusing graph content in the embedding models, which are rich in
heterogeneous graphs.

Applying attention mechanism on vertex features (GATNE [8]).
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Graph Neural Networks based Models

Deep, inductive models, compared with shallow embedding models,
which can utilize graph contents better and can also be trained with
supervised information.

Basic idea: iteratively aggregating neighborhood information from vertex
neighbors to get a successive view over the whole graph structure.

Problems:

Over-fitting
Over-smoothing
Not robust

Improvement on vanilla GNN models

Graph regularization
Theory based
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Connections between different kinds of models
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Figure: An overview of existing graph embedding models and their correlation.
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Shallow Embedding Models
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Shallow neural based embedding models

Characterized by an embedding table containing vertex embeddings as its
row/column vectors, which are updated in the optimization process.
Keypoints:

An embedding table

Different approaches to optimize the embedding table

Extracting similar vertex pairs and pull their embeddings close to each
other. Then how to extract such similar vertex pairs?
Optimize vertex embeddings by modeling edges and connectivity
distribution.
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Random walk based methods

General approaches

Extract similar node pairs by performing different kinds of random walks
(e.g., vanilla random walks, biased random walk) over the graph.
Apply Skip-Gram model on the node sequence to get vertex embeddings.

Random walk family

Vanilla Random Walk (DeeWalk [45]). It can be seen as a Markov
process on the graph and has been well studied.
Biased Random Walks (node2vec [23]). Introduce a return parameter p
and a in-out parameter q in the transition probability calculation process.
It is also the second-order random walk, whose transition probability also
depends on the previous node.
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Random walk family

Random walk family

Euler Walks (Diff2Vec [51]). Perform an Euler tour in the diffusion
subgraph centered at each node.
Attribute random walk (Rol2Vec [1]). Incorporate vertex attributes and
structural information in the random walk process.

Comparison and discussion

Strengths of biased random walks: (i) able to explore various node
proximities that may exist in the real-world network (e.g., second-order
similarity, structural equivalence). (ii) can fit in a new network more
easily by changing parameters to change the preference of proximities
being explored since different proximities may dominate in different
networks.
Shortcomings of biased random walks: p and q need tuning to fit in a
new graph if there is no labeled data that can be used to learn them.
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Comparison and discussion

Comparison and discussion

Strengths of Euler walks: (i) need not calculating transition probabilities
for each adjacent node of the current node at each step, which is
time-consuming. (ii) fewer diffusion subgraphs as well as fewer Euler
walks need generating centered at each node since it can get a more
comprehensive view over the neighborhood since the Euler tour will
include all the adjacencies in the subgraph.
Shortcomings of Euler walks: BFS strategy which is used to generate
diffusion subgraphs is rather rigid, and cannot explore the various node
proximities flexibly.
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Other shallow embedding methods I

Random walks based models can be seen as discriminative models.

Implicitly both generative and discriminative model (LINE [59]).
Model both the existence of edges:

p1(vi , vj) =
1

1 + exp(−~uTi · ~uj)
, (1)

where ~ui is the vertex embedding for node vi .
and the connectivity distribution for each node:

O2 =
∑
i∈V

λid(p̂2(·|vi ), p2(·|vi )), (2)

where d(·, ·) is the distance between two distributions, λi is the weight
for each node, which represents its prestige in the network and can be
measured by vertex degree or other algorithms (e.g. PageRank [42]),
p2(vj |vi ) can be calculated by:

p2(vj |vi ) =
exp(~u

′T
j · ~ui )∑|V |

k=1 exp(~u
′T
k · ~ui )

(3)
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Other shallow embedding methods II

Adversarial generative training methods (GraphGAN [66]).
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Matrix factorization based models

Matrices to be factorized should preserve various node proximities

First-order, second-order, high-order and intra-community proximities
preserved in M-NMF [67].
Asymmetric high-order node proximity preserved in HOPE [41].
matrix implicitly factorized by shallow neural embedding models —
DeepWalk matrix, node2vec matrix (NetMF [48]).
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Matrix factorization based models

Table: Matrices that are implicitly factorized by DeepWalk, LINE and node2vec,
same with [48]. “DW” refers to DeepWalk, “n2v” refers to node2vec.

Model Matrix

DW log
(

vol(G )( 1
T

∑T
r=1(D−1A)r )D−1

)
− log b

LINE log
(
vol(G )D−1AD−1

)
− log b

n2v log

(
1
2T

∑T
r=1(

∑
u Xw,uPr

c,w,u+
∑

u X c,uPr
w,c,u)

(
∑

u Xw,u)(
∑

u X c,u)

)
− log b

27 / 103



Matrix factorization based models

Some concerns

Space complexity and time complexity to factorize a dense matrix
Unable to get meaningful node embedding vectors if just factorizing a
sparse matrix (e.g., first-order neighborhood matrix)
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Connection between shallow embedding models

More and more works try to explore the equivalence between some of
shallow neural embedding models and matrix factorization models by
proving that some neural based models are factorizing matrices
implicitly.

Help with the analysis of robustness of random walk based embedding
models;
Empirically proved that embedding vectors obtained by factorizing the
corresponding matrix can preform better in downstream tasks than those
optimized by stochastic gradient descent in DeepWalk.
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Matrices in Natural Language Models

It has been proved in the language models that the word2vec
model [39] or the SGNS procedure in it is implicitly factorizing the
following word-context matrix, much earlier than similar works for
graph embedding models:

MSGNS
ij = log

(
#(w , c) · |D|
#(w) ·#(c)

)
− log(k), (4)

where #(w , c) is the number of co-occurrence of the word pair (w , c)
in the corpus, which is selected by sliding a certain length of window
over word sequences, #(w) is the number of occurrences of the word
w .
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From Natural Language to Graph

For graph representation learning models, some typical algorithms (e.g.
DeepWalk [45], node2vec [23], LINE [59]) can also be shown to
factorize their corresponding matrices implicitly (TABLE 1 ). Based on
SGNS’s implicit matrix MSGNS (Eq. 4), the proof focuses on building
the bridge between PMI of word-context pair (w , c) and the transition
probability matrix of the network.
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Factorizing Log-Empirical-Distribution Matrices

Theoretical results for the connections between shallow neural embedding
algorithms and matrix factorization open a new direction for the
optimization process of some neural based methods. Since each entry for
this kind of matrices can be seen as the empirical connectivity
preference [66] between the corresponding vertex-context pair (w , c), we
refer to these matrices as Log-Empirical-Distribution Matrices.
Matrices being factorized:

DeepWalk matrix factorized in NetMF [48] (Table 1);
Sparse matrix factorized in ProNE [77] to get raw embedding vectors:

Mi ,j =

{
ln pi ,j − ln(λPD,j), (vi , vj) ∈ D

0, (vi , vj) /∈ D
(5)

SGNS matrices preserving each k-order proximity factorized in
GraRep [6]:

Y k
i ,j = log

(
Ak
i ,j∑

t A
k
i ,j

)
− log(β), (6)

where A is the adjacency matrix, are generated and then factorized to
get the embedding vectors preserving each k-order proximities. These
embedding vectors, preserving different orders of node proximity, are
then concatenated together to get the final embedding vectors for each
node.
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Differences Between Neural Based Embedding and Matrix
Factorization Based Models

Time consuming SGNS process to sample node pairs explicitly v.s.
high time complexity when factorizing a dense matrix to preserve
high-order node proximities:

A dense matrix can sometimes be approximated or replaced by a sparse
one and then adopt other refinement methods [77, 47]. Thus, matrix
factorization methods are more likely to be scaled to large-scale networks
since complexity for factorizing a sparse matrix can be controlled to
O(|E |) with the development of numerical computation [19, 77].
Factorizing matrices does not require tuning learning rates or other
hyper-parameters.
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Differences Between Neural Based Embedding and Matrix
Factorization Based Models

Extract weighting for matrix factorization v.s. unobserved data suffered
when factorizing matrices:

Factorizing matrices always suffer from unobserved data, which can be
weighted naturally in sampling based methods [37].
Exactly weighting for matrix factorization is a hard computational
problem.
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Enhancing via Graph Spectral Filters

Grpah Spectral filters to refine raw embeddings:

ProNE [77] use the band-pass filter g(λ) = e−
1
2 [(λ−µ)

2−1]θ to propagate
the embeddings obtained by factorizing a sparse matrix to fuse both
low-order and high-order node proximities into the learned embeddings.
GraphZoom [13] use the filter h(λ) = (1 + λ)−1 to refine embedding
matrix Ê i expanded from the coarser level i − 1.

Graph spectral filters to generate expressive node embeddings:

GraphWave [17] uses the low-pass filter gs(λ) = e−λs is used to
generate the spectral graph wavelet Ψa for each node a in the graph:

Ψa = Udiag(gs(λ1), . . . , gs(λN))UT δa, (7)

where U , λ1, ..., λN are the eigenvector matrix and eigenvalues of the
combinational graph Laplacian L respectively, δa = 1(a) is the one hot
vector for node a. And m-th wavelet coefficient of this column vector Ψa

is denoted by Ψma. Ψa is further used to generated node embeddings.
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Heterogeneous Embedding Models
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Heterogeneous LINE

How to use embedding methods designed for homogeneous graphs to
embed heterogeneous graphs?

In PTE [58], the heterogeneous network that has words, documents,
labels as its vertices and the connections within them as the edges, is
projected to three homogeneous networks first (word-word network,
word-document network and word-label network).

Then, for each bipartite network G = (VA ∪ VB , E), where VA and VB
are two disjoint vertex sets, E is the edge set, the conditional
probability of vertex vj in set VA generated by vertex vi in set VB is
defined as:

p(vj |vi ) =
exp(~uTj · ~ui )∑
k∈A exp(~uTk · ~ui )

, (8)

similar with p2(vj |vi ) (Eq. 3) in LINE [59]. Then the conditional
distribution p(·|vj) is forced to be close to its empirical distribution
p̂(·|vj) by jointly minimizing the corresponding loss function similar
with the one in LINE (Eq. 2).
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Heterogeneous LINE

The conditional distribution p(·|vj) is forced to be close to its empirical
distribution p̂(·|vj) by jointly minimizing the corresponding loss
function similar with the one in LINE (Eq. 2).

It is also proved in [48] that the PTE is also factorizing a matrix
implicitly.
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Heterogeneous Random Walk

How to further apply the sequence embedding model to heterogeneous
graphs?

Design specific meta paths which can restrict transitions between only
specified types of vertices [16].
given a heterogeneous network G = (V, E) and a meta path scheme

P : V1
R1−→ V2

R2−→ V3 · · ·Vt
Rt−→ · · · Rl−1−−−→ Vl , where Vi ∈ O are vertex

types in the network, the transition probability is defined as:

Pv i+1,v i
t ,P =


1

|Nt+1(v it )|
(v i+1, v it ) ∈ E ,Φ(v i+1) = t + 1

0 (v i+1, v it ) ∈ E ,Φ(v i+1) 6= t + 1

0 (v i+1, v it ) /∈ E

(9)

where Φ(v it ) = Vt , Nt+1(v it ) is the Vt+1 type of neighbourhood of
vertex v it .
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Heterogeneous Random Walk

Further explorations:

Combined with Neighbourhood Aggregation: In GATNE [8], the overall
embedding of node vi on edge r is split into base embedding which is
shared between different edge types and edge embedding. The k-th

level edge embedding u
(k)
i ,r ∈ Rs , (1 ≤ k ≤ K ) of node vi on edge type

r is aggregated from neighbours’ edge embeddings:

u
(k)
i ,r = aggregator(u

(k−1)
j ,r ), ∀vj ∈ Ni ,r , (10)

where Ni ,r is the neighbours of node vi on edge type r . The overall
embedding vi ,r of node vi on edge type r is computed by applying
self-attention mechanism on the concatenated embedding vector of
node vi :

Ui = (ui ,1, ui ,2, ..., ui ,m). (11)

Besides, such approach can also make it easy to be inductive.
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Heterogeneous Random Walk

Meta Paths Augmentation: In HIN2vec [20], meta-paths are treated as
the relations between vertices connected by them with learnable
embeddings. Then probability of the two vertices x and y connected by
meta-path r is modeled by:

P(r |x , y) = sigmoid
(∑

W ′
X~x �W ′

Y ~y � f01(W ′
R~r)
)
, (12)

where W X , W Y are vertex embedding matrices, W R is the relation
embedding matrix, W ′

X is the transpose of matrix W X , ~x , ~y , ~r are
one-hot vectors for two connected vertices x , y and the relation
between them respectively, f01(·) is the regularization function.
Similar thoughts can also be found in TapEM [10] and
HeteSpaceyWalk [25].
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Heterogeneous Random Walk

Comparison and discussion:

Compared with PTE, random walk for heterogeneous networks can
capture the structural dependencies between different types of vertices
better and also preserve higher-order proximities.

Both need manual design with expert knowledge in advance (how to
separate networks in PTE and how to design meta paths).

Just using the information of types of the meta path between two
connected vertices may lose some information (e.g., vertex or edge
types, vertex attributes) passing through the meta path [28].
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Other Models

The assumption of label propagation in homogeneous networks that
“two connected vertices tend to have the same labels” is generalized to
the heterogeneous networks in LSHM [33] by assuming that two
vertices of the same type connected by a path tend to have similar
latent representations.

GAN [22] is used in HeGAN [29] with relation-aware discriminator and
generator to perform better negative sampling.

Supervised information can also be added for downstream tasks. For
example, the idea of PTE, meta paths and matrix factorization are
combined in HERec [54] with supervised information from
recommendation task.
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Graph Neural Network Based Models
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Graph Neural Network Based Models

Overview:

Graph neural networks (GNNs) are kind of powerful feature extractor
for graph structured data and have been widely used in graph
embedding problems.

Compared with shallow embedding models that have been discussed
before, GNNs have a deep architecture and can model vertex attributes
as well as network structure naturally. These are typically neglected, or
cannot be modeled efficiently in shallow embedding models.

Two main streams: graph spectral GNNs (e.g., ChebyNet [12],
FastGCN [9], ASGCN [32], GWNN [?] and the graph filter network
(gfNN) proposed in [27]) and graph spatial GNNs (e.g.,
GraphSAGE [24], Graph Isomorphism Network (GIN) [72], and
MPNN [21]).
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Graph Neural Network Based Models

Graph spectral GNNs v.s. Graph spatial GNNs:

Compared with spectral GNNs, the spatial convolution employed in the
spatial GNNs usually just focus on 1-st neighbours of each node.
However, the local property of spatial convolution operation can help
spatial GNNs be inductive.
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Graph Neural Network Based Models

Shallow embedding models v.s. GNNs:

Compared with shallow embedding models, GNNs can better combine
the structural information with vertex attributes, but the need for
vertex attributes also make GNNs hard to be applied to homogeneous
networks without vertex features.

Moreover, they can also be trained in the supervised or semi-supervised
fashion easily (in fact, GCN is proposed for semi-supervised
classification). Label augmentation can improve the discriminative
property of the learned features [76].

Neural network architecture can help with the design of an end-to-end
model, fitting in downstream tasks better.
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Development of GNN models

Convolutions for graph data were first introduced in [5] based on graph
spectral theory [12] and graph signal processing [56].

GCN is proposed in [36], which uses the first-order approximation of
the graph spectral convolution and the augmented graph adjacency
matrix to design the feature convolution layer’s architecture.

Improvements on GCN: Like introducing sampling strategies [24, 32, 9],
adding attention mechanism [62, 61], or improving the filter
kernel [71, 27].
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Sampling

Sampling techniques are introduced to reduce the time complexity of GCN
or introduce the inductive bias.

Node-Wise Sampling: GraphSAGE [24] randomly samples a fixed size
neighbourhood for each node in each layer and also shift to the spatial
domain to help the model become inductive. GraLSP [35] samples a
vertex v ’s neighbourhood by performing random walks of length l
starting at vertex v . The aggregation process is also combined with
attention mechanism.
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Sampling

Layer-Wise Sampling: Different from node-wise sampling strategies,
nodes in the current layer are sampled based on all the nodes in the
previous layer. To be specific, layer-wise sampling strategies aim to find
the best and tractable sampling distribution q(·|v1, . . . , vtl−1

) for each
layer l based on nodes sampled in layer l − 1: {v1, . . . , vtl−1

}. However,
the best sampling distributions are always cannot be calculated directly,
thus some tricks and relaxations are introduced to obtain sampling
distributions that can be used in practice [9, 32]. The sampling
distribution is

q(u) = ‖Â(:, u)‖2/
∑
u′∈V
‖Â(:, u′)‖2, u ∈ V , (13)

in FastGCN [9] and

q∗(uj) =

∑n
i=1 p(uj |vi )|g(x(uj))|∑N

j=1

∑n
i=1 p(uj |vi )|g(x(uj))|

, (14)

in ASGCN [32].
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Sampling

Subgraph Sampling: Apart from node-wise and layer-wise sampling
strategies, which sample a set of nodes in each layer, a subgraph
sampling strategy is proposed in [74], which samples a set of nodes and
edges in each training epoch and perform the whole graph convolution
operation on the sampled subgraph.
Various samplers can be defined to perform the subgraph sampling
(e.g., random edge sampler and random node sampler). Sampling rates
are also carefully designed.

51 / 103



Attention mechanism

Introducing an attention mechanism can help improve models’ capacities
and interpretability [62] by assigning different weights to nodes in a same
neighborhood explicitly.
Various ways to calcualte attention scores between node i and j :

In GAT [62], the calculation for k-th head’s attention weight αk
ij

between two nodes i and j is:

αk
ij =

exp(LeakyReLU(~aT [W k~hi‖W k~hj ]))∑
k∈Ni

exp(LeakyReLU(~aT [W k~hi‖W k~hk ]))
, (15)

where ~hi ∈ Rd×1 is the feature vector for vertex i , W k ∈ Rd×d ′ ,
~α ∈ R2d ′×1 are corresponding parameters, d , d ′ are the dimension for
feature vector in the previous layer and current layer respectively.
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Attention mechanism

In [61], the attention weight between nodes i and j is calculated based
on the cosine similarity between their hidden representations:

αij =
exp(β(l)cos(Hi ,Hj))∑

j∈Ni
exp(β(l)cos(Hi ,Hj))

, (16)

where β(l) are trained attention-guided parameters of layer l in [61],
where cos(·, ·) represents the cosine similarity.
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Discriminative Power

Weisfeiler-Lehman (WL) Graph Isomorphism Test:

GNN’s inner mechanism is similar with the Weisfeiler-Lehman (WL)
graph isomorphism test [72, 24, 53, 70], which is a powerful test [53]
known to distinguish a broad class of graphs, despite of some corner
cases.
It is proved in [72] that GNNs are at most as powerful as the WL test
in distinguishing graph structures and can be as powerful as WL test
only if using proper neighbour aggregation functions and graph readout
functions ( [72] Theorem 3). Those functions are applied on the set of
neighbours’ features, which can be treated as a multi-set [72]. For
neighbourhood aggregation functions, it is concluded that other
multi-set functions like mean, max aggregators are not as expressive as
the sum aggregator (Fig. ??).
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Discriminative Power

One kind of powerful GNNs is proposed by taking “SUM” as its
aggregation function over neighbours’ feature vectors and MLP as its
transformation function, whose feature updating function in the k-th
layer is:

hkv = MLPk((1 + εk) · hk−1v +
∑

u∈N (v)

hk−1u ). (17)
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Discriminative Power

Logical Classifier:

It is shown in [2] that a popular class of GNNs, called AC-GNNs
(Aggregate-Combine GNNs, whose feature updating function can be
written as Eq. 18, where COM = COMBINE, AGG = AGGREGATE,

x
(i)
v is the feature vector of vertex v in layer i) in which the features of

each node in the successive layers are only updated in terms of node
features of its neighbourhood, can only capture a specific part of FOC2

classifiers.

x
(i)
v = COM(i)(x

(i−1)
v ,AGG(i)({x (i−1)u |u ∈ NG (v)})),

for i = 1, . . . , L
(18)
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Discriminative Power

By simply extending AC-GNNs, another kind of GNNs are proposed
(i.e., ACR-GNN(Aggregate-Combine-Readout GNN)), which can
capture all the FOC2 classifiers:

x
(i)
v = COM(i)(x

(i−1)
v ,AGG(i)({x (i−1)u |u ∈ NG (v)}),

READ(i)({x (i−1)u |u ∈ G})), for i = 1, . . . , L,
(19)

where READ = READOUT. Since the global computation can be
costly, it is further proposed that just one readout function together
with the final layer is enough to capture each FOC2 classifier instead of
adding the global readout function for each layer.
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From Homogeneous to Heterogeneous

In [52], the relational graph convolution network (R-GCN) is proposed
to model large-scale relation data based on the message-passing
frameworks. Different weight matrices are used for different relations in
each layer to aggregate and transform hidden representations from
each node’s neighbourhood.

In HetGNN [75], a feature type-specific LSTM model is used to extract
features of different types for each node, followed by another
vertex-type specific LSTM model which is used to aggregate extracted
feature vectors from different types of neighbours. Then, the attention
mechanism is used to combine representation vectors from different
types of neighbours.
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From Homogeneous to Heterogeneous

Heterogeneous Graph Attention Network (HAN) is proposed in [68],
where meta paths are treated as edges between the connected two
nodes. Here an attention mechanism based on meta paths and nodes
is used to calculate neighbourhood aggregation vector and embedding
matrix.

Heterogeneous Graph Transformer is proposed in [81]. A node
type-specific attention mechanism is used and weights for different
meta paths are learned automatically.

...
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Theoretical Foundations
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Theoretical Foundations

Exploring theoretical foundations → A universal viewpoint to understand
different models

Understanding different models in a universal framework can cast some
insights on the design process of corresponding embedding models (like
the powerful spectral filters).
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Underlying Kernels: Graph Spectral Filters

Most of existing embedding models, whether in a shallow architecture or
based on graph neural networks, have some connections with graph spectral
filters.

For shallow embedding models, it has been shown in [48] that the
some neural based models (e.g. DeepWalk [45], node2vec [23],
LINE [59] ) are implicitly factorizing matrices (TABLE 1). Furthermore,
DeepWalk matrix can also be seen as filtering [48].

For spectral GNNs, the convolutional operation can be interpreted as a
low-pass filtering operation [71, 27].

For spatial GNNs, the spatial aggregation operation can be transferred
to the spectral domain, according to [56].
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Underlying Kernels: Graph Spectral Filters

Apart from those implicitly filtering models, graph filters have also
been explicitly used in ProNE [77], GraphZoom [13] and
GraphWave [17] to refine vertex embeddings or generate vertex
embeddings preserving certain kind of vertex proximities.
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Spectral Filters as Feature Extractors

Spectral filters can be seen and used as the effective feature extractors
based on their close connection with graph spatial properties.

Band-pass filter g(λ) = e−
1
2
[(λ−µ)2−1]θ used in ProNE [77] to

propagate vertex embeddings obtained by factorizing a sparse matrix in
the first stage.

Heat kernel gs(λ) = e−λs is used in GraphWave [17] to generate
wavelets for each vertex (Eq. 7), based on which vertex embeddings
keeping structural similarity are calculated via empirical characteristic
functions.
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Spectral Filters as Feature Extractors

Low pass filters:

Aggregation matrices in GNNs can be seen as low-pass matrices and the
corresponding graph convolution operations can be treated as low-pass
filtering operations [71, 27].
For shallow embedding models, the low-pass filter h̃k(λ) = (1− λ)k is
used to propagate the embedding matrix Ê i to get the refined
embedding matrix E i in the embedding refinement statement of
GraphZoom [13].
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Spectral Filters as Feature Extractors

Solution for Optimization Problems:

The embedding refinement problem in GraphZoom has seen that the
low-pass filter matrix can serve as the close form solution of the
optimization problem related with Laplacian regularization.

The closed form of the Label Propagation (LP) problem’s optimization
objective function (Eq. 20) is Eq. 21, where Y is the label matrix and
Z is the objective of LP that is consistent with the label matrix Y as
well as being smoothed on the graph to force nearby vertices to have
similar embeddings.

Z = arg min
Z
‖Z − Y ‖22 + α · tr(ZTLZ) (20)

Z = (I + αL)−1Y (21)
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Spectral Filters as Kernels of Matrices being Factorized I

Some matrices being factorized by matrix factorization algorithms can also
be seen as filter matrices.

Matrix factorized by DeepWalk [45]: It has been shown in [48] that the

matrix term
(

1
T

∑T
r=1 P r

)
D−1 in DeepWalk’s matrix can be written

as(
1

T

T∑
r=1

P r

)
D−1 =

(
D−

1
2

)(
U

(
1

T

T∑
r=1

Λr

)
UT

)(
D−

1
2

)
, (22)

where Λ, U are the eigenvalue matrix and eigenvector matrix of the

matrix D−
1
2AD−

1
2 = I −L respectively. The matrix

U
(

1
T

∑T
r=1 Λr

)
UT has eigenvalues 1

T

∑T
r=1 λ

r
i , i = 1, . . . , n, where

λi , i = 1, . . . , n are eigenvalues of the matrix D−
1
2AD−

1
2 , which can

be seen as the transformation(a kind of filter) applied on the
eigenvalue λi . This filter has the two properties (Fig. 3): (1) it prefers
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Spectral Filters as Kernels of Matrices being Factorized II

positive large eigenvalues; (2) the preference becomes stronger as the
T (the window size) increases.
Moreover, the relationship between the DeepWalk matrix and its
corresponding normalized graph Laplacian can also be derieved.

Figure: Filtering characteristic of DeepWalk matrix’s function. Left Panel: Image of
the function f (x) = 1

T

∑T
r=1 x

r with domf = [−1, 1], T = 1, 2, 5, 10. Right Panel:

Eigenvalues of D−
1
2 AD−

1
2 , U

(
1
T

∑T
r=1 Λr

)
UT ,

(
1
T

∑T
r=1 P r

)
D−1 for Cora

network (T = 10). Reprinted from [48].
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Universal Attention Mechanism

Attention mechanisms are both explicitly and implicitly widely used in many
algorithms.

For shallow embedding models, the positive sampling strategy, like
sliding a window in the sampled node sequences obtained by different
kind of random walks on the graph [45, 23] or just sample the adjacent
nodes for each target node [59], can be seen as applying different
attention weights on different nodes.
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Universal Attention Mechanism

For GNNs:

The aggregation function in GNN models can be written in the following
universal form:

H = σ(N (LQHW ), (23)

where Q is a diagonal matrix, L is the matrix related with graph
adjacency matrix, N (·) is the normalization function, σ(·) is the
non-linearity transformation function perhaps with post-propagation
rescaling. The aggregation process of graph neural networks can then be
interpreted and separated as the following four stages: pre-propagation
signal rescaling, propagate, re-normalization, and post-propagation
signal rescaling.
In RGCN [80], features with large variance can be attenuated in the
message passing process. It can also be seen as an attention process
applied on vertex feature variance and can help improve the robustness
of GCN.
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Challenges and Problems
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Shallow Embedding Modles

Random Walk Based Models: The equivalence between their
embedding process and the corresponding implicit matrices
factorization process holds only when the walk length goes to infinite,
which leading that fact that random walk based models cannot
outperform matrix factorization based methods, which has also been
shown empirically [48]. Moreover, the sampling process is
time-consuming if high order proximities are wished to be
preserved [51].

Matrix Factorization Based Models: Factorizing large, dense matrices
is still time-consuming, though it has been proved that the factorizing
process can be accelerated by random matrix theory when the matrix is
sparse [77, 19]. But a dense matrix is necessary when high-order
proximities are expected to be kept.
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Shallow Embedding Modles

Summary:

Solutions: Factorize a constructed sparse matrix and use efficient
spectral propagation to enhance the quality of the obtained
embeddings [77].

Inherent limitations:

The look-up embedding table in shallow neural embedding models and
matrices in matrix factorization based embedding methods decide that
those models are inherently transductive. Generating embedding vectors
for new nodes needs to be calculated from scratch or it will take a long
time.
Simple encoders used in such models are hard to incorporate vertex
content in the encoding process. Even though the deep neural encoders
are adopted in DNGR [7] and SDNE [65], features that are fed into the
encoders are |V |-dimensional connectivity proximity vectors and the
reconstruction architecture makes it hard to encode vertex content with
connectivity information.
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Graph Neural Networks

Some inherent defects in GNNs may limit their applications:

GNN models always tend to increase the number of GNN layers to
capture information from high-order neighbours, which can lead to
three problems: over-fitting, over-smoothing and not robuts.

The propagation process in GNN models will always make each node
too dependent on its neighbours, thus leading to the not robust
problem.

Common GNN models rely on labels and features in the embedding
learning process.

Designing the best GNN for a certain task requires manual tuning to
adjust the network architecture and hyper-parameters, such as the
attention mechanism in the neighbourhood aggregation process, the
activation functions and the number of hidden dimensions.
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Graph Neural Networks

Proposed solutions:

Graph Regularization: Like random propagation strategy used in
DropEdge [50] and GRAND [18], data augmentation skill used in
GraphMix [63] and NodeAug [69], adversarial virtual attack used in
BVAT [14], RGCN.

Self-supervised Learning for GNNs: A wide range of SSL tasks for
graphs have been explored, like vertex distance prediction [34], context
prediction [31], graph structure recovery [78], pair-wise proximity
prediction [44], and so on.

Neural Architecture Search for GNNs: NAS for GNNs is also a
meaningful and challenging thing [79].
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Future Development Directions

76 / 103



Dynamic

Networks in the real world are always evolving, such as new users (new
vertices) in social networks, new citations (new edges) in citation
networks. Although there are some works trying to develop embedding
algorithms for evolving networks, there are also many underlying
challenges in such researches since the corresponding embedding
algorithms should deal with the changing networks and be able to
update embedding vectors efficiently [76].
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Robustness

In the past two years, attacks and defenses on graph data have
attracted widespread attention [57]. It is shown that whether
unsupervised models or models with supervision from downstream
tasks can be fooled even by unnoticeable perturbations [82, 4].
Moreover, edges and vertices in real-world networks are always
uncertain and noisy [76]. It is crucial to learn representations that are
robust with respect to those uncertainties and possible adversarial
attacks on graphs. Some universal techniques are widely adopted to
improve the embedding robustness, like using the adversarial attack as
a regularizer (e.g., ANE [11], ATGA [43] VBAT [14]), modeling graph
structure using probability distribution methods (e.g., URGE [30] and
RGCN [80]).
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Generating Real-World Networks

Generating real-world networks is a meaningful thing. For example,
generating molecular graphs can help with the drug design and
discovery process [55, 73], generating real-world citation networks or
social networks can help design more reasonable benchmarks and
defend adversarial attacks. However, designing efficient density
estimation and generating models on graphs is a challenging thing due
to graphs’ inherent combinational property and worth researching on.
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