
Accelerating Topic Model Training on a Single Machine

Mian Lu 1, Ge Bai2, Qiong Luo2, Jie Tang3, Jiuxin Zhao2

1A*STAR Institute of High Performance Computing, Singapore
lum@ihpc.a-star.edu.sg

2Hong Kong University of Science and Technology
{luo, gbai, zhaojx}@cse.ust.hk

3Tsinghua University
jietang@tsinghua.edu.cn

Abstract. We present the design and implementation of GLDA, a library that
utilizes the GPU (Graphics Processing Unit) to perform Gibbs sampling of La-
tent Dirichlet Allocation (LDA) on a single machine. LDA is an effective topic
model used in many applications, e.g., classification, feature selection, and infor-
mation retrieval. However, training an LDA model on large data sets takes hours,
even days, due to the heavy computation and intensive memory access. Therefore,
we explore the use of the GPU to accelerate LDA training on a single machine.
Specifically, we propose three memory-efficient techniques to handle large data
sets on the GPU: (1) generating document-topic counts as needed instead of stor-
ing all of them, (2) adopting a compact storage scheme for sparse matrices, and
(3) partitioning word tokens. Through these techniques, the LDA training which
would take 10 GB memory originally, can be performed on a commodity GPU
card with only 1 GB GPU memory. Furthermore, our GLDA achieves a speedup
of 15X over the original CPU-based LDA for large data sets.

1 Introduction

Statistical topic models have recently been successfully applied to text mining tasks
such as classification, topic modeling, and recommendation. Latent Dirichlet Alloca-
tion (LDA) [1], one of the recent major developments in statistical topical modeling,
immediately attracted a considerable amount of interest from both research and indus-
try. However, due to its high computational cost, training an LDA model may take
multiple days [2]. Such a long running time hinders the use of LDA in applications that
require online performance. Therefore, there is a clear need for methods and techniques
to efficiently learn a topic model.

In this paper, we present a solution to the efficiency problem of training the L-
DA model: acceleration with graphics processing units (GPUs). GPUs have recently
become a promising high-performance parallel architecture for a wide range of appli-
cations [3]. The current generation GPU provides a 10× higher computation capability

Acknowledgement: This work was supported by grant 617509 from the Research Grants Coun-
cil of Hong Kong.

and a 10× higher memory bandwidth than a commodity multi-core CPU. Earlier studies
of using GPUs to accelerate the LDA have shown significant speedups compared with
CPU counterparts [4, 5]. However, due the limited size of GPU memory, these methods
are not scalable to large data sets. The GPU memory size is relatively small compared
with the main memory size, e.g., up to 6GB for GPUs in the market. This limits the
use of GPU-based LDA for practical applications since the memory size required of
many real-world data sets clearly exceeds the capability of the GPU memory. More-
over, some parallel implementations of LDA, such as AD-LDA [2], cannot be directly
adapted on the GPU either since the overall memory consumption would easily exceed
the available GPU memory size due to a full copy of word-topic counts maintained for
each processor.

To address this issue, we study how to utilize limited hardware resources for large-
scale GPU-based LDA training. Compared with the existing work on GPU-base LDA,
our implementation is able to scale up to millions of documents. This scalability is
achieved through the following three techniques:

1. On-the-fly generation of document-topic counts. We do not precompute and store
the global document-topic matrix. Instead, the counts for specific documents are
generated only when necessary.

2. Sparse storage scheme. We investigate a more compact storage scheme to store the
document-topic and word-topic count matrices since they are usually sparse.

3. Word token partitioning. Word tokens in the data set are divided into a few disjoint
partitions based on several criteria. Then for each partition, only a part of document-
topic and word-topic matrices are needed in each iteration.

Based on these techniques, we have successfully trained LDA models on data sets
originally requiring up to 10 GB memory on a GPU with only 1 GB memory. Further-
more, our GPU-based LDA training achieved significant performance speedups. These
results show that our approach is practical and cost-effective. Also, our techniques can
be extended to solutions that involve multiple GPUs.

The remainder of this paper is organized as follows. In Section 2, we briefly intro-
duce the LDA algorithm and review GPGPU. We present the design and implementation
of our GLDA in detail in Section 3. In Section 4, we experimentally evaluate our GLDA
on four real-world data sets. We conclude in Section 5.

2 Preliminary

2.1 Gibbs Sampling of Latent Dirchlet Allocation

We develop GLDA based on Gibbs sampling of LDA [6] due to its simplicity and
high effectiveness for real-world text processing. In the LDA model, D documents are
modeled as a mixture over K latent topics. Given a training data set, we use a set x
to represent the words in documents, where xij is the jth word in the ith document.
Furthermore, a corresponding topic assignments set z is maintained, where zij is the
assigned topic for the word xij . The total number of words in the data set is N . Two
matrices, njk and nwk are used in LDA. Specifically, njk is the document-topic count

– the number of words in document j assigned to topic k, and nwk is the word-topic
count – the number of occurrences of word w assigned to topic k. The sizes of matrices
njk and nwk are D×K and W ×K, respectively, where W is the number of words in
the vocabulary for the given data set.

The original Gibbs sampling is inherently sequential, as each iteration in the training
process depends on the results from the previous iteration. To implement it in parallel,
the previous study has proposed a parallel approximate LDA algorithm [2], which has
been shown similar accuracy to the sequential algorithm. Therefore, in this work, we
adopt a similar parallel approximate LDA algorithm for our GPU implementation.

2.2 Graphics Processing Units (GPUs)

GPUs are widely available as commodity components in modern machines. We adopt
the massive thread parallelism programming model from NVIDIA CUDA to design
our algorithm. The GPU is modeled as an architecture including multiple SIMD multi-
processors. All processors on the GPU share the device memory, which has both a high
bandwidth and a high access latency. Each multi-processor has a fast on-chip local
memory (called shared memory in NVIDIA’s term) shared by all the scalar processors
in the multi-processor. The size of this local memory is small and the access latency
is low. The threads on each multi-processor are organized into thread blocks. Threads
in a thread block share the computation resources on a multi-processor. Thread blocks
are dynamically scheduled on the multi-processors by the runtime system. Moreover,
when the addresses of the memory accesses of the multiple threads in a thread block are
consecutive, these memory accesses are grouped into one access. This feature is called
coalesced access.

2.3 Parallel and Distributed LDAs

Two parallel LDA algorithms, named AD-LDA and HD-LDA, are proposed by New-
man et al. [2]. The speedup of AD-LDA on a 16-processor computer was up to 8 times.
Chen et al. [7] have implemented AD-LDA using MPI and MapReduce for large-scale
LDA applications. Their implementations achieved a speedup of 10× when 32 ma-
chines were used. Another asynchronous distributed LDA algorithm was proposed by
Asuncion et al. [8], which had a speedup of 15-25× when there were 32 processors.

Among existing studies on GPU-based LDAs, Masada et al. [4] have accelerated
collapsed variational Bayesian inference for LDA using GPUs and achieved a speedup
of up to 7 times compared with the standard LDA on the CPU. Moreover, Yan et al.
[5] have implemented both collapsed Gibbs sampling (CGS) and variational Bayesian
(CVB) methods of LDA on the GPU. Compared with the sequential implementation on
the CPU, the speedups for CGS and CVB are around 26x and 196x, respectively. How-
ever, none of these GPU-based LDAs has effectively addressed the scalability issue. In
contrast, our GLDA can train very large data sets on the GPU efficiently.

3 GLDA Design and Implementation

3.1 Parallel Gibbs Sampling of LDA on GPUs

A traditional parallel approach [2] for LDA (AD-LDA) is that both D documents and
document-topic counts njk are distributed evenly over p processors. However, each
processor needs to maintain a local copy of all word-topic counts. Then each proces-
sor performs LDA training based on its own local documents, document-topic, and
word-topic counts independently. At the end of each iteration, a reduction operation
is performed to update all copies of local nwk counts. The major difficulty in apply-
ing this approach to GPUs is that multiple copies of the word-topic count matrix may
not fit into the limited GPU memory. Therefore, Yan et al. [5] have proposed a data
partitioning method to avoid access conflicts while maintaining only one copy of nwk

matrix. The major issue of their implementation is it may cause workload imbalance
since the partitioning scheme is based on both documents and vocabulary, and different
partitions are processed in parallel. The approximate algorithm they have proposed may
not work well for non-uniform data distributions. Moreover, it still cannot handle the
data set when either njk or nwk matrix cannot be entirely stored in the GPU memory.
Instead, we have adopted a different algorithm without such 2-dimension partitioning
and solved the scalability issue.

Algorithm 1: GLDA algorithm for one iteration.
Input:
xp: word tokens assigned to the pth processor
Output: njk, nwk, zij

1 for all processors in parallel do
2 foreach xij ∈ xp do
3 Sample zij with global counts njk and nwk

4 /* Global synchronization */
5 Update njk

6 Atomic update nwk

Our parallel algorithm is based on the following fact: With atomic increment and
decrement operations, concurrent execution of these operations is guaranteed to pro-
duce a correct result. Therefore, in our implementation, we also maintain only one copy
of nwk matrix, and adopt two modifications. (1) We use atomic increment and decre-
ment operations, which are supported by recent generation GPUs, in count updates. (2)
We serialize the computation and update on the nwk matrix. With these modification-
s, Algorithm 1 outlines our parallel LDA algorithm for one iteration. Compared with
AD-LDA, which does not perform global updates until the end of each iteration, our
algorithm performs global updates after each p words are sampled in p processors in
parallel and guarantees the updated results are correct. Since the multi-processors on
the GPU are tightly coupled, the communication overhead is insignificant in this im-
plementation. Specifically, we map each thread block in CUDA as a processor, and
the inherent data parallelism of the sampling algorithm is implemented using multiple
threads within each thread block.

3.2 Memory Consumption of Original LDA

We estimate the total memory consumption of the original LDA algorithm in the fol-
lowing four components: the memory used by the word token set x = {xij} and topic
assignment set z = {zij} are both sizeof(int) × N bytes. The document-topic and
word-topic count matrix consume sizeof(int)×D×K bytes and sizeof(int)×W×K
bytes, respectively. Therefore, the estimated total memory size is at least M bytes:

M = sizeof(int)× (2×N + (D +W)×K)

Where N , D, and W are fixed for a given data set, and the number of topics K is
assigned by users. A large K is usually required for large data sets, for example, a
typical value is

√
D. Figure 1 shows the estimated memory consumption for NYTimes

and PubMed data sets that are used in our evaluations (see Table 1 for experimental
setup). Obviously, current generations of GPUs cannot support such large amounts of
required memory space. A straightforward solution is to send the data set xij and topic
assignment set zij to the GPU on-the-fly. However, this method does not solve the
problem when either njk or nwk matrix cannot be entirely stored in the GPU memory.
Therefore, we study more advanced techniques to enable our GLDA to handle large
data sets.

128 256 512 1024
0.0

0.4

0.8

1.2

1.6

2.0

2.4 nwk
 njk
 z
 x

M
em

or
y

C
on

su
m

pt
io

n
(G

B)

K

(a) NYTimes

256 512 1024 2048
0
1
2
3
4
5
6
7
8
9
10
11 nwk

 njk
 z
 x

M
em

or
y

C
on

su
m

pt
io

n
(G

B)

K

(b) PubMed

Fig. 1. Estimated memory consumptions for NYTimes and PubMed data sets (Table 1) with num-
ber of topics varied.

3.3 Discarding Global Document-Topic Matrix

We have observed that to generate the njk counts for a given document j, only the word
tokens in that document are necessary to scan. Moreover, the sequential sampling of
words in a single document can share an array with K elements storing the document-
topic counts corresponding to that document. Therefore, we consider discarding the
storage for the global document-topic counts. We only produce the necessary njk counts
for specific documents when these documents are processed (the technique is denoted
as no njk). Since we process p words in p different documents in parallel, the estimated
memory size required for this method is Mno njk

bytes.

Mno njk
= sizeof(int)× (2×N +W ×K + p×K)

Moreover, the additional cost introduced is equivalent to one scan on the topic assign-
ment set z for each iteration. Due to the high memory bandwidth of the GPU, the gen-
eration of document-topic counts can be implemented efficiently through the coalesced
access pattern.

Algorithm 2: Generating document-topic counts for a specific document through
the coalesced access.

Input:
z: the topic assignment array for a given document in the device memory
l: the array with K elements in the local memory
n: the number of elements in z
tx: the thread index in a thread block
nt: the number of threads in a thread block
Output:
njk: the document-topic count array with length K in the device memory for the given
document

1 l is initialized to 0;
2 for i = tx; i < n; i = i+ nt do
3 atomicInc(l[z[i]]);

4 /*synchronization within the thread block*/
5 for k = tx; k < K; k = k + nt do
6 njk[k] = l[k];

We use a thread block to generate the document-topic counts for a given document.
Algorithm 2 demonstrates the GPU code for a thread to produce document-topic counts
based on the coalesced access. We have adopted a temporary array stored in the local
memory to improve the memory access efficiency for counting as well as to facilitate
the coalesced access for both reads and writes on the device memory. Without storing
all njk counts, the memory saving is significant with a low computation overhead.

In contrast, the nwk counts are stored. This design choice is made because re-
calculating nwk is expensive - as words are distributed across documents, generating
nwk for each iteration would require approximately N scans of the original data set.
Fortunately, the number of topics and the size of vocabulary are both much smaller than
the data set size; therefore, it is feasible to store the nwk counts even for large data sets.
In the following, we further discuss how to store these matrices efficiently and how to
partition them if they do not fit into memory.

3.4 Sparse Storage Scheme for Count Matrices

We observe that a considerable portion of the values in the nwk and njk matrices be-
come zeros after a burn-in period. For example, after about 100 iterations of training on
the NIPS data set, which is used in our evaluation, the percentages of non-zero values
are around 45% and 10% for njk and nwk counts, respectively. This observation has
motivated us to study the sparse matrix storage scheme for these two counts.

We only store the topic-count pair for non-zero elements for the njk or nwk count
matrix. An array of K topic counts is generated from the sparse storage decompressed
for a given document or word token. The decompression can also be implemented effi-
ciently through the coalesced access as well as the local memory usage, which is similar

to Algorithm 2. Suppose we use a data structure including two elements to store a topic-
count pair, namely id and count. Then to generate an array including all topic counts
for a specific document or word, the value of count will be written to the idth element
in the array for specific pairs. Since p word tokens in p different documents are pro-
cessed in parallel, we need to decompress those corresponding njk and nwk counts.
The estimated memory required is Msparse bytes.

Msparse = sizeof(int)× (2×N + 2× p×K+

2× (D ×K × nzjk%+W ×K × nzwk%))

Where nzjk% and nzwk% refer to the percentage of non-zero elements for njk and
nwk counts, respectively. Note that, when nzjk% or nzwk% is over 50%, this storage
scheme will consume more memory than the original storage format for the njk or nwk

matrix, respectively. Therefore, to decide whether adopting the sparse matrix storage,
we should first estimate the memory space saving.

Although the introduced computation overhead is inexpensive, there is a critical
problem for the GPU-based implementation. Since the percentage of non-zero elements
is not guaranteed to monotonically decrease with iterations, a new topic-count pair may
be inserted when an original zero element becomes non-zero. Thus an additional check-
ing step is necessary after each word sampling process to examine whether new pairs
should be inserted. Unfortunately, our evaluated GPUs do not support dynamical mem-
ory allocation within the GPU kernel code, and the kernel code cannot invoke the CPU
code at runtime. To perform the checking step and also the GPU memory allocation,
some information must be copied from the device memory to the main memory. The
number of such memory copies is around N/p. The overhead of such a large number
of memory copies may be expensive. Our evaluation results confirm this concern. With
the newer generation GPUs, this concern may be partially or fully addressed.

3.5 Data Set Partitioning

Either no njk or sparse storage scheme only partially addresses the memory limitation
issue. To perform LDA for an arbitrary size of data set on the GPU, we consider a
partitioning scheme for word tokens. The basic idea is that the GPU only holds the
necessary information for a subset of word tokens.

Specifically, we divided the set of documents and the vocabulary into n and m dis-
joint subsets by ranges of document IDs or word IDs, respectively. Then there are totally
(n×m) partitions and corresponding (n×m) computation phases in each iteration. For
the (i×m+ j)th phase, where i ∈ {0, 1, ..., (n− 1)} and j ∈ {0, 1, ..., (m− 1)}, only
the word tokens belonging to the ith document subset and jth vocabulary subset are
processed on the GPU, and corresponding document-topic and word-topic counts are
generated on the GPU. The topic assignments set zij is processed exactly the same as
the word token set xij . Through this partitioning scheme, the GPU can process an arbi-
trary size of data set since we can always decompose a large data set to several smaller
partitions that can fit into the GPU memory.

The algorithms of generating necessary njk and nwk counts are similar to Algorithm
2. The computation overhead depends on the order of partition processing. Since gener-
ating nwk counts is more expensive, we process the partitions in a vocabulary-oriented

style. Specifically, for the given jth vocabulary subset, the partitions {i×m+j|0 ≤ i <
n} are processed sequentially. This way, each n partitions can share nwk partitioning
counts for the same word token subset. Therefore the overhead is (1 +m) more scan-
s on the original data set. We denote this global partitioning scheme as doc-voc-part.
Partitioning schemes with m = 1 and n = 1 are denoted as doc-part and voc-part, re-
spectively. doc-part and voc-part are suitable when the word-topic and document-topic
matrix can be entirely stored in the GPU memory, respectively. For a uniform data dis-
tribution with range partitioning, the memory size requirement is estimated as Mpart

bytes:

Mpart = sizeof(int)× (
2×N

n×m
+

D ×K

n
+

W ×K

m
)

Note that the workload difference between different partitions will not hurt the over-
all performance significantly since these partitions are processed in different computa-
tion phases sequentially rather than in parallel on the GPU. Moreover, if the entire word
token set, the topic assignment set, and all njk and nwk counts can be stored in the main
memory, we can directly copy the required words and counts from the main memory to
the GPU memory and avoid the additional computation for the corresponding njk and
nwk counts generation in each iteration. This can further reduce the overhead but re-
quires large main memory. In our implementation, we do not store njk and nwk counts
in the main memory thus our implementation can also be used on a PC with limited
main memory.

3.6 Discussion

The three techniques we have proposed can also be combined, e.g., either no njk or
sparse storage scheme can be used together with the word token partitioning. To choose
appropriate techniques, we give the following suggestions based on our experimental
evaluation results: doc-part should be first considered if the data set and topic assign-
ments cannot be entirely stored in the GPU memory. Then if all njk counts cannot be
held in the GPU memory, no njk or doc-part should be considered. Finally, the voc-
part should be further adopted if the GPU memory is insufficient to store all nwk counts,
and the sparse matrix storage may be used for nwk.

4 Empirical Evaluation

4.1 Experimental Setup

Table 1. Statistics of four real-world data sets.

KOS NIPS NYTimes PubMed
D 3,430 1,500 300,000 1,000,000
W 6,906 12,419 102,660 116,324
N 0.47× 106 1.9× 106 100× 106 70× 106

We conducted the experiments on a Windows XP PC with 2.4 GHz Intel Core2
Duo Quad processor, 2GB main memory and an NVIDAI GeForce GTX 280 GPU
(G280). G280 has 240 1.3 GHz scalar processors, and 1GB device memory. Our GLDA
is developed using NVIDIA CUDA. The CPU counterparts (CPU LDA) are based on
a widely used open-source package GibbsLDA++. Note that CPU LDA is a sequential
program using only one core. Due to the unavailability of the code from the previous
work on GPU-based LDA [5], we could not compare our GLDA with it. However, the
speedup reported by their paper is similar to ours when the data can be entirely stored
on the GPU.

Four real-world data sets are used in our evaluations , which are illustrated in Table
1. We use a subset of the original PubMed data set since the main memory cannot
hold the original PubMed data set. The two small data sets KOS and NIPS are used
to measure the accuracy of GLDA, and the two large data sets NYTimes and PubMed
are used to evaluate the efficiency. Moreover, we also have a randomly sampled subset
with a size half of the original NY Times dataset (denoted as Sub-NYTimes) to study the
overhead of different techniques when all data can be stored in the GPU memory. For
each data set, we randomly split it to two subsets. 90% of the original documents are
used for training, and the remaining 10% are used for test. Throughout our evaluations,
the hyperparameters α and β are set to 50/K and 0.1, respectively [6].

We use the perplexity [9] to evaluate the accuracy of GLDA. Specifically, after ob-
taining the LDA model from 1000 iteration training, we calculate the perplexity of the
test data.

4.2 Perplexity Performance

Figure 2 shows the perplexity results for the KOS and NIPS data sets with number of
thread blocks varied when K=64 and K=128. Note that when there is only one thread
block, the implementation is equivalent to the standard sequential LDA. Therefore, per-
plexity with multiple thread blocks is expected to be similar to that with one thread
block. This figure shows that there is no significant difference for the perplexity results
between the standard LDA model and our parallel LDA algorithm.

4.3 Memory Consumption and Efficiency

We first study the performance impact of the thread parallelism when all data is stored
in the GPU using the data set Sub-NYTimes. We first set the number of threads in
each thread block to 32 when varying the number of blocks. Then the number of thread
block is fixed to 512 and the number of threads in each thread block is varied. Figure 3
shows the elapsed time of one iteration for the GLDA with the number of thread blocks
and number of threads in each thread block varied. Compared with the CPU-LDA’s
performance of 10 minutes per iteration, this figure shows significant speedups when
either number of thread blocks or threads per block is increased. However, it nearly
maintains a constant or slightly reduced when the GPU resource is fully utilized.

http://gibbslda.sourceforge.net/
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

1 32 64 128 256 512 1024
1200

1250

1300

1350

1400

1450

1500 K = 64
 K = 128

Pe
rp

le
xi
ty

#block

(a) KOS

1 32 64 128 256 512 1024
1200

1250

1300

1350

1400

1450

1500 K = 64
 K = 128

Pe
rp

le
xi
ty

#block

(b) NIPS

Fig. 2. Perplexity of KOS and NIPS data sets with number of thread blocks varied.

32 64 128 256 512 1024
0

20

40

60

80

100

120

140

160

El
ap

se
d

tim
e

(s
ec

)

#block

(a) Number of blocks varied.

16 32 64 128 256 512
0

10

20

30

40

50

60

70

80

El
ap

se
d

tim
e

(s
ec

)
#thread

(b) Number of threads varied.

Fig. 3. Elapsed time of one iteration on the GPU for Sub-NYTimes with the number of blocks
and threads per block varied, K=256.

Next, we study the overhead of techniques used to address the scalability issue. We
first measure the performance when only a single method is adopted. Figure 4(a) shows
the elapsed time of GLDA adopting different techniques. opt refers to the implementa-
tion without any additional techniques and is optimized through the thread parallelism.
There are four partitions for both doc-part and voc-part. doc-voc-part has divided both
documents and vocabulary into two subsets, thus also resulting four partitions. The
figure shows that the sparse storage scheme has a relatively large overhead compared
with the other methods. Through our detailed study, we find the additional overhead is
mainly from the large number of memory copies between the main memory and GPU
memory. Moreover, voc-part is slightly more expensive than doc-part and no njk since
it needs to scan the original data set for each partition. For data sets used in our evalu-
ations, the sparse storage scheme is always more expensive than other techniques, thus
we focus on the other two techniques in the following evaluations. We further study the
performance overhead when the technique no njk and partitioning are used together.
Figure 4(b) shows the elapsed time when these two techniques are combined. The com-
bined approach is slightly more expensive than only one technique adopted since the
overhead from two techniques are both kept for the combined method.

To investigate the memory space saving from different techniques, Figure 5 shows
the GPU memory consumptions corresponding to Figure 4. It demonstrates that the
memory requirement is reduced by around 14%-60% through various techniques. S-

opt
no_

njk
spa

rse
doc

-pa
rt

voc
-pa

rt
doc

-vo
c

0

10

20

30

40

50

60

El
ap

se
d

tim
e

(s
ec

)

(a) Adopting single technique

opt

no_
njk+

doc
-pa

rt

no_
njk+

voc
-pa

rt

no_
njk+

doc
-vo

c

0

10

20

30

40

50

60

El
ap

se
d

tim
e

(s
ec

)

(b) Adopting multiple techniques

Fig. 4. Elapsed time of one iteration on the GPU for Sub-NYTimes when adopting different
techniques, K=256.

opt
no_

njk
spa

rse
doc

-pa
rt

voc
-pa

rt
doc

-vo
c

0

100

200

300

400

500

600

700

M
em

or
y

co
ns

um
pt

io
n

(M
B)

(a) Adopting single technique

opt

no_
njk+

doc
-pa

rt

no_
njk+

voc
-pa

rt

no_
njk+

doc
-vo

c
0

100

200

300

400

500

600

700

M
em

or
y

co
ns

um
pt

io
n

(M
B)

(b) Adopting multiple techniques

Fig. 5. Overall memory consumption on the GPU for Sub-NYTimes of adopting different tech-
niques, K=256.

ince the number of topics is not very large and the partitioning scheme can also reduce
the memory size consumed for the word token set and topic assignment set, partition-
ing is more effective than the other two techniques. Moreover, Figure 5(b) shows that
the combined technique can further reduce the memory consumption compared with a
single technique adopted.

Finally, we show the overall performance comparisons based on the NYTimes and
PubMed data sets with reasonable numbers of topics. The CPU counterparts are im-
plemented using the same set of techniques since the main memory is also insufficient
to handle such data set for the original CPU implementation. The estimated memory
consumptions using a traditional LDA algorithm for these two data sets are presented
in Figure 1, and the actual GPU memory consumption is around 700MB for each data
sets. The technique selection is based on the discussion in the implementation section.
Specifically, the evaluation with NYTimes has adopted the techniques doc-part, while
doc-voc-part and no jjk are both adopted for the PubMed data set. Figure 6 shows
that our GLDA implementations are around 10-15x faster than their CPU counterparts.
Such speedup is significant especially for large data sets. For example, suppose 1000
iterations are required for the PubMed with 2048 topics, GLDA could accelerate the
computation from originally more than two months to only around 5 days.

128 256 512 1024
0

1000

2000

3000

4000

5000
 CPU LDA
 GPU LDA

El
ap

se
d

tim
e

(s
ec

)

K

(a) NYTimes

256 512 1024 2048
0

1000

2000

3000

4000

5000

6000
 CPU LDA
 GPU LDA

El
ap

se
d

tim
e

(s
ec

)

K

(b) PubMed

Fig. 6. Performance comparisons for one iteration of NYTimes and PubMed data sets with num-
ber of topics varied.

5 Conclusion

We implemented GLDA, a GPU-based LDA library that features high speed and scal-
ability. On a single GPU with 1 GB GPU memory, we have evaluated the performance
using the data sets originally requiring up to 10 GB memory successfully. Our exper-
imental studies demonstrate that GLDA can handle such large data sets and provide a
performance speedup of up to 15X on a G280 over a popular open-source LDA library
on a single PC.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning
Research 3 (2003) 993–1022

2. Newman, D., Asuncion, A., Smyth, P., Welling, M.: Distributed inference for latent dirichlet
allocation. In: NIPS. (2007)

3. Owens, J.D., Luebke, D., Govindaraju, N.K., Harris, M., Kruger, J., Lefohn, A.E., Purcell,
T.J.: A survey of general-purpose computation on graphics hardware. In: Eurographics 2005,
State of the Art Reports. (2005)

4. Masada, T., Hamada, T., Shibata, Y., Oguri, K.: Accelerating collapsed variational bayesian
inference for latent dirichlet allocation with nvidia cuda compatible devices. In: IEA/AIE’09.
(2009)

5. Yan, F., Xu, N., Qi, Y.: Parallel inference for latent dirichlet allocation on graphics processing
units. In: NIPS’09. (2009) 2134–2142

6. Griffiths, T.L., Steyvers, M.: Finding scientific topics. In: Proceedings of the National Acade-
my of Sciences (PNAS’04). (2004)

7. Chen, W.Y., Chu, J.C., Luan, J., Bai, H., Wang, Y., Chang, E.Y.: Collaborative filtering for
orkut communities: discovery of user latent behavior. In: WWW’09. (2009)

8. Asuncion, A., Smyth, P., Welling, M.: Asynchronous distributed learning of topic models. In:
NIPS. (2008)

9. Azzopardi, L., Girolami, M., van Risjbergen, K.: Investigating the relationship between lan-
guage model perplexity and ir precision-recall measures. In: SIGIR’03. (2003) 369–370

