
KEG, Tsinghua 1

Graph Neural Networks
and Self-supervised Learning

Jie Tang
Computer Science
Tsinghua University

The slides can be downloaded at http://keg.cs.tsinghua.edu.cn/jietang

http://keg.cs.tsinghua.edu.cn/jietang

KEG, Tsinghua 2

A bit about Jie
• Jie Tang, IEEE Fellow, Professor, Associate Chair of Dept. of CS at Tsinghua University.

Interests include social network, data mining, machine learning, knowledge graph.
• SIGKDD Test of Time Award
• SIGKDD Service Award
• NSFC for Distinguished Young Scholars, CCF Young Scientist Award
• 2nd National S&T Award

• PC Co-Chair of WWW’21, CIKM’16, WSDM’15, ASONAM’15; GC of WWW’23

• Editor in Chief of IEEE Transactions on Big Data, Founding EiC of AI OPEN Journal

• Have published more than 300 paper on international conf/journals, including KDD (30),
IJCAI/AAAI (30), NIPS/ICML (10+), IEEE Trans. (30), Machine Learning J

• #Citations: 20,000+ and h-index: 74

• ArnetMiner https://www.aminer.org/ for academic researcher network analysis, which
attracted 20 million users from 220 countries/regions.

• HP: http://keg.cs.tsinghua.edu.cn/jietang/

Work Hard and Play Harder!

https://www.aminer.cn/
http://keg.cs.tsinghua.edu.cn/jietang/

KEG, Tsinghua 3

Networked Data

Social Network Knowledge Graph COVID Graph

drug

event
virus

disease

KEG, Tsinghua 4

Machine Learning with Networks

• ML tasks in networks:
– Node classification

• Predict a type of a given node
– Link prediction

• Predict whether two nodes are linked
– Community detection

• Identify densely linked clusters of nodes
– Network similarity

• How similar are two (sub)networks?

KEG, Tsinghua 5

Representation Learning on Networks

0.8 0.2 0.3 … 0.0 0.0
d-dimensional vector, d<<|V|

Users with the same label are
located in closer

label1

label2
e.g., node classification

Representation Learning/
Graph Embedding

KEG, Tsinghua 6

GRL: NE&GNN

KEG, Tsinghua 7

KEG, Tsinghua 8

GRL: NE&GNN

Network
Embedding

Matrix
Factorization

GNN
Pre-Training

Graph Neural
Networks

https://alchemy.tencent.com/

Graph Data & Benchmarks

CogDL
https://github.com/thudm/cogdl

https://alchemy.tencent.com/
https://github.com/thudm/cogdl

KEG, Tsinghua 9

Representation Learning on Networks

0.8 0.2 0.3 … 0.0 0.0
d-dimensional vector, d<<|V|

Users with the same label are
located in closer

label1

label2
e.g., node classification

Representation Learning/
Graph Embedding

KEG, Tsinghua 10

DeepWalk: Random Walk + Word2Vec

1. B. Perozzi, R. Al-Rfou, and S. Skiena. 2014. Deepwalk: Online learning of social representations. KDD, 701–710.

v1

v3 v4

v6

v5

v4 v3 v1 v5 v6

Random walk One example RW path SkipGram with
Hierarchical softmax

Hierarchical
softmax

v2

KEG, Tsinghua 11

Parameter Learning

• Randomly initialize the representations
• Each classifier in the hierarchy has a set of weights
• Use SGD (stochastic gradient descent) to update both

classifier weights and vertex representations
simultaneously

ℒ = #
!∈#

#
$∈%!

−log(𝑃(𝑐|𝑣))

𝑝 𝑐 𝑣 =
exp(𝒛!&𝒛$)

∑'∈# exp(𝒛!&𝒛')

KEG, Tsinghua 12

Results: BlogCatalog

• Feed the learned representation for node classification
• DeepWalk (node representation learning) performs well,

especially when labels are sparse

KEG, Tsinghua 13

Results: YouTube

• Similar results on YouTube
• Spectral Clustering does not scale to large graphs

KEG, Tsinghua 14

• DeepWalk utilizes fixed-length, unbiased
random walks to generate context for
each node, can we do better?

KEG, Tsinghua 15

Later…
• LINE[1]: explicitly preserves both first-order and

second-order proximities.
• PTE[2]: learn heterogeneous text network

embedding via a semi-supervised manner.
• Node2vec[3]: use a biased random walk to better

explore node’s neighborhood.
• Metapath2vec[4]: meta-path-based random walks

for heterogeneous networks.
• GATNE[5]: inductive learning for hetero-geneous

networks.
1. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. 2015. Line: Large-scale information network embedding. WWW’15, 1067–1077.
2. J. Tang, M. Qu, and Q. Mei. 2015. Pte: Predictive text embedding through large-scale heterogeneous text networks. KDD’15, 1165–1174.
3. A. Grover and J. Leskovec. 2016. node2vec: Scalable feature learning for networks. KDD’16, 855–864.
4. Y. Dong, C. V. Nitesh and S. Ananthram. 2017. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. KDD’14.
5. Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, and J. Tang. Representation Learning for Attributed Multiplex Heterogeneous Network. KDD’19.

KEG, Tsinghua 16

LINE: First-order proximity

KEG, Tsinghua 17

LINE: Second-order proximity

KEG, Tsinghua 18

LINE: Information Network Embedding

• Given a large network G = (V, E), LINE aims to
represent each vertex v ∈ V into a low-dimensional
space Rd

• Goal: learning a function fG : V → Rd, d ≪ |V|.
In Rd, both the first-order proximity and the second-order
proximity between the vertices are preserved

• For each node vi ∈ V, we use u⃗i ∈ Rd to represent the
corresponding low-dimensional vector representation.

KEG, Tsinghua 19

LINE with First-order Proximity

KEG, Tsinghua 20

LINE with Second-order Proximity

KEG, Tsinghua 21

Model Optimization

KEG, Tsinghua 22

Later…
• LINE[1]: explicitly preserves both first-order and

second-order proximities.
• PTE[2]: learn heterogeneous text network

embedding via a semi-supervised manner.
• Node2vec[3]: use a biased random walk to better

explore node’s neighborhood.
• Metapath2vec[4]: meta-path-based random walks

for heterogeneous networks.
• GATNE[5]: inductive learning for hetero-geneous

networks.
1. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. 2015. Line: Large-scale information network embedding. WWW’15, 1067–1077.
2. J. Tang, M. Qu, and Q. Mei. 2015. Pte: Predictive text embedding through large-scale heterogeneous text networks. KDD’15, 1165–1174.
3. A. Grover and J. Leskovec. 2016. node2vec: Scalable feature learning for networks. KDD’16, 855–864.
4. Y. Dong, C. V. Nitesh and S. Ananthram. 2017. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. KDD’14.
5. Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, and J. Tang. Representation Learning for Attributed Multiplex Heterogeneous Network. KDD’19.

KEG, Tsinghua 23

node2vec: Biased Walks

• Use biased random walks to trade off local and global views of
the network

• Biased walks is a special case of random walk, thus node2vec
is a special case of DeepWalk

1. A. Grover and J. Leskovec. 2016. node2vec: Scalable feature learning for networks. KDD, 855–864.

KEG, Tsinghua 24

node2vec
• Biased random walk 𝑅 that given a node 𝑣 generates random walk

neighborhood 𝑁() 𝑣
• Return parameter 𝑝:
oReturn back to the previous node

• In-out parameter 𝑞:
oMoving outwards (DFS) vs. inwards (BFS)

KEG, Tsinghua 25

node2vec
• Biased random walk 𝑅 that given a node 𝑣 generates random walk

neighborhood 𝑁() 𝑣
• Return parameter 𝑝:
oReturn back to the previous node

• In-out parameter 𝑞:
oMoving outwards (DFS) vs. inwards (BFS)

Picture snipped from Leskovec

KEG, Tsinghua 26

Metapath2vec: Heterogeneous Random Walk

• Input: a heterogeneous graph 𝐺 = (𝑉, 𝐸)
• Output: 𝑿 ∈ 𝑅 ! ×# , 𝑘 ≪ |𝑉|, 𝑘-dim vector 𝑿$ for each

node v.

• How do we random walk over
heterogeneous networks?

• How do we apply skip-gram
over different types of nodes?

Org Author Paper Venue
a1

a2

a3

a4

a5

MIT

CMU

ACL

KDD

p1

p2

p3

APVPA

OAPVPAO

APA

meta paths

KEG, Tsinghua 27

Org Author Paper Venue
a1

a2

a3

a4

a5

MIT

CMU

ACL

KDD

p1

p2

p3

APVPA

OAPVPAO

APA

meta paths
Org Author Paper Venue

a1

a2

a3

a4

a5

MIT

CMU

ACL

KDD

p1

p2

p3

APVPA

OAPVPAO

APA

meta paths

meta-path-based
random walks

KDD 0
0
0
0
0
1
0
0
0
0
0
0

ACL

MIT
CMU

a1

a2

a3

a4

a5

p1

p2

p3

input layer hidden
layer

output layer

prob. that
p3 appears

|V|-dim |V| x k

prob. that
KDD apears

... ...

skip-gram

1. Sun and Han. Mining heterogeneous information networks: Principles and Methodologies. Morgan & Claypool Publishers, 2012.
2. Dong et al. metapath2vec: scalable representation learning for heterogeneous networks. In ACM KDD 2017. The most cited paper in KDD’17 as of 2018.

Metapath2vec: Heterogeneous Random Walk

KEG, Tsinghua 28

Org Author Paper Venue
a1

a2

a3

a4

a5

MIT

CMU

ACL

KDD

p1

p2

p3

APVPA

OAPVPAO

APA

meta paths

Metapath2vec: Heterogeneous Random Walk

• Given a meta-path scheme

• The transition probability at step i is defined as

• Recursive guidance for random walkers, i.e.,

KEG, Tsinghua 29

Metapath2vec: Heterogeneous Random Walk

0KDD
0
0
0
0
1
0
0
0
0
0
0

ACL

MIT
CMU

a1

a2

a3

a4

a5

p1

p2

p3

input layer hidden
layer

output layer

prob. that
ACL appears

prob. that
KDD appears

prob. that
a3 appears

prob. that
a5 appears

prob. that
CMU appears

prob. that
p3 appears|V|-dim

|Vp| x kP

prob. that
p2 appears

|Vo| x ko

|VA| x kA

|VV| x kV

KEG, Tsinghua 30

Application: Embedding Academic Graph

metapath2vec++

Microsoft Academic Graph
&

AMiner

author

affiliation

journal conference

fields of study

paper/patent/book

metapath2vec

KEG, Tsinghua 31

Application 2: Node Clustering

KEG, Tsinghua 32

Visualization

word2vec [Mikolov, 2013]

http://projector.tensorflow.org/

KEG, Tsinghua 33

GATNE: Attributed Multiplex Heterogeneous Network
Embedding

• Recommend items to users by considering Attributed Multiplex
Heterogeneous Networks (AMHEN)

1. Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou and J. Tang. Representation Learning for Attributed Multiplex Heterogeneous Network. KDD’19.

KEG, Tsinghua 34

Different Types of Network Embedding

KEG, Tsinghua 35

Multiplex Heterogeneous Graph Embedding

Generating Overall Node Embedding

Base Embedding

Edge Embedding

 0 1 0 0 1

 1 0 0 1 0

0 1 0 1 0

Node Attributes

GATNE-T
GATNE-I

0
0
0
0
1
0
0
0
0

0
0

0
0

Heterogeneous Skip-Gram

Input Layer

Hidden
Layer

Output Layer

…

|V|-dim

|V1|×K1

…

…

|V2|×K2

|V3|×K3

1. Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou and J. Tang. Representation Learning for Attributed Multiplex Heterogeneous Network. KDD’19.

KEG, Tsinghua 36

Recommendation Results
• Data

– Small: Amazon, YouTube, Twitter w/ 10K nodes
– Large: Alibaba w/ 40M nodes and 0.5B edges

GATNE outperforms all sorts of baselines in the various datasets.

** Code available at https://github.com/THUDM/GATNE

https://github.com/THUDM/GATNE

KEG, Tsinghua 37

Alibaba Offline A/B Tests
• GATNE-I is deployed on Alibaba’s distributed cloud platform for its recommendation

system. The training dataset has about 100 million users and 10 million items with 10
billion interactions between them.

• Under the framework of A/B tests, an offline test is conducted on GATNE-I, MNE and
DeepWalk. The experimental goal is to maximize Hit-Rate. The results demonstrate
that GATNE-I improves Hit-Rate by 3.26% and 24.26% compared to MNE and
DeepWalk respectively.

KEG, Tsinghua 38

Questions

• What are the fundamentals underlying the different models?

• Can we unify the different graph embedding approaches?

KEG, Tsinghua 39

Unifying DeepWalk, LINE, PTE, and node2vec into
Matrix Forms

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM’18. One of the most cited papers in WSDM’18

KEG, Tsinghua 40

𝑤!

𝑤!"#
𝑤!"$

𝑤!%$
𝑤!%#

DeepWalk is asymptotically and implicitly factorizing

DeepWalk is factorizing a matrix

𝑣𝑜𝑙 𝐺 =&
!

&
"

𝐴!"

𝑨 Adjacency matrix
𝑫 Degree matrix

b: #negative samples
T: context window size

Matrix
Factorization

KEG, Tsinghua 41

Skip gram with negative sampling

1. Levy and Goldberg. Neural word embeddings as implicit matrix factorization. In NIPS 2014

Skip-gram with negative sampling (SGNS)
• SGNS maintains a multiset 𝓓 that counts the occurrence of each word-

context pair (𝑤, 𝑐)
• Objective

ℒ =#
)

#
$

(# 𝑤, 𝑐 log 𝑔 𝑥)*𝑥$ +
𝑏# 𝑤 #(𝑐)

|𝒟|
log 𝑔(−𝑥)*𝑥$))

• For sufficiently large dimension d, the objective above is equivalent to
factorizing the PMI matrix

log
#(𝑤, 𝑐)|𝒟|
𝑏#(𝑤)#(𝑐)

KEG, Tsinghua 42

Understanding random walk + skip gram

KEG, Tsinghua 43

Understanding random walk + skip gram

KEG, Tsinghua 44

Understanding random walk + skip gram

Suppose the multiset 𝒟 is constructed based on
random walk on graphs, can we interpret 𝑙𝑜𝑔 #(&,()|𝒟|

,#(&)#(()
with graph structures?

KEG, Tsinghua 45

Understanding random walk + skip gram

• Partition the multiset 𝒟 into several sub-multisets
according to the way in which each node and its
context appear in a random walk node sequence.

• More formally, for 𝑟 = 1, 2,⋯ , 𝑇, we define

Distinguish direction
and distance

KEG, Tsinghua 46

Understanding random walk + skip gram

the length of random walk 𝐿 → ∞

KEG, Tsinghua 47

KEG, Tsinghua 48

𝑤!

𝑤!"#
𝑤!"$

𝑤!%$
𝑤!%#

DeepWalk is asymptotically and implicitly factorizing

DeepWalk is factorizing a matrix

𝑣𝑜𝑙 𝐺 =&
!

&
"

𝐴!"

𝑨 Adjacency matrix
𝑫 Degree matrix

b: #negative samples
T: context window size

Matrix
Factorization

KEG, Tsinghua 49

LINE

KEG, Tsinghua 50

PTE

KEG, Tsinghua 51

Understanding node2vec

A. Grover and J. Leskovec. 2016. node2vec: Scalable feature learning for networks. KDD, 855–864.

KEG, Tsinghua 52

Understanding node2vec

1. A. Grover and J. Leskovec. 2016. node2vec: Scalable feature learning for networks. KDD, 855–864.

KEG, Tsinghua 53

Can we directly factorize the derived
matrices for learning embeddings?

KEG, Tsinghua 54

• DeepWalk is implicitly factorizing

• NetMF is explicitly factorizing

NetMF

𝑴 =

𝑴 =

KEG, Tsinghua 55

• DeepWalk is implicitly factorizing

• NetMF is explicitly factorizing

NetMF

𝑴 =

𝑴 =

Recall that in random walk + skip-gram based embedding models: 𝒛01𝒛(à
the probability that node 𝑣 and context 𝑐 appear on a random walk path

𝒛01𝒛(à the similarity score 𝑴0(between node 𝑣 and context 𝑐 defined by
this matrix

KEG, Tsinghua 56

NetMF

Approximate D-1/2AD-1/2
with its top-h eigenpairs
Uh𝝠hUhT

The Arnoldi algorithm [1]
for significant time
reduction

1. R. Lehoucq, D. Sorensen, and C.Yang. 1998. ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM.

KEG, Tsinghua 57

Error Bound for NetMF for a large window size T

• According to Frobenius norm’s property

• and because M’i,j=max(Mi,j, 1)>=1, we have

• Also because the property of NGL,

KEG, Tsinghua 58

Experimental Results

Predictive performance on varying the ratio of training data;
The x-axis represents the ratio of labeled data (%)

KEG, Tsinghua 59

Network Embedding as Matrix Factorization

• DeepWalk

• LINE

• PTE

• node2vec

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM’18. One of the most cited papers in WSDM’18

KEG, Tsinghua 60

Challenge in NetMF

Academic graphSmall world

KEG, Tsinghua 61

For random-walk matrix polynomial

where and non-negative

One can construct a 1 + 𝜖 -spectral sparsifier 2𝑳 with
non-zeros

in time
for undirected graphs

Sparsify 𝑺

1. D. Cheng, Y. Cheng, Y. Liu, R. Peng, and S.H. Teng, Efficient Sampling for Gaussian Graphical Models via Spectral Sparsification, COLT 2015.
2. D. Cheng, Y. Cheng, Y. Liu, R. Peng, and S.H. Teng. Spectral sparsification of random-walk matrix polynomials. arXiv:1502.03496.

KEG, Tsinghua 62

For random-walk matrix polynomial

where and non-negative

One can construct a 1 + 𝜖 -spectral sparsifier 2𝑳 with
non-zeros

in time

Sparsify 𝑺

1. D. Cheng, Y. Cheng, Y. Liu, R. Peng, and S.H. Teng, Efficient Sampling for Gaussian Graphical Models via Spectral Sparsification, COLT 2015.
2. D. Cheng, Y. Cheng, Y. Liu, R. Peng, and S.H. Teng. Spectral sparsification of random-walk matrix polynomials. arXiv:1502.03496.

KEG, Tsinghua 63

NetSMF --- Sparse

Factorize the constructed matrix

1. J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and J. Tang. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. WWW’19.

KEG, Tsinghua 64

Results

** Code available at https://github.com/xptree/NetSMF

https://github.com/xptree/NetSMF

KEG, Tsinghua 65

NE as Sparse Matrix Factorization
• node-context set (sparsity)

• To avoid the trivial solution

• Local negative samples drawn from

• Modify the loss (sum over the edge-->sparse)

KEG, Tsinghua 66

NE as Sparse Matrix Factorization
• Let the partial derivative w.r.t. be zero

• Matrix to be factorized (sparse)

KEG, Tsinghua 67

NE as Sparse Matrix Factorization
• Compared with matrix factorization method (e.g., NetMF)

• Sparsity (local structure and local negative samples)à
much faster and scalable (e.g., randomized tSVD, O(|E|))

• The optimization (single thread) is much faster than SGD used in DeepWalk,
LINE, etc. and is still scalable!!!

• Challenge: may lose high order information!

• Improvement via spectral propagation

V.S.

KEG, Tsinghua 70

NE Enhancement via Spectral Propagation
• the form of the spectral filter

• Band-pass (low-pass, high-pass)

• pass eigenvalues within a certain range and weaken eigenvalues outside that
range

• amplify local and global network information

KEG, Tsinghua 73

Complexity of ProNE

• Spectral propagation only involves sparse matrix
multiplication! The complexity is linear!

• Sparse matrix factorization + spectral
propagation = O(|V|d2 + k|E|)

KEG, Tsinghua 74

Results

** Code available at https://github.com/THUDM/ProNE

* ProNE (1 thread) v.s.
Others (20 threads)

* 10 minutes on
Youtube (~1M nodes)

https://github.com/THUDM/ProNE

KEG, Tsinghua 75

Effectiveness experiments

** Code available at https://github.com/THUDM/ProNE

* ProNE (SMF) = ProNE w/
only sparse matrix factorization

Embed 100,000,000 nodes by one thread:
29 hours with performance superiority

https://github.com/THUDM/ProNE

KEG, Tsinghua 76

Spectral Propagation: k-way Cheeger

KEG, Tsinghua 77

Input:
Adjacency

Matrix
𝑨

Output:

Vector
𝒁

Representation Learning on Networks

NetMF RLN by Matrix

ProNE 𝒁 = 𝑓(𝒁′)

Scalable RLN NetSMF

offer 10-400X speedups

handle 100M graph

achieve better accuracy

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM’18. The most cited paper in WSDM’18 as of May 2019
2. J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and J. Tang. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. WWW’19.
3. J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding. ProNE: Fast and Scalable Network Representation Learning. IJCAI’19.

𝑺 = 𝑓(𝑨)

Sparsify 𝑺

Fast RLN

KEG, Tsinghua 78

GRL: NE&GNN

Network
Embedding

Matrix
Factorization

GNN
Pre-Training

Graph Neural
Networks

https://alchemy.tencent.com/

Graph Data & Benchmarks

CogDL
https://github.com/thudm/cogdl

https://alchemy.tencent.com/
https://github.com/thudm/cogdl

KEG, Tsinghua 79

Graph Neural Networks

a

e

v

b

d

c

Neighborhood Aggregation:
o Aggregate neighbor information and pass into a neural network
o It can be viewed as a center-surround filter in CNN---graph convolutions!

1.Choose neighborhood
2.Determine the order of

selected neighbors
3.Parameter sharing

CNNGraph Convolution

1. Niepert et al. Learning Convolutional Neural Networks for Graphs. In ICML 2016
2. Defferrard et al. Convolutional Neural Networks on Graphs with Fast Locailzied Spectral Filtering. In NIPS 2016
3. Huawei Shen. Graph Neural Networks. A video talk (in Chinese), June 2020. https://dl.ccf.org.cn/audioVideo/detail.html?id=4966039790962688&_ack=1

KEG, Tsinghua 80

Graph Convolutional Networks

𝒉BC = 𝜎(𝑾C &
D∈F B ∪B

𝒉DCHI

|𝑁(𝑢)||𝑁(𝑣)|
)

the neighbors of node 𝑣

node 𝑣’s embedding at layer 𝑘

Non-linear activation function (e.g., ReLU) parameters in layer 𝑘

a

e

v

b

d

c

1. Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017

𝑯C = 𝜎 -𝑨𝑯 CHI 𝑾 C

normalized Laplacian matrix

Aggregate info from neighborhood via the normalized Laplacian matrix

KEG, Tsinghua 81

Graph Convolutional Networks

a

e

v

b

d

c

𝒉BC = 𝜎(𝑾C &
D∈F B

𝒉DCHI

𝑁 𝑢 𝑁 𝑣
+

𝑾C&
B

𝒉BCHI

|𝑁(𝑣)||𝑁(𝑣)|
)

Aggregate from 𝑣’s neighbors

Aggregate from itself

1. Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017

KEG, Tsinghua 82

Graph Convolutional Networks

a

e

v

b

d

c
𝒉BC = 𝜎(𝑾C &

D∈F B

𝒉DCHI

𝑁 𝑢 𝑁 𝑣
+

𝑾C&
B

𝒉BCHI

|𝑁(𝑣)||𝑁(𝑣)|
)

The same parameters for both its neighbors & itself

KEG, Tsinghua 83

Graph Convolutional Networks

a

e

v

b

d

c
𝒉BC = 𝜎(𝑾C &

D∈F B

𝒉DCHI

𝑁 𝑢 𝑁 𝑣
+

𝑾C&
B

𝒉BCHI

|𝑁(𝑣)||𝑁(𝑣)|
)

𝑫HIJ𝑨𝑫HIJ𝑯 CHI 𝑾 C

𝑫HIJ𝑰𝑫HIJ𝑯 CHI 𝑾 C

KEG, Tsinghua 84

Graph Convolutional Networks

• Model training
– The common setting is to have an end to end

training framework with a supervised task

𝑯C = 𝜎 𝑫HIJ 𝑨 + 𝑰 𝑫HIJ𝑯 CHI 𝑾 C

Input

𝒁 =𝑯!

𝑯" = 𝑿

𝐺 = (𝑉, 𝐸, 𝑨)

• Benefits: Parameter sharing for all nodes
– #parameters is subline in |V|
– Enable inductive learning for new nodes

KEG, Tsinghua 85

GraphSAGE

𝒉!" = 𝜎(𝑾" &
#∈% ! ∪!

𝒉#"'(

|𝑁(𝑢)||𝑁(𝑣)|
)

1. Hamilton et al. Inductive Representation Learning on Large Graphs. NIPS 2017
2. Hamiltion & Tang, AAAI 2019 Tutorial on Graph Representation Learning

a

e

v

b

d

c

GCN

GraphSage

𝒉!" = 𝜎([𝑨" ⋅ AGG 𝒉#"'(, ∀𝑢 ∈ 𝑁 𝑣 , 𝑩"𝒉!"'(])
Generalized aggregation: any differentiable
function that maps set of vectors to a single vector

KEG, Tsinghua 86

GraphSAGE

𝒉!" = 𝜎(𝑾" &
#∈% ! ∪!

𝒉#"'(

|𝑁(𝑢)||𝑁(𝑣)|
)a

e

v

b

d

c

GCN

GraphSage

𝒉!" = 𝜎([𝑨" ⋅ AGG 𝒉#"'(, ∀𝑢 ∈ 𝑁 𝑣 , 𝑩"𝒉!"'(])
Generalized aggregation: any differentiable
function that maps set of vectors to a single vector

Instead of summation, it concatenates
neighbor & self embeddings

1. Hamilton et al. Inductive Representation Learning on Large Graphs. NIPS 2017
2. Hamiltion & Tang, AAAI 2019 Tutorial on Graph Representation Learning

KEG, Tsinghua 87

GNN: Graph Attention

𝒉!" = 𝜎(𝑾" &
#∈% ! ∪!

𝒉#"'(

|𝑁(𝑢)||𝑁(𝑣)|
)

GCN

Graph Attention

𝒉!" = 𝜎(&
#∈% ! ∪!

𝛼!,#𝑾"𝒉#"'()

Learned attention weights

a

e

v

b

d

c

1. Velickovic et al. Graph Attention Networks. ICLR 2018

KEG, Tsinghua 88

GNN: Graph Attention

a

e

v

b

d

c

Various ways to define attention!

1. Velickovic et al. Graph Attention Networks. ICLR 2018

KEG, Tsinghua 89

Revisiting Semi-Supervised Learning
on Graphs

• W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Kharlamov, and J. Tang. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. NeurIPS’20.
https://arxiv.org/abs/2005.11079

• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand

KEG, Tsinghua 90

Semi-Supervised Learning on Graphs

Input: a partially labeled &
attributed graph

Output: infer the labels of
unlabeled nodes

?

?
??

KEG, Tsinghua 91

Graph Neural Networks
1. Each node is highly dependent with its neighbors,

making GNNs non-robust to noises
𝑯!"# = 𝜎 $𝑨𝑯 ! 𝑾 !

a deterministic propagation

𝑯!"# = 𝜎 1𝑨𝑯 ! 𝑾 !

4

?
Attacker

node

Perturbation

?

4

KEG, Tsinghua 92

Graph Neural Networks
1. Each node is highly dependent with its neighbors,

making GNNs non-robust to noises

2. Stacking many GNN layers may cause over-
fitting & over-smoothing.

𝑯!"# = 𝜎 $𝑨𝑯 ! 𝑾 !

feature propagation
is coupled with

non-linear transformation

KEG, Tsinghua 93

Graph Random Neural Networks (GRAND)

Consistency
RegularizationAugmented

features $𝑿

𝑺 Augmentations

• Consistency Regularized Training:
– Generates 𝑆 data augmentations of the graph
– Optimizing the consistency among 𝑆 augmentations of the graph.

Augmentation 1

Augmentation 𝑆

Optimize the
consistency

? ?

KEG, Tsinghua 94

GRAND: Random Propagation for Graph Data
Augmentation

• Random Propagation (DropNode + Propagation):
– Each node is enabled to be not sensitive to specific neighborhoods.
– Decouple feature propagation from feature transformation.

Random Propagation for Augmentation

Augmented features

KEG, Tsinghua 95

Graph Random Neural Networks (GRAND)
Consistency
Regularization

Augmented
features $𝑿

𝑺 Augmentations ?
Augmentation 1

Augmentation 𝑆

Optimize the
consistency

Random Propagation

?

KEG, Tsinghua 96

GRAND: Consistency Regularization

Average

Sharpening

Distributions of a node
after augmentations

KEG, Tsinghua 97

Graph Random Neural Networks (GRAND)

Consistency
Regularization

Augmented
features $𝑿

𝑺 Augmentations

Random Propagation

Optimize the
consistency

?

KEG, Tsinghua 98

Consistency Regularized Training Algorithm

Consistency
Regularization

Generate
𝑺 Augmentations

• W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Kharlamov, and J. Tang. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. NeurIPS’20.
https://arxiv.org/abs/2005.11079

• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand

KEG, Tsinghua 99

GRAND: DropNode vs Dropout
• Dropout drops each element in 𝑿 independently
• DropNode drops the entire features of selected nodes, i.e., the row vectors of 𝑿,

randomly
• Theoretically, Dropout is an adaptive 𝐿6 regularization.

KEG, Tsinghua 100

Graph Random Neural Networks (GRAND)
• With Consistency Regularization Loss:

– Random propagation can enforce the consistency of the classification confidence
between each node and its all multi-hop neighborhoods.

• With Supervised Cross-Entropy Loss:
– Random propagation can enforce the consistency of the classification confidence

between each node and its labeled multi-hop neighborhoods.

KEG, Tsinghua 101

Results

Instead of the marginal improvements by
conventional GNN baselines over GCN,

GRAND achieves much more
significant performance lift in all three

datasets!

GCNs

Sampling
GCNs

Reg.
GCNs

• W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Kharlamov, and J. Tang. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. NeurIPS’20.
https://arxiv.org/abs/2005.11079

• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand

KEG, Tsinghua 102

Results

More experiments on larger graph datasets

KEG, Tsinghua 103

Results

Evaluation of the design choices in GRAND

KEG, Tsinghua 104

Results

Ablation Study
1. Each of the designed components

contributes to the success of GRAND.

2. GRAND w/o consistency regularization
outperforms almost all 8 non-regularization
based GCNs & DropEdge

Random Propagation
vs.

Feature Propagation & Non-Linear Transformation

KEG, Tsinghua 105

Results

Robustness
1. GRAND (with or w/o) consistency regularization is more robust than GCN and GAT.

Random Propagation
vs.

Feature Propagation & Non-Linear Transformation

KEG, Tsinghua 106

Results

Over-Smoothing
1. GRAND is powerful to relieve over-smoothing, while GCN & GAT are vulnerable to it

Random Propagation
vs.

Feature Propagation & Non-Linear Transformation

KEG, Tsinghua 107

Results

Generalization
1. Both the random propagation and consistency regularization improve GRAND’s generalization capability

KEG, Tsinghua 108

Graph Robustness Benchmark:
Benchmarking the Adversarial Robustness

of Graph Machine Learning

Homepage: https://cogdl.ai/grb/home Code: https://github.com/THUDM/grb

https://cogdl.ai/grb/home
https://github.com/THUDM/grb

KEG, Tsinghua 109

Adversarial Robustness in Graph Machine Learning

• However, GML models face big threats from adversarial attacks.

Adversarial Robustness:
The ability to maintain performance
under potential adversarial attacks.

Social network Academic network

Attacked

❌ ❌

❌

• Graph machine learning (GML) has made great progress.

Knowledge graph

1. X. Zou, Q. Zheng, Y. Dong, X. Guan, E. Kharlamov, J. Lu, and J. Tang. TDGIA: Effective Injection Attacks on Graph Neural Networks. KDD’21.
2. Zheng et al., Graph Robustness Benchmark: Benchmarking the Adversarial Robustness of Graph Machine Learning, NeurIPS’21.

Code & data for Grand: https://cogdl.ai/grb/home https://github.com/THUDM/grb

https://cogdl.ai/grb/home
https://github.com/THUDM/grb

KEG, Tsinghua 110

Graph Robustness Benchmark (GRB)

• Elaborated datasets
– From small- to large- scale graphs.
– Robust-specific splitting and normalization.

• Unified evaluation protocol
– Unified settings and general metrics.
– Unified evaluation pipeline.

• Refined attack/defense scenarios
– More practical scenarios.
– More realistic assumptions.

• Modular coding framework
– Easy implementation.
– Esurance of reproducibility.

110

Altogether, GRB serves as a scalable, unified, modular, and reproducible benchmark.

KEG, Tsinghua 111

GRB Datasets

111

• Robust-specific splitting: Various difficulties according to the average degree of target nodes.

• Scalability: From small to large graphs with hundreds of thousands of nodes (millions of edges).

• Feature normalization: Unify values to the same scale,
<latexit sha1_base64="YVmFrg4cUVFC5O4LfftOHcf2Jmc=">AAACaHicbVHLahsxFNVMH0mdPiZ9UEo3Ik7BWdTMmJB2UwgtlC5TqJOAx5g78p1ERNIM0p0QI4b+Y3f9gG76FZUfC8fpAcHh3HOvro6KWklHafo7iu/df/Bwa/tRZ+fxk6fPkt3np65qrMChqFRlzwtwqKTBIUlSeF5bBF0oPCuuvszrZ9donazMD5rVONZwYWQpBVCQJsnP/VwDXQpQ/mvLP/G8tCD8oPV5LVuegxUEprdU153veU7SzHxOeENWe41g2ra3ZjkIM25ZHE03HQf7k6Sb9tMF+F2SrUiXrXAySX7l00o0Gg0JBc6NsrSmsQdLUihsO3njsAZxBRc4CtSARjf2i6Ba/i4oU15WNhxDfKGud3jQzs10EZzzNd1mbS7+rzZqqPw49tLUDaERy4vKRnGq+Dx1PpUWBalZICCsDLtycQkhVAp/0wkhZJtPvktOB/3sqH/4fdA9/ryKY5u9ZXusxzL2gR2zb+yEDZlgf6Kd6GX0KvobJ/Hr+M3SGkernhfsFuK9f6z+u9w=</latexit>

F = 2
⇡ arctan(F�mean(F)

std(F))
1. X. Zou, Q. Zheng, Y. Dong, X. Guan, E. Kharlamov, J. Lu, and J. Tang. TDGIA: Effective Injection Attacks on Graph Neural Networks. KDD’21.
2. Zheng et al., Graph Robustness Benchmark: Benchmarking the Adversarial Robustness of Graph Machine Learning, NeurIPS’21.

Code & data for Grand: https://cogdl.ai/grb/home https://github.com/THUDM/grb

https://cogdl.ai/grb/home
https://github.com/THUDM/grb

KEG, Tsinghua 112

GRB Attack vs. Defense Scenario
• Example of graph injection scenario (black-box, inductive, evasion)

112

Attributed
Graph

Train nodes
Test nodes
Injected nodes

W/O Attack

Trained
GML Models

Deployment Inference Phase

W/ Attack

Evasion

Normal

Attacked

Class: A, B, C, …

✅

❌

Constraints: limited number of injected nodes each with limited edges + constrained feature range.

Training
Phase

Inductive Training

Injection Attack

Black-box scenario

KEG, Tsinghua 113

GRB Modular Coding Framework

113

Example of using GRB

KEG, Tsinghua 114

Example of GRB Leaderboard

114

grb-aminer leaderboard (Top 5 ATK. vs. Top 10 DEF.) in graph injection scenario

• Metric for Attacks: Avg. Acc., Avg. 3-Max Acc., Weighted Acc.
• Metric for Defenses: Avg. Acc., Avg. 3-Min Acc., Weighted Acc.
• Avg. 3-Min/Max Acc.: average accuracy of three most effective attacks or three most robust models.
• Weighted Acc.: attach higher weight for more effective attacks or more robust models.
• Ranking: Ranked by Weighted Acc., red and blue indicate the best results of attacks/defenses respectively.
• More results for other difficulties, datasets and scenarios can be found on our website.

GRB focuses on generally more effective methods, rather than comparing a single pair of attack/defense.

1. X. Zou, Q. Zheng, Y. Dong, X. Guan, E. Kharlamov, J. Lu, and J. Tang. TDGIA: Effective Injection Attacks on Graph Neural Networks. KDD’21.
2. Zheng et al., Graph Robustness Benchmark: Benchmarking the Adversarial Robustness of Graph Machine Learning, NeurIPS’21.

Code & data for Grand: https://cogdl.ai/grb/home https://github.com/THUDM/grb

https://cogdl.ai/grb/home
https://github.com/THUDM/grb

KEG, Tsinghua 115

GCC: Graph Contrastive Coding for
Graph Neural Network Pre-Training

KEG, Tsinghua 116

Networked Data

Social Network Knowledge Graph COVID Graph

drug

event
virus

disease
Question:

How to design machine learning models to learn the
universal structural patterns across networks?

KEG, Tsinghua 117

Pre-training and Fine-tuning

NLP: BERT

Graph Learning
GCC

CV: MoCo,
SimCLR

KEG, Tsinghua 118

• Graph pre-training setting:
– To pre-train from some graphs
– To fine-tune for unseen tasks on unseen graphs

• How to do this?
– Model level: GNNs?
– Pre-training task: self-supervised tasks across graphs?

GNN Pre-Training

KEG, Tsinghua 119

GNN Pre-Training across Networks

• What are the requirements?
– structural similarity, it maps vertices with similar local

network topologies close to each other in the vector space
– transferability, it is compatible with vertices and graphs

unseen by the pre-training algorithm

1. Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020.
2. Code & Data for GCC: https://github.com/THUDM/GCC

https://github.com/THUDM/GCC

KEG, Tsinghua 120

GNN Pre-Training across Networks
• The Idea: Contrastive learning

• pre-training task: instance discrimination

• InfoNCE objective: output instance representations that are capable of
capturing the similarities between instances

• Contrastive learning for graphs?
• Q1: How to define instances in graphs?

• Q2: How to define (dis) similar instance pairs in and across graphs?
• Q3: What are the proper graph encoders?

• query instance 𝑥&
• query 𝒒 (embedding of 𝑥&), i.e., 𝒒 = 𝑓(𝑥&)
• dictionary of keys 𝒌', 𝒌$, ⋯ , 𝒌(
• key 𝒌 = 𝑓(𝑥))

1. Z. Wu, Y. Xiong, S. X Yu, and D. Lin. Unsupervised feature learning via non-parametric instance discrimination. In CVPR ’18.
2. K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual representation learning. In CVPR ’20.

KEG, Tsinghua 121

Graph Contrastive Coding (GCC)
• Contrastive learning for graphs

• Q1: How to define instances in graphs?
• Q2: How to define (dis) similar instance pairs in and across graphs?

• Q3: What are the proper graph encoders?

Subgraph instance
discrimination

KEG, Tsinghua 122

GCC Pre-Training / Fine-Tuning
• pre-train on six graphs

• fine-tune on different graphs
– US-Airport & AMiner academic graph

• Node classification
– COLLAB, RDT-B, RDT-M, & IMDB-B/M

• Graph classification
– AMiner academic graph

• Similarity search
• The base GNN

– Graph Isomorphism Network (GIN)

Code & Data for GCC:
https://github.com/THUDM/GCC

https://github.com/THUDM/GCC

KEG, Tsinghua 123

Result 1: Node Classification

• Setup
– US-Airport
– AMiner academic graph

GCC

Node
Classification

US-Airport

KEG, Tsinghua 124

Result 2: Graph Classification
• Setup

– COLLAB, RDT-B, RDT-M, & IMDB-B, IMDB-M

GCC

s

Graph
Classification

Reddit

KEG, Tsinghua 125

Result 3: Top-k Similarity Search

• Setup
– AMiner academic graph

GCC

s

Similarity
Search

KDD ICDM

GCC

KEG, Tsinghua 126

GNN Pre-Training

GCC: Graph Contrastive Coding

Subgraph Instance Discrimination

GCC

Node
Classification

Pre-Training Fine-Tuning

Facebook IMDB DBLP US-Airport

GCC

s

Graph
Classification

Reddit

GCC

s

Similarity
Search

KDD ICDM

GCC…

1. Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020.
2. Code & Data for GCC: https://github.com/THUDM/GCC

https://github.com/THUDM/GCC

KEG, Tsinghua 127

GRL: NE&GNN

Network
Embedding

Matrix
Factorization

GNN
Pre-Training

Graph Neural
Networks

https://alchemy.tencent.com/

Learning GNNs with CogDL

CogDL
https://github.com/thudm/cogdl

https://alchemy.tencent.com/
https://github.com/thudm/cogdl

KEG, Tsinghua 128

It is hard to apply GNNs to real-world applications…

• Billion-scale real-world graphs!
– How to store large-scale graphs, GPU memory bounded
– Large cost of model training

• Potential issues in training GNNs
– Over-fitting, Over-smoothing

• Methodologies
– “Millions of” papers…
– Which one really works? Reproducibility…

KEG, Tsinghua 129

CogDL

KEG, Tsinghua 130

CogDL Introduction

CogDL aims at providing researchers and
developers with easy-to-use APIs, reproducible
results, and high efficiency for most graph tasks
and applications.

Vision

Easy-to-use

Philosophy

Reproducibility Efficiency

1. Y. Cen, Z. Hou, Y. Wang, Q. Chen, Y. Luo, X. Yao, A. Zeng, S. Guo, Y. Yang, P. Zhang, G. Dai, Y. Wang, C. Zhou, H. Yang, and J. Tang. CogDL: An Extensive Toolkit for Deep Learning on Graphs. arXiv 2021.

KEG, Tsinghua 131

CogDL Development

2020 2021

Prototype

Development
started

V0.2
Experiment API

Pipeline API

V0.1.1
Hyper-parameter

search

V0.1
Basic APIs

V0.1.2
Trainer API

Next steps

V0.3
Fast Ops

V0.4
Training
Speedup

Prerequisite: PyTorch environment CogDL installation: pip install cogdl
or git clone https://github.com/THUDM/cogdl

V0.4.1
Deep GNNs

https://github.com/THUDM/cogdl

KEG, Tsinghua 132

Tasks, Datasets, Models in CogDL
• >10 Tasks

– Node/graph classification, etc.
• >60 Datasets

– Social networks, academics, molecular
• >70 models

KEG, Tsinghua 133

Experiment API

• Feed task, dataset, model, (hyper-parameters), (search
space)

KEG, Tsinghua 134

Results of Experiment API

KEG, Tsinghua 135

Results of Node Classification
• Two kinds of models：

– Semi-supervised：GCN, GAT, GRAND, …
– Self-supervised：MVGRL, DGI

• Citation networks：Cora, Citeseer, Pubmed

KEG, Tsinghua 136

Results of Graph Classification
• Two kinds of models

– Self-supervised：InfoGraph, graph2vec, DGK
– Supervised：GIN, DiffPool, SortPool, …

• Two types of graphs
– Bioinformatics：MUTAG, PTC, NCI1, PROTEINS
– Social networks：IMDB-B/M, COLLAB, REDDIT-B

KEG, Tsinghua 137

Pipeline API

• Feed application, model, (hyper-parameters)

KEG, Tsinghua 138

All with CogDL
• Efficiency

– Graph storage in CogDL
– Sparse operators in CogDL
– Training on large-scale graphs
– Training very deep GNNs

• Customization
– Customized usage in CogDL

• Benchmarks:
– Self-supervised learning
– Heterogeneous Graph Benckmark (HGB)
– Graph Robustness Benchmark (GRB)

• Applications:
– Recommendation

KEG, Tsinghua 139

Sparse Storage of Adjacency Matrix

• COO format：
– (row, col) or (row, col, value)，size: |E|*2/3
– [[0,0,1], [0,2,2], [1,2,3], [2,0,4], [2,1,5], [2,2,6]]

• CSR format：
– row_ptr：size |V|+1
– col_indices: size |E|
– value: size |E|
– [0, 2, 3, 6], [0, 2, 2, 0, 1, 2], [1, 2, 3, 4, 5, 6]

1 0 2
0 0 3
4 5 6

KEG, Tsinghua 140

Graph Storage in CogDL

class Graph: (defined in cogdl.data)
• x：node feature matrix
• y：node labels
• edge_index：COO format matrix
• edge_weight：edge weight (if exists)
• edge_attr：edge attributes (if exists)
• row_ptr：row index pointer for CSR matrix
• col_indices：column indices for CSR matrix

KEG, Tsinghua 141

Usage of CogDL’s Graph

• Graph Initialization
– g = Graph(edge_index=edge_index)
– g.edge_weight = torch.rand(n)

• Commonly used operators：
– add_self_loops()
– sym_norm()
– degrees()
– subgraph()
– …

KEG, Tsinghua 142

Recall Sparse Operators in GNNs
• GCN（Sparse Maxtrix-Matrix Multiplication, SpMM）

𝑯 ;<= = 𝑨𝑯 ; 𝑾

• GAT（ Edge-wise-softmax）

𝛼;> = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒;> =
exp 𝑒;>

∑?∈A! exp 𝑒;?

• GAT（Multi-Head SpMM）

𝒉; = 𝐶𝑂𝑁𝐶𝐴𝑇 𝜎 M
>∈A!

𝛼;>?𝑾?𝒉>

KEG, Tsinghua 143

GCN/GAT Layer in CogDL

𝐻 ;<= = 𝐴𝐻 ; 𝑾 B 𝛼!* = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒!* =
exp 𝑒!*

∑)∈,! exp 𝑒!)

ℎ! = 𝐶𝑂𝑁𝐶𝐴𝑇 𝜎 U
*∈,!

𝛼!*)𝑾)ℎ*

KEG, Tsinghua 144

Implementation of GCN/GAT Layer

𝐻 ;<= = 𝐴𝐻 ; 𝑾 B 𝛼!* = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒!* =
exp 𝑒!*

∑)∈,! exp 𝑒!)

ℎ! = 𝐶𝑂𝑁𝐶𝐴𝑇 𝜎 U
*∈,!

𝛼!*)𝑾)ℎ*

KEG, Tsinghua 145

33
0
G

40
0
G

9.
5
T

10
.0
T

cuS
PA
RS
E

dg
SPA

RS
E

GE
MM

(de
nse

)

GP
U p

ea
k

Lack efficient sparse kernels

Big gap between FLOPS of sparse kernels
and hardware peak performance.

57%

cuS
PA
RS
E

dg
SPA

RS
E

SpMM

14.01x

cuS
PA
RS
E

dg
SPA

RS
E

SDDMM

16%

cuS
PA
RS
E

dg
SPA

RS
E

Multihead SpMM

16%

cuS
PA
RS
E

dg
SPA

RS
E

SpMV

57%

cuS
PA
RS
E

dg
SPA

RS
E

SpMM

14.01x

cuS
PA
RS
E

dg
SPA

RS
E

SDDMM

16%

cuS
PA
RS
E

dg
SPA

RS
E

Multihead SpMM

16%

cuS
PA
RS
E

dg
SPA

RS
E

SpMV

……

……

dgSPARSE, Deep Graph SPARSE
Efficient Implementation on GPUs

Efficient Sparse Kernels

KEG, Tsinghua 146
14
6

20%

cu
SP
AR
SE

dg
SP
AR
SE

Tesla V100 (Volta)

40%

cu
SP
AR
SE

dg
SP
AR
SE

RTX 2080 (Turing)

57%

cu
SP
AR
SE

dg
SP
AR
SE

RTX 3090 (Ampere)

Graph

Efficient map
• Workload balance

• Thread coarsening

• ……

Efficient reduce
• Inner-warp reduction

• Inter-warp reduction

• ……

SIMT GPU architecture

Graph

Tiny Effort to new GPU architecture

Deep Graph Sparse (dgSPARSE) Library

KEG, Tsinghua 147

Performance of GCN/GAT model

• Setting：2-layer GCN/GAT，hidden size=128
• Supported by dgSPAESE

KEG, Tsinghua 148

Training on Large-scale Graphs
• Billion-scale social networks and recommender systems
• Main challenge: GPU memory bounded!
• Training GNNs via mini-batch sampling

Neighbor Sampling
(NeurIPS ’17)

GraphSAINT
(ICLR ’20)

ClusterGCN
(KDD ’19)

1. Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. NeurIPS ’17.
2. Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks. KDD ’19.
3. Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint: Graph sampling based inductive learning method. In ICLR ’20.

KEG, Tsinghua 149

ClusterGCN

• Graph partition (METIS)
• Train GNNs via mini-batch

• Memory: O(NFL) -> O(bFL)

KEG, Tsinghua 150

GraphSAINT

• Unbiased sampler
– Random node/edge/walk sampler

• Unbiased aggregated representations

KEG, Tsinghua 151

GraphSAINT Performance

KEG, Tsinghua 152

Multi-GPU implementation:
sampling + PyTorch DDP

ü Sampler in CogDL
[+] NeighborSampling
[+] ClusterGCN
[+] GraphSAINT

ü 4 GPUs ~ 3x↑ speedup

Multi-GPU Training

Usage: python scripts/train.py --model gcn --task node_classification
--dataset reddit --trainer dist_clustergcn

KEG, Tsinghua 153

Other Solutions for very Deep GNNs?

• GPU memory is the bottleneck for training very deep
GNNs.

• Recall RevGNN uses reversible blocks.
• Are there other solutions?
• Activation Compressed Training!

KEG, Tsinghua 154

ActNN : Activation Compressed Training
• ActNN : Reducing Training Memory Footprint via 2-Bit Activation

Compressed Training (By Jianfei Chen, Tsinghua)
• “ActNN reduces the memory footprint of the activation by 12×.”
• https://github.com/ucbrise/actnn

1. Chen, Jianfei, et al. "ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training." arXiv preprint arXiv:2104.14129 (2021).

https://github.com/ucbrise/actnn

KEG, Tsinghua 155

ActNN Theory

KEG, Tsinghua 156

ActNN Implementation

KEG, Tsinghua 157

ActNN Performance

• Experiment on ImageNet

KEG, Tsinghua 158

When SpMM meets ActNN (in CogDL)
𝑯 ;<= = 𝑨𝑯 ; 𝑾

KEG, Tsinghua 159

Experimental Results

• Default setting of CogDL

Dataset Origin GCN GCN + actnn

Cora 81.30 ± 0.22 81.27 ± 0.19

Citeseer 71.73 ± 0.54 71.70 ± 0.28

Pubmed 79.17 ± 0.12 79.10 ± 0.08

Flickr 50.74 ± 0.10 50.89 ± 0.04

Reddit 95.01 ± 0.02 94.89 ± 0.01

KEG, Tsinghua 160

Activation Memory (GCN + ActNN)

• Setting：𝑯 = Dropout ReLU BN 𝑨𝑯𝑾

#dataset, #layers, #hidden Origin
GCN

GCN +
actnn ratio Ideal ratio

PPI, 5, 2048 3704 420 8.8x

raw: 32*2 /
(2.125*2+1) =12.2x

+bn: 32*3 /
(2.125*3+1) = 13.0x

+bn+dropout: 32*4 /
(2.125*3+2)=15.3x

PPI, 5, 2048 (+bn) 5484 539 10.2x
PPI, 5, 2048 (+bn,
+dropout) 7711 594 13.0x

Flickr, 5, 512 1420 154 9.2x
Flickr, 5, 512 (+bn) 2117 201 10.5x
Flickr, 5, 512 (+bn,
+dropout) 2991 223 13.4x

Flickr, 10, 512 3178 311 10.2x
Flickr, 10, 512 (+bn) 4747 415 11.4x
Flickr, 10, 512 (+bn,
+dropout) 6712 465 14.4x

KEG, Tsinghua 161

Activation Memory (GraphSAGE + ActNN)

• Setting：𝑯 = Dropout ReLU BN Concat 𝑨𝑯,𝑯 𝑾

#dataset, #layers, #hidden Origin
SAGE

SAGE +
actnn ratio Ideal ratio

PPI, 5, 2048 5524 580 9.5x

raw: 32*2 /
(2.125*2+1) =12.2x

+bn: 32*3 /
(2.125*3+1) = 13.0x

+bn+dropout: 32*4 /
(2.125*3+2)=15.3x

PPI, 5, 2048 (+bn) 7304 698 10.5x
PPI, 5, 2048 (+bn,
+dropout) OOM 754 -

Flickr, 5, 512 2457 209 11.8x
Flickr, 5, 512 (+bn) 3155 255 12.4x
Flickr, 5, 512 (+bn,
+dropout) 4027 278 14.5x

Flickr, 10, 512 5090 430 11.8x
Flickr, 10, 512 (+bn) 6659 534 12.5x
Flickr, 10, 512 (+bn,
+dropout) 8624 584 14.8x

KEG, Tsinghua 162

Activation Memory (GCNII + ActNN)

• Setting：

#dataset,
#layers, #hidden GCNII GCNII +

actnn ratio ideal

PPI, 10, 512 4008 340 11.8x

(32*3) /
(2*2.125+2
)=15.36

PPI, 20, 512 7708 619 12.5x

PPI, 20, 1024 7879 603 13.1x

Flickr, 5, 512 3421 229 14.9x

Flickr, 10, 512 6268 413 15.2x

Flickr, 5, 1024 6660 438 15.2x

#layer
s

Origin
GCNII GCNII + actnn

32 84.83±
0.33 84.67± 0.12

64 85.13±
0.61 85.00± 0.37

128 84.83±
0.58 85.20± 0.36

256 85.00±
0.08 85.37± 0.54

KEG, Tsinghua 163

Activation Memory (GIN + ActNN)

• Setting：𝑯(5) = MLP 5 1 + 𝜖 𝑯 578 + 𝑨𝑯 578

𝒉9 = CONCAT(READOUT 𝑯 5 , 𝑙 = 0, 1, … 𝐿

#dataset, #batch, #layers,
#hidden GIN GIN + actnn ratio ideal

NCI1, 512, 20, 512 2723 262 10.4x

(32*3) / (2.125*3+1) =
13.0x

NCI1, 512, 20, 1024 5735 540 10.6x
NCI1, 1024, 20, 512 5502 528 10.4x
NCI1, 512, 40, 512 6231 590 10.6x

KEG, Tsinghua 170

Self-supervised Learning on Graphs

• Types of self-supervision：
– generative learning
– contrastive learning

• Learning paradigm：
– Pre-training & Fine-tuning
– Joint learning
– Self-training

• Encoders：GCN, GAT, GIN
• Downstream tasks

KEG, Tsinghua 171

Survey of Graph Self-supervised Learning

KEG, Tsinghua 172

Results of Self-supervised Learning
• Learning paradigm:

– Self-supervised (SL), Joint Learning (JL), unsupervised representation learning (URL)

• Semi-supervised datasets：Cora, Citeseer, PubMed
• Supervised datasets：Flickr, Reddit

KEG, Tsinghua 173

OAG: Open Academic Graph
https://www.openacademic.ai/oag/

https://www.openacademic.ai/oag/

KEG, Tsinghua 174

Heterogeneous Graph Benchmark (HGB)
• A unified benchmark datasets and evaluation pipelines for heterogeneous graph

research.
• Paper: Are we really making much progress? Revisiting, benchmarking and refining

heterogeneous graph neural networks. (KDD'21)
• Code & Data: https://github.com/THUDM/HGB
• Leaderboard: https://www.biendata.xyz/hgb/
• There is also a simple baseline Simple-HGN in HGB. We find that a rather simple

design of heterogeneous GNN can reach SOTA.

https://github.com/THUDM/HGB
https://www.biendata.xyz/hgb/

KEG, Tsinghua 175

Background:
Recently, works have proved that adversarial
attacks can threat the robustness of graph ML
models in various tasks.
Problems:

1. Ill-defined threat model in previous works.
2. Absence of unified and standard evaluation

approach.

Solution: Graph Robustness Benchmark (GRB)
Scalable, general, unified, and reproducible
benchmark on adversarial robustness of graph ML
models, which facilitates fair comparisons among
various attacks & defenses and promotes future
research in this field.

Example of GRB evaluation scenario

Graph Robustness Benchmark: Rethinking and
Benchmarking Adversarial Robustness of Graph Neural
Networks
Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Jie Tang

GRB framework

KEG, Tsinghua 176

All discussions and contributions

are highly welcome!

Homepage:

https://cogdl.ai/grb/home

Github:

https://github.com/THUDM/grb

Leaderboard:
https://cogdl.ai/grb/leaderboard/

Docs: https://grb.readthedocs.io/

Google Group:

https://groups.google.com/g/graph

-robustness-benchmark

Contact:

cogdl.grbteam@gmail.com

qinkai.zheng1028@gmail.com

https://cogdl.ai/grb/home
https://github.com/THUDM/grb
https://cogdl.ai/grb/leaderboard/
https://grb.readthedocs.io/
https://groups.google.com/g/graph-robustness-benchmark
mailto:cogdl.grbteam@gmail.com
mailto:qinkai.zheng1028@gmail.com

KEG, Tsinghua 177

Open Graph Benchmark
• Large-scale, realistic, and diverse benchmark

datasets for graph ML.

Paper: https://arxiv.org/abs/2005.00687
Webpage: https://ogb.stanford.edu/
Github: https://github.com/snap-stanford/ogb

https://arxiv.org/abs/2005.00687
https://ogb.stanford.edu/
https://github.com/snap-stanford/ogb

KEG, Tsinghua 178

Recommendation Application

• Build recommendation via pipeline API
• Integrate LightGCN (SIGIR’20)
• Similar to Amazon Personalize

KEG, Tsinghua 179

AMiner Subscribe

• Recommend papers, scholars to users

KEG, Tsinghua 180

CogDL & dgSPARSE

• Experiment API
• Validate ideas

• Pipeline API
• Deploy Apps

Ops
V2V

x x x!

" # $

⊗

x: Non-zero element in the
matrix

=

• Fast computation
• Fast development• Operator APIs

• Fast deployment
• Sparse APIs
• Hardware support

GNNs Apps

dgSPARSE

CogDL

Hardware

KEG, Tsinghua 181

GRL: NE&GNN

Network
Embedding

Matrix
Factorization

GNN
Pre-Training

Graph Neural
Networks

https://alchemy.tencent.com/

Learning GNNs with CogDL

CogDL
https://github.com/thudm/cogdl

https://alchemy.tencent.com/
https://github.com/thudm/cogdl

KEG, Tsinghua 182

Related Publications
• Jialin Zhao, Yuxiao Dong, Ming Ding, Evgeny Kharlamov, and Jie Tang. Adaptive Diffusion in Graph Neural Networks. NeurIPS’21.
• Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Kharlamov, and Jie Tang. Graph Random Neural Networks for Semi-Supervised Learning on Graphs.

NeurIPS'20.
• Ming Ding, Chang Zhou, Hongxia Yang, and Jie Tang. CogLTX: Applying BERT to Long Texts. NeurIPS’20.
• Jiezhong Qiu, Chi Wang, Ben Liao, Richard Peng, and Jie Tang. Concentration Bounds for Co-occurrence Matrices of Markov Chains. NeurIPS'20.
• Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang Lu, and Jie Tang. TDGIA: Effective Injection Attacks on Graph Neural Networks. KDD’21.
• Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jian-guo Jiang, Yuxiao Dong, and Jie Tang. Are we really making much progress? Revisiting, benchmarking and

refining the Heterogeneous Graph Neural Networks. KDD’21.
• Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu Wang, and Jie Tang. MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems. KDD’21.
• Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, and Jie Tang. GCC: Graph Contrastive Coding for Structural Graph Representation Pre-Training. KDD'20.
• Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang. Understanding Negative Sampling in Graph Representation Learning. KDD'20.
• Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, and Jie Tang. Controllable Multi-Interest Framework for Recommendation. KDD’20.
• Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou and Jie Tang. Representation Learning for Attributed Multiplex Heterogeneous Network. KDD’19.
• Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao Gu, Yan Wang, Bin Shao, Rui Li, and Kuansan Wang. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs.

KDD’19.
• Qibin Chen, Junyang Lin, Yichang Zhang, Hongxia Yang, Jingren Zhou and Jie Tang. Towards Knowledge-Based Personalized Product Description Generation in E-commerce. KDD'19.
• Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. DeepInf: Modeling Influence Locality in Large Social Networks. KDD’18.
• Jiezhong Qiu, Laxman Dhulipala, Jie Tang, Richard Peng, and Chi Wang. LightNE: A Lightweight Graph Processing System for Network Embedding. SIGMOD’21.
• Yuxiao Dong, Ziniu Hu, Kuansan Wang, Yizhou Sun and Jie Tang. Heterogeneous Network Representation Learning. IJCAI'20.
• Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. ProNE: Fast and Scalable Network Representation Learning. IJCAI’19.
• Yifeng Zhao, Xiangwei Wang, Hongxia Yang, Le Song, and Jie Tang. Large Scale Evolving Graphs with Burst Detection. IJCAI’19.
• Yu Han, Jie Tang, and Qian Chen. Network Embedding under Partial Monitoring for Evolving Networks. IJCAI’19.
• Yifeng Zhao, Xiangwei Wang, Hongxia Yang, Le Song, and Jie Tang. Large Scale Evolving Graphs with Burst Detection. IJCAI’19.
• Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. Cognitive Graph for Multi-Hop Reading Comprehension at Scale. ACL’19.
• Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. WWW'19.
• Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec. WSDM’18.
• Zhenyu Hou, Yukuo Cen, Yuxiao Dong, Jie Zhang, and Jie Tang. Automated Unsupervised Graph Representation Learning. TKDE’21.
• Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-supervised Learning: Generative or Contrastive. TKDE’21.
• Shu Zhao, Ziwei Du, Jie Chen, Yanping Zhang, Jie Tang, and Philip S. Yu. Hierarchical Representation Learning for Attributed Networks. TKDE’21.

For more, check http://keg.cs.tsinghua.edu.cn/jietang

http://keg.cs.tsinghua.edu.cn/jietang

KEG, Tsinghua 183

Jie Tang, KEG, Tsinghua U http://keg.cs.tsinghua.edu.cn/jietang
Download all data & Codes https://keg.cs.tsinghua.edu.cn/cogdl/

https://github.com/THUDM

Thank you！
Collaborators:

Jie Zhang, Ming Ding, Jiezhong Qiu, Qibin Chen, Yifeng Zhao, Yukuo Cen, Yu
Han, Fanjin Zhang, Xu Zou, Yan Wang, et al. (THU)

Yuxiao Dong, Kuansan Wang (Microsoft)
Hongxiao Yang, Chang Zhou, Le Song, Jingren Zhou, et al. (Alibaba)

http://keg.cs.tsinghua.edu.cn/jietang
https://keg.cs.tsinghua.edu.cn/cogdl/
https://github.com/THUDM/CogQA

