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Abstract—In many social networks, there exist two types of clustering methods are usually based on a fundamental as-
users that exhibit different influence and different behavior. For Sumption that communities have dense internal connections
instance, statistics have shown that less than 1% of the Twitter 5,4 gparse external connectior(e, 3)-clustering methods
users (e.g. entertainers, politicians, writers) produce 50% of its . . . ..
content [1], while the others (e.g. fans, followers, readers) va relax this assumptlon by a]lowmg c'ommunltles to have dense
much less influence and completely different social behavior. ~ €xternal connections. Topic modeling methods are based on

In this paper, we define and explore a novel problem called statistical analysis of the content information assodiatéth
community kernel detection in order to uncover the hidden each vertex. However, these methods ignore an important fac
community structure in large social networks. We discover that that the community structure of influential users is quite di
influential users pay closer attention to those who are more L L .
similar to them, which leads to a natural partition into different ferent from that of others. Our pfe_"m'”ar,y Stat'St'C,aI lysEs
community kernels. shows that the average degree of influential users is almost t

We propose GREEDY and WEBA, two efficient algorithms for  times more than that of others in the Twitter network.
finding community kernels in large social networks. GREEDY is To clearly demonstrate this, we present an example from
based on maximum cardinality search, while WEBA formalizes the Twitter network as shown in Fig. 1. The left figure is an

the problem in an optimization framework. We conduct exper- . . . . .
iments on three large social networks: Twitter, Wikipedia, and input of the Twitter following network with three enterteirs

Coauthor, which show that WEBA achieves an average 15%— (Oprah Winfrey, Ashton Kutcher, and Demi Moore) and two
50% performance improvement over the other state-of-the-ar politicians (Barack Obama and Al Gore) as well as some
algorithms, and WEBA is on average 6-2,000 times faster in of their followers. This input represents a typical network
detecting community kemnels. structure with a few influential users connected with the res

Keywords-community kernels; community kernel detection; of the network via a large number of links. To detect the
auxiliary communities; social networks; community structure of this network, we consider Newman’s
algorithm [2], a state-of-the-art method based on moduylari
The middle figure shows the community structure obtained

The Pareto principle (a.k.a. 80-20 rule) [3] exists almofly Newman’s algorithm. We observe that, since there are a
everywhere. For example, 80% of a country’s land is ownddrge number of connections between each influential user
by 20% of the population, and 80% of a company’s salesd its followers, Newman’s algorithm tends to partition
revenue comes from 20% of its clients. This is also the cafee influential users into different communities and to grou
for many social networks. In these networks, there exist tvibem with their respective followers. The lack of ability to
types of users that exhibit different influence and différemlistinguish influential users from their numerous follogver
behavior. For instance, it has been shown that less than 9@ key problem with this method. The right figure shows
of the Twitter users (e.g. entertainers, politicians, &g} the community structure obtained by our algorithmeBA
produce roughly 50% of the content on the micro-blogginigter introduced in Section Ill. By contrast, this is exgctl
site [1], while the other 99% (e.g. fans, followers, reajleeve what one would expect a community detection algorithm to
much less influence and completely different social belaviaiscover: two community kernels (one of entertainers argl on
Then, an interesting question is: “how do these influentiaf politicians) consist of influential users and two auxiyia
users interact with each other?” Further, influential usges communities associated with the kernels. Thus, in this pape
typically followed more than others. For example, Opratve refer to this problem as community kernel detection, Whic
Winfrey has more than 5 million followers, and Barack Obamiacludes two parts: (1) how to distinguish influential users
has more than 7 million. Hence, another interesting questi(kernel members) from others, and (2) how to detect the
is: “what is the underlying structure between influentiatngs community structure (community kernels) among influential
and their followers?” users and their respective auxiliary communities.

The problem of community detection has been extensivelyThe problem of community kernel detection has many
studied and many algorithms have been proposed, suchpsactical applications, including representative usedifig,
cut- and conductance-based methods [4]-[7], spectralectus friend recommendation, network visualization, and maniget
ing [2][8][9], («, p)-clustering [10][11], and topic modeling However, this problem is non-trivial and poses a set of
methods [12]. The cut- and conductance-based and spectta@llenges. First, it is difficult to identify the truly infuntial

I. INTRODUCTION
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Fig. 1. Anillustration of community kernel detection on theiffar network. The left figure shows the original Twitter wetk (three entertainers and two
politicians with their followers), the middle figure show®tfive communities detected by Newman’s algorithm [2], and thltfigure shows two community
kernels and their corresponding auxiliary communities deteby our algorithm VEBA.

users. One may consider to use the number of followeasdFE C V xV is the set of E| = m directed/undirected links
as an indicator. Unfortunately, the follower count gives nbetween entities. Then, we have the following definition:

information about who follows them. Second, itis uncleavhopeinition 1 (Community Kernel and Auxiliary Community)
influential users interact with each other. Would a politi Given a graphG = (V, E), ¢ disjoint subset Ky, --- , K}
tend to follow another politician or an actress? Finallyalve of vertices are calleccommunity kernelsf

wc_)r_ld social n(.atworks.ar_e growing fast with thousands or(l)wvuE K Vo & K,
m.|II|on_s of vertpe;. It is important to develop an algonith B (k) | > |E (0,3 | and |E (Ka,u) | > |E (K, ) |.
with high scalability.
Contributions.  In this paper, we formulate the problemWhere E(A, B) = {(u,v) € Elu € A,v € B} for A, BC V.
of community kernel detectiom large social networks as EUlrltehdegfxﬁis;roC?(;‘;?ﬂ%:ﬁ?gg?‘l’c1v"' ,Ax, } of vertices are
two subtasks: identifying influential (kernel) members anda y
detecting the structure of community kernels. We propose(2)Vi € {1,---, £}, Ax, N K; = 0;
two algorithms to complete these two subtasks in a unified(3)Vi,Vj # i, Vu € Ax,, |E (u,Ki)| > |E (u, K;) |;
approach. The first algorithm is a greedy algorithm based4)v: € {1,---,¢}, |E (Ax,,K:) | > |E (Ki, K;) |.
on ma>.<imum cart_jinality search. It can efficiently obtain ap,, anyi € {1,--- ¢}, each vertex ir; is a kernel member
approximate _solutlon, but does .not have a poynded erfd“e.'” tand each vertex i, is an auxiliary member.
second algorithm \WBA, we define and optimize an objective ’
function which explicitly quantifies the detected communitA community kernel is disjoint from its auxiliary community
kernels. It can efficiently obtain an approximate solutiohach member of a community kernel has more connections
with a small error bound. We validate the effectiveness ama/from the kernel than a vertex outside the kernel doeshEac
efficiency of our algorithms on three large social networkgnember of an auxiliary community has more connections to
Coauthor, Wikipedia, and Twitter. Experimental resultevgh the associated kernel than to any other kernel. Furtheh eac
that WEBA and GREEDY outperforms eight other state-of-member of a community kernel is followed by more vertices
the-art methods for detecting community kernels. In additi in its auxiliary community than in the kernel. See Fig. 1 for
WEBA can efficiently detect community kernels. Fig. 2 showan example.
an efficiency comparison of eight algorithms on the three Consider a set of community kerndl§ = {KCy,--- , K¢}
networks. Clearly, VEBA is on average 6—2,000 times fasteEach community kernel is closely associated with an auyilia
than the other comparative algorithms. community, and the corresponding set of auxiliary communi-
ties is given byA = {Ak,,---, Ak, }. Note that auxiliary
Il. PROBLEM DEEINITION communities can overlap with each other.
Community kernels and their auxiliary communities can

In this section, we first introduce the concept of communitye interpreted in different ways for different networks.r Fo
kernel and auxiliary community, and then give a formatxample, in a coauthorship network, a community kernel
definition of the problem. A social network can be modeledan be a group of senior professors in a certain research
as a graplG = (V, E), whereV is the set of V| = n entities area, while its auxiliary community consists of students or
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Fig. 2.

Efficiency comparison of WBA and GREEDY with comparative algorithms (no parallelization).

junior researchers in the same area. In a Twitter networkwdere E (V;,V;) = {(u,v) € E | u € V;,v € V;}, and (u, v)
community kernel can be a group of well-known entertaineris, an ordered pair of vertices. Notice that the number of edge

while the associated auxiliary community consists of folos |
of these celebrities. Based on the above concept, we define

following problem of detecting community kernels:

Problem (Community Kernel Detection)Given a graph

G = (V,FE), how to identify kernel members and auxiliary

members, i.eUK; and UAx,, and how to determine the
structure of community kernels, i K = {Ky, -+, K;}?

Our problem formulation is very different from previous
work on community detection. Many algorithms have bee
proposed for detecting communities in social networks[f],
[71[13][14], however they ignore the difference among i@
and links. Thus, these algorithms fail to distinguish comityu
kernels from their auxiliary communities. In addition, Abh
al. [15] categorized links instead of vertices to discovier-h
archical community structure. Mishra et al. [10] proposeel t
concept of {, 5)-community to allow communities to overlap.

However, these algorithms do not consider the existence and

structure of community kernels.

Observation. Interestingly, community kernels and their aux-

iliary communities form an unbalanced weakly-bipartiteist
ture. Such a structure can be observed in many real-wo
social networks, as shown in Tabfe An unbalanced weakly-

G = (VhEl) and Gy = (‘/Q,EQ) such that
doy > di1 > dao > dyo.

d11 anddy, are the average degree@f andG-,, respectively.
do1 is the average number of edges fram to G, per vertex
u € Vi, and similarly,d, 5 is the average number of edges fro

kernel and Gy is considered as the auxiliary communit
associated witlG;, as shown in Fig. 3. Specifically,

1Coauthor: 822,415 authors and 2,928,360 co-author links;
Wikipedia: 310,990 editors and 10,780,996 co-editingdink
Twitter: 465,023 users and 833,590 following links;
Slashdot: 82,168 users and 504,230 friendship links;
Citation: 34,546 publications and 420,877 citation links.

m
G to G per vertexu € V5. G is considered as a community

n G2 may be significantly larger than that @; .
th

TABLE |
SELECTED UWB NETWORKS.

Networks do21 d11 dos d12
Coauthor  14.19 534 442 0.37
Wikipedia 1689.31 104.22 4.69 0.60
Twitter 110.78 26.78 294 0.29
n Slashdot 180.90 84.56 10.75 0.64
Citation 76.69 35.81 2380 0.26

s b dos
S—
d12

Fig. 3. A UWB structure.

rid 1. ALGORITHMS

) . . A. Basic Principl
bipartite (UWB) structure consists of two disjoint subgraphs asic ciples

Existing cut- and conductance-based algorithms (e.g. [2],
[4]-[8][13][14][16]) cannot distinguish kernel membenoiin
auxiliary ones. In these methods, edges between diffeypast

of vertices are treated the same way. Thus, the large number
of links from auxiliary members to kernel ones may dominate
the results of community detection.

An intuitive method to distinguish kernel members from
others is to first perform a link analysis algorithm (e.g. réeg

yranking, PageRank [17], HITS [18]) on the network to find the

“influential” vertices, and then apply a cut- or conductance
based community detection algorithm to those vertices. dnly
this way, we obtain communities solely based on the link in-
formation between influential vertices. However, this agoh
ignores an important piece of information in the networlatth
is, the link information between auxiliary and kernel memsbe
For example, in the Twitter network, fans may follow several



members of the same kernel (e.g. politicians). This callect C. Weight-Balanced AlgorithmWEBA)
following behavior indicates that the target members that @ consider an undirected gragh = (V, E) with n vertices

being followed should be grouped in the same communifq ,, edges. Intuitively, vertices in community kernels are
kernel. Thus, the lack of this information prevents the ro€th more influential than those in auxiliary communities. Then,
from finding community kernels. we associate a weight vecta(v) = {w:(v),- - ,we(v)}
With these considerations, we propose two algorithms fgjith each vertexs € V to represent its relative importance
efficiently finding community kernels in large social netk®r for each community kernel. In this way, we can determine
Different from existing cut- and conductance-based atgo's  community kernels by classifying vertex weights. Given a

in which the goal is to find communities with dense interng|ositive integerk (i.e. kernel size), we define the following
connections and sparse external connections, we aim to fijgimization problem:

communities with dense internal connections but allow tihem
have dense external connections. Our first algorithREEDY o . . .
is based on maximum cardinality search, which is efficient ~ Maximize L(w) = > ai(u) - @(v)

but does not have a bounded error. Further, we propose a (u0)€R

second algorithm WBA in which we heuristically solve an subject to Z wi(v) =k, Vie{l,--- £}
optimization problem. VEBA satisfies all the requirements for VeV

detecting community kernels. We prove its theoreticaldibli Z wi(v) <1, Yo € V;

and analyze its error bound.R&GEDY and WEBA apply to
both undirected and directed graphs. For simplicity, weyonl
provide the pseudocode for the undirected case.

1<i<t
w;(v) =0, Yo eV, Vie{l,-- ,(}.

As shown in [19] by reduction from thé-clique problem,
B. Greedy Algorithm it is intractable to solve this optimization problem. Thus,

Consider an undirected gragh = (V, E) with n vertices W€ approximate .the solution by iteratively solving its one-
andm edges. Given a kernel size initialize a subses C V dlmen5|0nal versiorC(w). For each detected kernel, we give
to be a random vertex € V. Then, iteratively enlarges by the following theorem:
addlng the vertex with the maximum number of Connectior’ﬁqeorem 1. A g|0ba| maximum of the Objective fUnCtiﬁl(l’(U)
to S. If there are multiple vertices with the maximum numbegorresponds to a community kernel.
of connections taS, pick the one with the highest degree. If ) ] )
there are multiple vertices with the highest degree, radgom  Proof: Assume that a global maximudr (w) is obtained
pick one of them. This subroutine can be executed recuysivd®r vertex weights{w(u), u € V'}. Letw(u) be the probability
to find multiple community kernels in the graph. Recall thghat the vertexu belongs to a community kernel, and let
E(A,B) = {(u,v) € Ejuc A,v € B} for A,BC V. nw(u) = Z(U,U)GE.U.)(’U) be the nelghbormg weight of. We
prove by contradiction thatw(u) < nw(v) if w(u) < w(v)
for any pair of vertices, v.

Input: G = (V, E) and kernel size: Assume that there exists a pair of verticesy such that
%utpué: community kernelsK = {K1, Ky, -+, K} w(u) < w(v) andnw(u) > nw(v). Then, define

(_
repeat . nw(u) — nw(v

pS<— randomv € V/ 6:mm{1_w(u)’w(v)’¥} > 0.

while |S| < k do
R ={u ¢ S||E(u, S)| = max{|E(v,S)|,YVv & S}}
if |[R*|=1then S+ SUR"
elseU* = {u € R* | d(u) = max{d(v),Vv € R"}} § (nw(u) — nw(v)) > 0, for (u,v) € E;
if [U"]=1thenS <« SUU" { 8 (nw(u) — nw(v)) — 62 >0, for (u,v) € E.
elseS < SU randomu € U*

We increasev(u) by 6 and decrease(v) by 6. Then,L£*(w)
is increased by

if $¢K then K+ {K,S} which contradicts the fact that*(w) is a global maximum.

until a sufficiently large number of times Thus, we havenw(u) < nw(v) if w(u) < w(v), which
return K indicates property (1) of Definition 1. Then, a global maximu
Algorithm 1 GREEDY of £(w) corresponds to a community kernel of the gragn.

The problem of maximizing (w) is still NP-hard [19], but a
As discussed later in detail, KEEDY provides a simple way heuristic solution can be obtained based on pairwise rétaxa
to approximately solve the optimization problem given iGiven a kernel siz& and an initial subse$ obtained by the
Section IlI-C, allowing integer weights only and no relasat greedy algorithm, assign weight 1 to each vertexSirand
The space complexity and running time required to find onveeight O to others. LelV(v) be the set of neighboring vertices
kernel are botfO(n + m). However, GREEDY does not have of v, i.e. N(v) = {u € V|(u,v) € E}, and letd(v) be the
a guaranteed error bound, and it ignores the link informmatialegree ofv, i.e.d(v) = |N(v)|. Then, in each iteration, search
between auxiliary and kernel members. Thus, as later shofan a pair of vertices:, v € V' satisfying both of the following
in Section 1V, its performance is not as good agEBWA. relaxation conditions



o w(u) <1, ww) >0 is increased by at leagt’)” in each iteration. Sincé(w) > 0

o nw(u) > nw(v) initially and £(w*) < kD, the total number of iterations is
wherenw(u) = -, ¢ n(,) w(v) is the neighboring weight of - kD _ 4k*D® 2mkD?
u. The weights ofu andv are modified to locally maximize SE? T max{ 2 0 ¢ }

the objective functionC(w), as shown in Algorithm 2. Repeat
this process until no pair of vertices can be found to satis
the relaxation conditions. Then, all vertices with weiglibdn

sume that the algorithm terminates whén< &’. Since
D > |w*(v) — w(v)| for eachv € V upon termination,

a community kernel. Further, we can execute this subroutineC(w*) — L(w) = Z (w* (w)w" (v) — w(uw)w())
recursively to obtain multiple community kernels. (u,v0)EE
< Z ((w(u) +w(v))e'D+ (5'D)2)
Input: G = (V, E) and kernel size: (w,v)eE
Output: community kernelsK = {1, /Ca, -+, K} < m(eD) + wv)d(v)e' D
K« 0 (¢'D) ZV (v)d(v)
repeat € €
S + GREEDY(G, k) < m(e'D)’ +ke'D? < st5=¢
Yo e S, wv)+ 1;Vo&sS, wh)«0 o ) ) )
while 3 u,v € V satisfying the relaxation conditiordo Thus, after a finite number of iterations,BBA can obtain a
if (u,0) ¢ E then 6 « min{1 — w(u), w(v)} near-optimal solution with a very small error bound. =
elsed < min< 1 — w(u), w(v), %nwv) D. Auxiliary Community
pick one pair{u,v} with the maximums value After obtaining the community kernels, we use the follow-
w(u) <~ w(u) +9, wv) w() -4 ing approach to find their respective auxiliary communities
C{veV]w)=1} such that property (2)—(4) of Definition 1 are satisfied.ili,
fFCgZKthenK « {K,C} label each vertex not in any kernel as unassociated. For each
until a sufficiently large number of times . .
return K unassociated vertex, rank the kernels according to the eumb
Algorithm 2: WEBA of edges from the vertex to each kernel and the vertices that

have already been associated with that kernel. Then, a$soci
the vertex with the top-ranked kernel. If there are tiesydea

Theoretical analysis. Clearly, each vertex should be assot-he vertex unassociated. Repeat this process until no more
ciated with a valid weight, i.ew(v) € [0,1],Vv € V, and - NEep P

the sum of all vertex weights should be exactly the kern¥frtices can be associated W'.th any kernel. Then, the auyili
size k at the end of each iteration. Moreover, the objectiv ommunity of a kernel consists of all the vertices that are

function should increase during each iteration. Now, we/qaro""S‘Q’OC"”VEE}d with that kernel, as shown in Algorithm 3.
the correctness of MBA by induction.

. . ) . Input: community kernelK = {1, K2, -+, K¢}
Theorem 2. The weight-balanced algorithm is valid and output: auxiliary communitiesA = {Ax,, Ax,, - - JAic, )
guaranteed to converge. Vie{l, -, 0}, A, < 0

) repeat
Proof: See Appendix. | Vie{l,---, £}, Ri=K; U Ag,
According to the correctness proof, after an infinite nuntdfer for i <~ 1to ¢ do o
iterations, each vertex € V' has an ultimate weight* (v). i<— {”j URiUgE (v, Ri) | > |E (v, Ry) |, V] # i}
Then, we have the following theorem: end K Ak U
Theorem 3. For any assigned weight§w(v),¥v € V} and | until no more vertices can be added
any e > 0, after return A
Algorithm 3 Auxiliary Community
{4k;3D5 2mkD3}
max s
g2 €

iterations, we havel(w*(v)) — L(w(v)) < &, wherek is the E. Parallelization

given kernel size and is the highest degree of vertices in To scale up the algorithm to large networks, we develop

the graphG = (V, E). a parallel implementation. The idea is to distribute the-ite
Proof: In each iteration, among all pairs of vertices tha?t've pairwise relaxation (i.e. t_he oute_r loop n _Alg_orltmm

satisfy the relaxation conditions, we choose the one with tRC0SS multiple processors, while keeping the initialerand

maximum¢ value and modify their weights. Let cleanup phase centralized. Fig. 4 shows the speedupe@AV
on the Coauthor, Wikipedia, and Twitter networks for diéet
¢ =mind —— /<1 number of computer nodes (1-6 cores). The speedup curve is
2kD2?’\ 2mD?

close to optimal when the number of cores is relatively small

Without loss of generality, assume that< nw(u) — nw(v) and it increases steadily with a lower rate than that of the
ande’ < 4. By the proof of Theorem 2, the objective functioroptimal line. It can achieve about 4 times speedup for 6 cores
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Fig. 4. Parallelization performance of BBA.

scientists. Our goal is to uncover the five community kernels
and their kernel members.

Similarly, the two benchmark wikipedia networks contain
the co-editorship of more than 500,000 namespace talk pages
and user personal pages modified by both administrators and
regular editors. The administrators appointed by Wikipeate
usually knowledgeable in their respective fields, and they a
actively maintaining pages with access to restricted teahn
features. Thus, the administrators form a co-editorshipéde
and our goal is to identify these administrators from others

Evaluation Measures.To evaluate the performance ofaBA

IV. EXPERIMENTAL RESULTS and

We conduct various experiments in this section to evaluate
and analyze the effectiveness and efficiency of our algosth
WEBA and GREeEDY. All data sets and codes are publicly
availablé.

A. Experimental Setup

Date sets.Our experiments are conducted on three different
real-world social networks:

o Coauthor (a co-authorship network with 822,415 nodes
and 2,928,360 undirected edges). Each vertex represents
an author and each edge represents a co-author relation.

o Wikipedia (a co-editorship network with 310,990 nodes
and 10,780,996 undirected edges crawled from wikipedia.
org). Each vertex represents a Wikipedia editor and each,
edge represents a co-editing relation.

o Twitter (a following network with 465,023 nodes and
833,590 directed edges crawled from twitter.com). Each
vertex represents a Twitter user account and each edge
represents a following relation. It is well-known that th

GREEDY, consider the following aspects:

Quantitative performance. We use Precision, Recall,
and Fl-score to evaluate and compareeBM and
GREEDY with other methods. These measures focus on
the number of correct pairs of vertices clustered into the
same community kernel. For example, for any two PC
members in the same field that have coauthored papers
together, if they are grouped into the same community
kernel, then consider it as a correct pair. We use pairwise
resemblance (a.k.a. Jaccard index) to measure how simi-
lar the ground truttd and a community kerndb detected

by an algorithm are. It is defined &4 N B|/|A U B|.

« Application case study.We conduct case study on the

Twitter network as the anecdotal evidence to further
demonstrate the effectiveness ofeBA.

Efficiency. We evaluate and compare the efficiency (i.e.
elapsed time required for detecting community kernels)
of WEBA and GREEDY with alternative algorithms, and
analyze the scalability of BBA.

omparative Methods. Compare V¢BA and GREEDY with

web displays a bow-tie structure [20], where 30% of ththe following algorithms for community kernel detection:

vertices are strongly connected. We conduct a bow-tiee
analysis on the Twitter network, and discover that only
8% (38,913) of the vertices are strongly connected.

To quantitatively evaluate our algorithms, we construct a ®
benchmark coauthor network and two benchmark wikipedia
networks. The benchmark coauthor network contains the co-
authorship of more than 8,000 papers published at 27 major
computer science conferences from 2008 to 2010. These con-
ferences cover five research areas: Atrtificial Intellige(fce,
Databases (DB), Distributed and Parallel Computing (DP), ®
Graphics, Vision and HCI (GV), and Networks, Communica-
tions and Performance (N&)Computer scientists are usually
associated with one primary subject area, and conferences
associated with different areas usually have differengrm
committee (PC) members who are academically active in their
respective fields. Then, the PC members of the conferences
in each research area form a co-authorship kernel, which
represents a common research interest of these computer

2http://www.cs.cornell.edaflwang/Data

SAl: IJCAI, AAAI, ICML, UAI, UMAP, NIPS, and AAMAS; DB: VLDB,
SIGMOD, PODS, ICDE, ICDT, and EDBT; DP: PPoPP, PACT, IPDRERP,
and Euro-Par; GV: SIGGRAPH, CVPR, ICCV, and I3DG; NC: SIGCHM °
PERFORMANCE, SIGMETRICS, INFOCOM, and MOBICOM.

Local Spectral PartitioningLSP) [8]: community detec-
tion algorithm based on conductance. This algorithm is
in general a spectral-based graph partitioning method.
d-LSP: apply LSP to high-degree (top 20%) nodes to
find communities. Degree is considered as the relative
influence of each vertex.

p-LSP: apply LSP to high-PageRank (top 20%) nodes
[17] to find communities. PageRank is considered as the
relative influence of each vertex.

METIS+MQI [5][6]: community detection algorithm
based on conductance. This algorithm is a flow-based
partitioning method for finding low-conductance cuts.
LouvAaIN [16]: community detection algorithm based
on modularity. This algorithm is in general a greedy
optimization method.

NEWMAN 1 [4]: community detection algorithm based on
betweenness. This algorithm is in general an agglomera-
tive hierarchical clustering method.

NEWMAN 2 [2]: community detection algorithm based on
modularity. This algorithm interprets community detec-
tion as a spectral problem in linear algebra.

a-( [11]: community detection algorithm based on
(a, B)-community.



TABLE I
ALGORITHM PERFORMANCE COMPARISON ON THE BENCHMARK COAUTHORND WIKIPEDIA NETWORKS. THE MAXIMUM VALUES FOR EACH
METRIC ARE MARKED BOLD.

METRIC METHOD WIKIPEDI A COAUTHOR
Talk User Average Al DB DP GV NC Average
LSP 0.061 0.085 0.073 0.502 0.341 1.000 0.682 0.342 0.573
d-LSP 0.051 0.091 0.071 0.528 0.355 1.000 0.697 0.504 0.617
p-LSP 0.046 0.082 0.064 0.678 0.434 1.000 0.692 0.403 0.641
METIS+MOQI 0.049 0.012 0.030 0.847 0.071 0.774 0.692 0.055 0.488
Precision LOUVAIN 0.063 0.122 0.092 0.216 0.122 1.000 0.577 0.272 0.437

NEWMAN1 0.033 0.203 0.118 | 0.400 0.027 0.834 0.636 0.259 0.431
NEWMAN2 0.039 0.085 0.062 | 0.298 0.320 0.914 0.170 0.613 0.463

o-f 0.324 0.336 0.330 | 0.443 0.868 0.807 0.267 0.747 0.626
WEBA 0.456 0.460 0.458 | 0.852 0.868 1.000 1.000 0.837 0.911
GREEDY 0.334 0.403 0.368 | 0.830 0.485 0.844 0.856 0.746 0.752
LSP 0.171 0.315 0.243 | 0.458 0.268 0.899 0.783 0.398 0.561
d-LSP 0.427 0.273 0.350 | 0.519 0.381 0.899 0.783 0.463 0.609
p-LSP 0.442 0.237 0.340 | 0.337 0.428 0.899 0.713 0.491 0.574
METIS+MQI 0.062 0.361 0.212 | 0.089 0.047 0.899 0.783 0.077 0.379
Recall LOUVAIN 0.388 0.348 0.368 | 0.184 0.148 0.410 0.783 0.190 0.343
NEWMAN1 0.009 0.077 0.043 | 0.306 0.075 0.764 0.234 0.174 0.311
NEWMAN2 0.029 0.075 0.052 | 0.364 0.386 0.211 0.247 0.467 0.335

a-f 0.422 0.427 0.424 | 0.602 0.371 0.908 0.822 0.568 0.654
WEBA 0.589 0.570 0.580 | 0.577 0.479 0.899 0.783 0.582 0.664

GREEDY 0.432 0.499 0.466 | 0.545 0.508 0.899 0.783 0.560 0.659
LSP 0.090 0.134 0.112 | 0.479 0.300 0.947 0.729 0.368 0.565
d-LSP 0.091 0.137 0.114 | 0.524 0.368 0.947 0.737 0.483 0.612
p-LSP 0.083 0.121 0.102 | 0.450 0.431 0.947 0.702 0.443 0.595
METIS+MQI 0.055 0.023 0.039 | 0.162 0.056 0.832 0.735 0.064 0.370
F1-score LOUVAIN 0.108 0.181 0.144 | 0.199 0.134 0.582 0.664 0.224 0.361
NEWMAN1 0.014 0.111 0.062 | 0.346 0.040 0.797 0.342 0.208 0.347
NEWMAN2 0.033 0.080 0.056 | 0.327 0.350 0.343 0.202 0.530 0.350
o-f 0.367 0.376 0.372 | 0.510 0.520 0.854 0.403 0.646 0.587
WEBA 0.514 0.509 0.512 | 0.688 0.618 0.947 0.878 0.686 0.763
GREEDY 0.377 0.446 0.412 | 0.658 0.496 0.870 0.818 0.640 0.696
LSP 0.177 0.175 0.176 | 0.143 0.143 0.223 0.198 0.138 0.169
d-LSP 0.175 0.149 0.162 | 0.164 0.184 0.223 0.189 0.204 0.193
p-LSP 0.177 0.153 0.165 | 0.130 0.218 0.223 0.189 0.208 0.194
METIS+MQI 0.130 0.090 0.110 | 0.022 0.028 0.104 0.068 0.018 0.048
LOUVAIN 0.212 0.245 0.228 | 0.101 0.109 0.117 0.159 0.102 0.118

Resemblance | \man1 | 0127 0208 0.168 | 0.139 0040 0193 0.110 0.119 0.120

NEWMAN2 0.131 0.148 0.140 | 0.137 0.154 0.088 0.071 0.198 0.130

a-f 0.436 0.444 0.440 | 0.178 0.219 0.213 0.180 0.227 0.203
WEBA 0.561 0.557 0.559 | 0.234 0.274 0.236 0.229 0.259 0.246
GREEDY 0.445 0.503 0.474 | 0.216 0.237 0.216 0.207 0.234 0.222

The first seven algorithms are based on the assumption ti&EBA with eight other algorithms. The performance compar-
communities are densely connected internally and sparselgn of these algorithms for each metric is given in Table II.
connected externally, while the last algorithmag, similar Then, we have the following observations:

to WEBA, allows communities to have dense external COlbearformance comparison. WEBA and GREEDY perform

nections. In addition, d-LSP and p-LSP consider the re&atiy,,ch petter than the other comparative algorithms for de-
influence of vertices, while the other five do not. All algbrits tecting community kernels. On average,EBA achieves a

are implemented using C++ and all experiments are performegl 509, and a 15-42% performance improvement over com-
on a PC running Windows 7 with an Intel(R) Core(TM) 2 CPU,5a1ive algorithms in terms of Fl-score for the wikipedia
6600 (2.4GHz and 2.39GHz) and 4GB memory. and coauthor networks. REEDY also achieves a better per-

formance than comparative algorithms, but on average works
B. Quantitative Performance 10% and 7% less well than ¥BA.

We conduct experiments on the benchmark coauthor aRdndamental assumption. Similar to WEBA, a-5 allows
wikipedia networks to evaluate and compar&EEDY and communities to have dense external connections. Thusnit ca
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Fig. 5. Sensitivity analysis on the benchmark coauthor netWsee PDF for colored version).

achieve a better performance than the rest seven algorithhsEfficiency and Scalability
when dealing with unbalanced weakly-bipartite networks. \ne now evaluate the efficiency performance oREEDY

However, it tends to include more vertices in the community, wega by comparing their computational time required to
kernels, since the relative influence of vertices is not EbNS yatact community kernels with that of other algorithms om th
ered here. Thusy-j3 has higher recall but lower precision. - coathor, Wikipedia, and Twitter networks. We also evauat
Link information. The relative influence of vertices is notiq scalability performance of WBA with respect to three
considered in the Local Spectral Partitioning (LSP) algioni.  y5in parameters: the number of vertices, the density, aad th
In d-LSP and p-LSP, we first select the “influential” verticeggarnel size.

with respect to degree and PageRank, and then apply LSRne cpy time required by each algorithm for detecting
for finding community kernels. However, such an algorithmaommunity kernels in the Coauthor, Wikipedia, and Twitter
ignores the important link information between auxiliaryda atworks is given in Fig. 2(a)-2(c). Clearly, bothe®A and
kernel vertices. Thus, though both d-LSP and p-LSP achie¥g:e ¢ py significantly reduce the required CPU time compared
some improvement with respect to Fl-score and pairwigi the other algorithms. Further, we analyze the scatgbil
resemblance, their performance is still not good. SIN@BW ¢ \WeBA to understand how it can be affected by the network
considers the link information between auxiliary and k&g, cture and the input parameter (i.e. kernel size). Wergte
members, it achieves a much better performance. a synthetic data set on which a series of experiments are
Sensitivity analysis. Fig. 5(a) shows the Recall of BBA,  conducted by varying the number of vertices, the density
GREEDY, anda-{ as a function of Precision. Fig. 5(b) shows | /|v/|, and the kernel sizé. The analysis results are shown
the Fl—scorg of WBA, GREEDY, .and a-f3 as a function of j, Fig. 7(a)-7(c). Clearly, the CPU time required bye®A

the kernel size. WBA has the highest Recall for the sam@ncreases (almost) linearly with respect to the number of

Precision and the highest F1-score for the same kernel Si¢rtices, the density, and the kernel size, which dematestra
a-f3 is more sensitive to the kernel size change, though fRe high scalability of VEBA.

some cases, it achieves a better Fl1-score thREEBY for
the same kernel size. V. RELATED WORK

A substantial amount of work has been devoted to the task
of identifying and evaluating close-knit communities imgea

A typical application of our problem is to identify influeati social networks, most of which is based on the premise that it
users. We present an example on the Twitter network, as shawra matter of common experience that communities exist in
in Fig. 6. A clear difference can be observed in the resultisese networks [14]. A community was often considered to be
obtained by V¥BA, METIS+MQI, and NEwWMAN2. The left a subset of vertices that are densely connected internatly b
figure shows four community kernels obtained byEBA. sparsely connected to the rest of the network [2][4][14]t Fo
The yellow nodes represent the auxiliary members surrourekample, Newman constructed the measure of betweenness
ing the four kernels. Some kernel members are enlargedaimd modularity to partition a social network into disjoint
highlight the details of the community kernels. Intereglyn communities [2][4]. An information-theoretic frameworkag
the blue kernel consists of a group of well-known entertanealso established to obtain an optimal partition and to find
and the red kernel consists of a group of active politicianspmmunities at multiple levels [7][21]. However, commiugst
which verifies the definition of community kernel. The uppetan overlap and may also have dense external connections.
and lower right figures show four communities obtained bylishra et al. [10] proposed the concept (@f, 3)-community
METIS+MQI and NEwWMAN2. By contrast, most of the yellow and algorithms to efficiently find such communities. Ahn et
nodes are grouped into one of the four communities here, aald [15] provided a novel perspective for finding hierarethic
the communities are blended with each other. The case studynmunity structure by categorizing links instead of \c&r$i
results further demonstrate the better performance aBW A range of community detection methods have been em-
for finding meaningful communities. pirically evaluated and compared in [22]. Community detec-

C. Application Case Study
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Fig. 6. Case study on the Twitter network (see PDF for coleerdion). WEBA discovers four meaningful community kernels from their nuousrfollowers
(colored yellow). The blue kernel consists of entertairard the red kernel consists of politicians.

25

N
-

CPU Time (s)

CPU Time (s)
8

CPU Time (s)

N
N

1 2 3 4 5 6 - 1 2 3 a “100 300 500 700 900
# vertices x10° density kernel size

(a) CPU time vs. # vertices (b) CPU time vs. density (c) CPU time vs. kernel size

Fig. 7. Scalability performance of ®BA with respect to # vertices, density, and kernel size (n@lpelization).

tion problem has been extended to handle query-depender@mbers. The important link information from auxiliary to
cases [23]. Many studies combined link and content infokernel members has also been ignored. Other existing work on
mation for finding meaningful communities [24][25]. The dysocial influence has not considered the community structure
namic behavior of communities was also extensively exploref networks. In this paper, we introduce a new problem
in previous work [26]-[29]. Other models have been proposed community kernel detection to address these issues, and
to improve the accuracy of community detection in differergropose two algorithms for solving this problem.
scenarios [30]-[33]. New measures have also been proposed
to better evaluate the quality of a community [34][35]. VI. CONCLUSION
Various techniques have been proposed for identifying andA structure of community kernels and their auxiliary com-
modeling social influence in large real-world networks. Fanunities can be found in many real-world social networks
example, Crandall et al. [36] studied the interactions leetw that are unbalanced weakly-bipartite. Community kerneds a
social influence and selection, Tang et al. [37] analyzeéttopparticularly useful to distinguish different groups of &dc
level social influence in large-scale networks, and Gomegntities and to capture the common property shared by each
Rodriguez et al. [38] developed a method to trace paths @foup. In this paper, we formally define the problem of
influence and diffusion through networks. detecting community kernels in large social networks. We
However, most existing work on community detection hgsropose a greedy algorithm and an efficient weight-balanced
not considered the difference between kernel and auxiliamjgorithm WEBA with guaranteed error bound for finding



community kernels. The experimental results on the bendhg] M. R. Garey and D. S. Johnsot€omputers and intractability W. H.

mark coauthor and wikipedia networks show thateBWA
significantly improves the performance over traditionat-cu

fluence of vertices and the link information between aurjlia

and kernel members are both considered. The qualitative k&l
(23]

study on the Twitter network further demonstrates the itli
WEBA to find meaningful community kernels, which revea
the common profession, interest, or popularity of groups
influential individuals.

For future work, we would like to explore the dynamid25]

behavior of community kernels and their auxiliary communi

dependent community detection.
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The objective functionC(w) is increased by

w'(ww' (v) —w(ww) + Y dw(p)— D> dw(p)
pEN (u) pEN (v)
p#v pFu

=8-nw(u) — 6 -nw) -6 >8>0

Hence, the validity and correctness of the weight-balanced
algorithm is proved. [ ]



