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Abstract—In many social networks, there exist two types of
users that exhibit different influence and different behavior. For
instance, statistics have shown that less than 1% of the Twitter
users (e.g. entertainers, politicians, writers) produce 50% of its
content [1], while the others (e.g. fans, followers, readers) have
much less influence and completely different social behavior.

In this paper, we define and explore a novel problem called
community kernel detection in order to uncover the hidden
community structure in large social networks. We discover that
influential users pay closer attention to those who are more
similar to them, which leads to a natural partition into different
community kernels.

We propose GREEDY and WEBA, two efficient algorithms for
finding community kernels in large social networks. GREEDY is
based on maximum cardinality search, while WEBA formalizes
the problem in an optimization framework. We conduct exper-
iments on three large social networks: Twitter, Wikipedia, and
Coauthor, which show that WEBA achieves an average 15%–
50% performance improvement over the other state-of-the-art
algorithms, and WEBA is on average 6–2,000 times faster in
detecting community kernels.

Keywords-community kernels; community kernel detection;
auxiliary communities; social networks;

I. I NTRODUCTION

The Pareto principle (a.k.a. 80-20 rule) [3] exists almost
everywhere. For example, 80% of a country’s land is owned
by 20% of the population, and 80% of a company’s sales
revenue comes from 20% of its clients. This is also the case
for many social networks. In these networks, there exist two
types of users that exhibit different influence and different
behavior. For instance, it has been shown that less than 1%
of the Twitter users (e.g. entertainers, politicians, writers)
produce roughly 50% of the content on the micro-blogging
site [1], while the other 99% (e.g. fans, followers, readers) have
much less influence and completely different social behavior.
Then, an interesting question is: “how do these influential
users interact with each other?” Further, influential usersare
typically followed more than others. For example, Oprah
Winfrey has more than 5 million followers, and Barack Obama
has more than 7 million. Hence, another interesting question
is: “what is the underlying structure between influential users
and their followers?”

The problem of community detection has been extensively
studied and many algorithms have been proposed, such as
cut- and conductance-based methods [4]–[7], spectral cluster-
ing [2][8][9], (α, β)-clustering [10][11], and topic modeling
methods [12]. The cut- and conductance-based and spectral

clustering methods are usually based on a fundamental as-
sumption that communities have dense internal connections
and sparse external connections.(α, β)-clustering methods
relax this assumption by allowing communities to have dense
external connections. Topic modeling methods are based on
statistical analysis of the content information associated with
each vertex. However, these methods ignore an important fact
that the community structure of influential users is quite dif-
ferent from that of others. Our preliminary statistical analysis
shows that the average degree of influential users is almost ten
times more than that of others in the Twitter network.

To clearly demonstrate this, we present an example from
the Twitter network as shown in Fig. 1. The left figure is an
input of the Twitter following network with three entertainers
(Oprah Winfrey, Ashton Kutcher, and Demi Moore) and two
politicians (Barack Obama and Al Gore) as well as some
of their followers. This input represents a typical network
structure with a few influential users connected with the rest
of the network via a large number of links. To detect the
community structure of this network, we consider Newman’s
algorithm [2], a state-of-the-art method based on modularity.
The middle figure shows the community structure obtained
by Newman’s algorithm. We observe that, since there are a
large number of connections between each influential user
and its followers, Newman’s algorithm tends to partition
the influential users into different communities and to group
them with their respective followers. The lack of ability to
distinguish influential users from their numerous followers
is a key problem with this method. The right figure shows
the community structure obtained by our algorithm WEBA
later introduced in Section III. By contrast, this is exactly
what one would expect a community detection algorithm to
discover: two community kernels (one of entertainers and one
of politicians) consist of influential users and two auxiliary
communities associated with the kernels. Thus, in this paper,
we refer to this problem as community kernel detection, which
includes two parts: (1) how to distinguish influential users
(kernel members) from others, and (2) how to detect the
community structure (community kernels) among influential
users and their respective auxiliary communities.

The problem of community kernel detection has many
practical applications, including representative user finding,
friend recommendation, network visualization, and marketing.
However, this problem is non-trivial and poses a set of
challenges. First, it is difficult to identify the truly influential
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Fig. 1. An illustration of community kernel detection on the Twitter network. The left figure shows the original Twitter network (three entertainers and two
politicians with their followers), the middle figure shows the five communities detected by Newman’s algorithm [2], and the right figure shows two community
kernels and their corresponding auxiliary communities detected by our algorithm WEBA.

users. One may consider to use the number of followers
as an indicator. Unfortunately, the follower count gives no
information about who follows them. Second, it is unclear how
influential users interact with each other. Would a politician
tend to follow another politician or an actress? Finally, real-
world social networks are growing fast with thousands or
millions of vertices. It is important to develop an algorithm
with high scalability.
Contributions. In this paper, we formulate the problem
of community kernel detectionin large social networks as
two subtasks: identifying influential (kernel) members and
detecting the structure of community kernels. We propose
two algorithms to complete these two subtasks in a unified
approach. The first algorithm is a greedy algorithm based
on maximum cardinality search. It can efficiently obtain an
approximate solution, but does not have a bounded error. In the
second algorithm WEBA, we define and optimize an objective
function which explicitly quantifies the detected community
kernels. It can efficiently obtain an approximate solution
with a small error bound. We validate the effectiveness and
efficiency of our algorithms on three large social networks:
Coauthor, Wikipedia, and Twitter. Experimental results show
that WEBA and GREEDY outperforms eight other state-of-
the-art methods for detecting community kernels. In addition,
WEBA can efficiently detect community kernels. Fig. 2 shows
an efficiency comparison of eight algorithms on the three
networks. Clearly, WEBA is on average 6–2,000 times faster
than the other comparative algorithms.

II. PROBLEM DEFINITION

In this section, we first introduce the concept of community
kernel and auxiliary community, and then give a formal
definition of the problem. A social network can be modeled
as a graphG = (V,E), whereV is the set of|V | = n entities

andE ⊆ V ×V is the set of|E| = m directed/undirected links
between entities. Then, we have the following definition:

Definition 1 (Community Kernel and Auxiliary Community).
Given a graphG = (V,E), ℓ disjoint subsets{K1, · · · ,Kℓ}
of vertices are calledcommunity kernelsif

(1)∀i, ∀u ∈ Ki, ∀v 6∈ Ki,

|E (u,Ki) | > |E (v,Ki) | and |E (Ki, u) | > |E (Ki, v) |.

whereE(A,B) = {(u, v) ∈ E|u ∈ A, v ∈ B} for A,B ⊆ V .
Further, ℓ associated subsets{AK1

, · · · ,AKℓ
} of vertices are

called auxiliary communitiesif

(2)∀i ∈ {1, · · · , ℓ}, AKi
∩ Ki = ∅;

(3)∀i, ∀j 6= i, ∀u ∈ AKi
, |E (u,Ki) | > |E (u,Kj) |;

(4)∀i ∈ {1, · · · , ℓ}, |E (AKi
,Ki) | > |E (Ki,Ki) |.

For any i ∈ {1, · · · , ℓ}, each vertex inKi is a kernel member
and each vertex inAKi

is an auxiliary member.

A community kernel is disjoint from its auxiliary community.
Each member of a community kernel has more connections
to/from the kernel than a vertex outside the kernel does. Each
member of an auxiliary community has more connections to
the associated kernel than to any other kernel. Further, each
member of a community kernel is followed by more vertices
in its auxiliary community than in the kernel. See Fig. 1 for
an example.

Consider a set of community kernelsK = {K1, · · · ,Kℓ}.
Each community kernel is closely associated with an auxiliary
community, and the corresponding set of auxiliary communi-
ties is given byA = {AK1

, · · · ,AKℓ
}. Note that auxiliary

communities can overlap with each other.
Community kernels and their auxiliary communities can

be interpreted in different ways for different networks. For
example, in a coauthorship network, a community kernel
can be a group of senior professors in a certain research
area, while its auxiliary community consists of students or



NEWMAN2 WEBA GREEDYNEWMAN1 -

C
P

U
T

im
e

(m
in

)

LSP
METIS

+MQI
LOUVAIN

0
10

0
20

0
30

0
40

0 >100hr

142.7min

35.3min32.9min

10.1min

186.72min

2min 1.4min

(a) Coauthor

NEWMAN2 WEBA GREEDYNEWMAN1 -

C
P

U
T

im
e

(m
in

)

LSP
METIS

+MQI
LOUVAIN

>100hr

83.9min

15.7min

52.3min

2.2min

236.2min

50.6s 22.4s

(b) Wikipedia

NEWMAN2 WEBA GREEDYNEWMAN1 -

C
P

U
T

im
e

(m
in

)

LSP
METIS

+MQI
LOUVAIN

52hr

12.4min 8min 12.3min 5min

64.4min

24.7s 9.7s

(c) Twitter

Fig. 2. Efficiency comparison of WEBA and GREEDY with comparative algorithms (no parallelization).

junior researchers in the same area. In a Twitter network, a
community kernel can be a group of well-known entertainers,
while the associated auxiliary community consists of followers
of these celebrities. Based on the above concept, we define the
following problem of detecting community kernels:

Problem (Community Kernel Detection). Given a graph
G = (V,E), how to identify kernel members and auxiliary
members, i.e.∪Ki and ∪AKi

, and how to determine the
structure of community kernels, i.e.K = {K1, · · · ,Kℓ}?

Our problem formulation is very different from previous
work on community detection. Many algorithms have been
proposed for detecting communities in social networks [2],[4],
[7][13][14], however they ignore the difference among vertices
and links. Thus, these algorithms fail to distinguish community
kernels from their auxiliary communities. In addition, Ahnet
al. [15] categorized links instead of vertices to discover hier-
archical community structure. Mishra et al. [10] proposed the
concept of (α, β)-community to allow communities to overlap.
However, these algorithms do not consider the existence and
structure of community kernels.

Observation. Interestingly, community kernels and their aux-
iliary communities form an unbalanced weakly-bipartite struc-
ture. Such a structure can be observed in many real-world
social networks, as shown in Table I1. An unbalanced weakly-
bipartite (UWB)structure consists of two disjoint subgraphs
G1 = (V1, E1) andG2 = (V2, E2) such that

d21 > d11 > d22 ≫ d12.

d11 andd22 are the average degree ofG1 andG2, respectively.
d21 is the average number of edges fromG2 to G1 per vertex
u ∈ V1, and similarly,d12 is the average number of edges from
G1 to G2 per vertexu ∈ V2. G1 is considered as a community
kernel andG2 is considered as the auxiliary community
associated withG1, as shown in Fig. 3. Specifically,

dij = |E (Vi, Vj) |/|Vj |, i, j ∈ {1, 2},

1Coauthor: 822,415 authors and 2,928,360 co-author links;
Wikipedia: 310,990 editors and 10,780,996 co-editing links;
Twitter: 465,023 users and 833,590 following links;
Slashdot: 82,168 users and 504,230 friendship links;
Citation: 34,546 publications and 420,877 citation links.

whereE (Vi, Vj) = {(u, v) ∈ E | u ∈ Vi, v ∈ Vj}, and(u, v)
is an ordered pair of vertices. Notice that the number of edges
in G2 may be significantly larger than that inG1.

TABLE I
SELECTED UWB NETWORKS.

Networks d21 d11 d22 d12

Coauthor 14.19 5.34 4.42 0.37
Wikipedia 1689.31 104.22 4.69 0.60

Twitter 110.78 26.78 2.94 0.29
Slashdot 180.90 84.56 10.75 0.64
Citation 76.69 35.81 23.80 0.26

G1 G2

d11 d22

d12

d21

Fig. 3. A UWB structure.

III. A LGORITHMS

A. Basic Principles

Existing cut- and conductance-based algorithms (e.g. [2],
[4]–[8][13][14][16]) cannot distinguish kernel members from
auxiliary ones. In these methods, edges between different types
of vertices are treated the same way. Thus, the large number
of links from auxiliary members to kernel ones may dominate
the results of community detection.

An intuitive method to distinguish kernel members from
others is to first perform a link analysis algorithm (e.g. degree
ranking, PageRank [17], HITS [18]) on the network to find the
“influential” vertices, and then apply a cut- or conductance-
based community detection algorithm to those vertices only. In
this way, we obtain communities solely based on the link in-
formation between influential vertices. However, this approach
ignores an important piece of information in the network, that
is, the link information between auxiliary and kernel members.
For example, in the Twitter network, fans may follow several



members of the same kernel (e.g. politicians). This collective
following behavior indicates that the target members that are
being followed should be grouped in the same community
kernel. Thus, the lack of this information prevents the method
from finding community kernels.

With these considerations, we propose two algorithms for
efficiently finding community kernels in large social networks.
Different from existing cut- and conductance-based algorithms
in which the goal is to find communities with dense internal
connections and sparse external connections, we aim to find
communities with dense internal connections but allow themto
have dense external connections. Our first algorithm GREEDY

is based on maximum cardinality search, which is efficient
but does not have a bounded error. Further, we propose a
second algorithm WEBA in which we heuristically solve an
optimization problem. WEBA satisfies all the requirements for
detecting community kernels. We prove its theoretical validity
and analyze its error bound. GREEDY and WEBA apply to
both undirected and directed graphs. For simplicity, we only
provide the pseudocode for the undirected case.

B. Greedy Algorithm

Consider an undirected graphG = (V,E) with n vertices
andm edges. Given a kernel sizek, initialize a subsetS ⊆ V
to be a random vertexv ∈ V . Then, iteratively enlargeS by
adding the vertex with the maximum number of connections
to S. If there are multiple vertices with the maximum number
of connections toS, pick the one with the highest degree. If
there are multiple vertices with the highest degree, randomly
pick one of them. This subroutine can be executed recursively
to find multiple community kernels in the graph. Recall that
E(A,B) = {(u, v) ∈ E|u ∈ A, v ∈ B} for A,B ⊆ V .

Input : G = (V,E) and kernel sizek
Output : community kernelsK = {K1,K2, · · · ,Kℓ}
K← ∅
repeat

S ← randomv ∈ V
while |S| < k do

R∗ = {u 6∈ S||E(u, S)| = max{|E(v, S)|, ∀v 6∈ S}}
if |R∗| = 1 then S ← S ∪R∗

elseU∗ = {u ∈ R∗ | d(u) = max{d(v), ∀v ∈ R∗}}
if |U∗| = 1 then S ← S ∪ U∗

elseS ← S ∪ randomu ∈ U∗

if S 6∈ K then K← {K, S}
until a sufficiently large number of times;
return K

Algorithm 1 : GREEDY

As discussed later in detail, GREEDY provides a simple way
to approximately solve the optimization problem given in
Section III-C, allowing integer weights only and no relaxation.
The space complexity and running time required to find one
kernel are bothO(n+m). However, GREEDY does not have
a guaranteed error bound, and it ignores the link information
between auxiliary and kernel members. Thus, as later shown
in Section IV, its performance is not as good as WEBA.

C. Weight-Balanced Algorithm (WEBA)

Consider an undirected graphG = (V,E) with n vertices
and m edges. Intuitively, vertices in community kernels are
more influential than those in auxiliary communities. Then,
we associate a weight vector~w(v) = {w1(v), · · · , wℓ(v)}
with each vertexv ∈ V to represent its relative importance
for each community kernel. In this way, we can determine
community kernels by classifying vertex weights. Given a
positive integerk (i.e. kernel size), we define the following
optimization problem:

maximize L(~w) =
∑

(u,v)∈E

~w(u) · ~w(v)

subject to
∑

v∈V

wi(v) = k, ∀i ∈ {1, · · · , ℓ};

∑

16i6ℓ

wi(v) 6 1, ∀v ∈ V ;

wi(v) > 0, ∀v ∈ V, ∀i ∈ {1, · · · , ℓ}.

As shown in [19] by reduction from thek-clique problem,
it is intractable to solve this optimization problem. Thus,
we approximate the solution by iteratively solving its one-
dimensional versionL(w). For each detected kernel, we give
the following theorem:

Theorem 1. A global maximum of the objective functionL(w)
corresponds to a community kernel.

Proof: Assume that a global maximumL∗(w) is obtained
for vertex weights{w(u), u ∈ V }. Letw(u) be the probability
that the vertexu belongs to a community kernel, and let
nw(u) =

∑
(u,v)∈E w(v) be the neighboring weight ofu. We

prove by contradiction thatnw(u) < nw(v) if w(u) < w(v)
for any pair of verticesu, v.

Assume that there exists a pair of verticesu, v such that
w(u) < w(v) andnw(u) > nw(v). Then, define

δ = min

{

1− w(u), w(v),
nw(u)− nw(v)

2

}

> 0.

We increasew(u) by δ and decreasew(v) by δ. Then,L∗(w)
is increased by

{

δ (nw(u)− nw(v)) > 0, for (u, v) 6∈ E;
δ (nw(u)− nw(v))− δ2 > 0, for (u, v) ∈ E.

which contradicts the fact thatL∗(w) is a global maximum.
Thus, we havenw(u) < nw(v) if w(u) < w(v), which
indicates property (1) of Definition 1. Then, a global maximum
of L(w) corresponds to a community kernel of the graph.

The problem of maximizingL(w) is still NP-hard [19], but a
heuristic solution can be obtained based on pairwise relaxation.
Given a kernel sizek and an initial subsetS obtained by the
greedy algorithm, assign weight 1 to each vertex inS and
weight 0 to others. LetN(v) be the set of neighboring vertices
of v, i.e. N(v) = {u ∈ V |(u, v) ∈ E}, and letd(v) be the
degree ofv, i.e.d(v) = |N(v)|. Then, in each iteration, search
for a pair of verticesu, v ∈ V satisfying both of the following
relaxation conditions:



• w(u) < 1, w(v) > 0
• nw(u) > nw(v)

wherenw(u) =
∑

v∈N(u) w(v) is the neighboring weight of
u. The weights ofu and v are modified to locally maximize
the objective functionL(w), as shown in Algorithm 2. Repeat
this process until no pair of vertices can be found to satisfy
the relaxation conditions. Then, all vertices with weight 1form
a community kernel. Further, we can execute this subroutine
recursively to obtain multiple community kernels.

Input : G = (V,E) and kernel sizek
Output : community kernelsK = {K1,K2, · · · ,Kℓ}
K← ∅
repeat

S ← GREEDY(G, k)
∀v ∈ S, w(v)← 1; ∀v 6∈ S, w(v)← 0
while ∃ u, v ∈ V satisfying the relaxation conditionsdo

if (u, v) 6∈ E then δ ← min{1− w(u), w(v)}

elseδ ← min

{

1− w(u), w(v),
nw(u)− nw(v)

2

}

pick one pair{u, v} with the maximumδ value
w(u)← w(u) + δ, w(v)← w(v)− δ

C ← {v ∈ V | w(v) = 1}
if C 6∈ K then K← {K, C}

until a sufficiently large number of times;
return K

Algorithm 2 : WEBA

Theoretical analysis. Clearly, each vertex should be asso-
ciated with a valid weight, i.e.w(v) ∈ [0, 1], ∀v ∈ V , and
the sum of all vertex weights should be exactly the kernel
size k at the end of each iteration. Moreover, the objective
function should increase during each iteration. Now, we prove
the correctness of WEBA by induction.

Theorem 2. The weight-balanced algorithm is valid and
guaranteed to converge.

Proof: See Appendix.
According to the correctness proof, after an infinite numberof
iterations, each vertexv ∈ V has an ultimate weightw∗(v).
Then, we have the following theorem:

Theorem 3. For any assigned weights{w(v), ∀v ∈ V } and
any ε > 0, after

max

{

4k3D5

ε2
,
2mkD3

ε

}

iterations, we haveL(w∗(v))− L(w(v)) 6 ε, wherek is the
given kernel size andD is the highest degree of vertices in
the graphG = (V,E).

Proof: In each iteration, among all pairs of vertices that
satisfy the relaxation conditions, we choose the one with the
maximumδ value and modify their weights. Let

ε
′ = min

{

ε

2kD2
,

√

ε

2mD2

}

.

Without loss of generality, assume thatε′ 6 nw(u) − nw(v)
andε′ 6 δ. By the proof of Theorem 2, the objective function

is increased by at least(ε′)2 in each iteration. SinceL(w) > 0
initially and L(w∗) 6 kD, the total number of iterations is

6
kD

(ε′)2
= max

{

4k3D5

ε2
,
2mkD3

ε

}

.

Assume that the algorithm terminates whenδ < ε′. Since
ε′D > |w∗(v)− w(v)| for eachv ∈ V upon termination,

L(w∗)− L(w) =
∑

(u,v)∈E

(w∗(u)w∗(v)− w(u)w(v))

6
∑

(u,v)∈E

(

(w(u) + w(v)) ε′D +
(

ε
′
D
)2
)

6 m
(

ε
′
D
)2

+
∑

v∈V

w(v)d(v)ε′D

6 m
(

ε
′
D
)2

+ kε
′
D

2
6

ε

2
+

ε

2
= ε.

Thus, after a finite number of iterations, WEBA can obtain a
near-optimal solution with a very small error bound.

D. Auxiliary Community

After obtaining the community kernels, we use the follow-
ing approach to find their respective auxiliary communities
such that property (2)–(4) of Definition 1 are satisfied. Initially,
label each vertex not in any kernel as unassociated. For each
unassociated vertex, rank the kernels according to the number
of edges from the vertex to each kernel and the vertices that
have already been associated with that kernel. Then, associate
the vertex with the top-ranked kernel. If there are ties, leave
the vertex unassociated. Repeat this process until no more
vertices can be associated with any kernel. Then, the auxiliary
community of a kernel consists of all the vertices that are
associated with that kernel, as shown in Algorithm 3.

Input : community kernelsK = {K1,K2, · · · ,Kℓ}
Output : auxiliary communitiesA = {AK1

,AK2
, · · · ,AKℓ

}
∀i ∈ {1, · · · , ℓ}, AKi

← ∅
repeat
∀i ∈ {1, · · · , ℓ}, Ri = Ki ∪ AKi

for i← 1 to ℓ do
S ← {v 6∈ ∪Ri||E (v,Ri) | > |E (v,Rj) |, ∀j 6= i}
AKi

← AKi
∪ S

end
until no more vertices can be added;
return A

Algorithm 3 : Auxiliary Community

E. Parallelization

To scale up the algorithm to large networks, we develop
a parallel implementation. The idea is to distribute the iter-
ative pairwise relaxation (i.e. the outer loop in Algorithm2)
across multiple processors, while keeping the initialization and
cleanup phase centralized. Fig. 4 shows the speedup of WEBA
on the Coauthor, Wikipedia, and Twitter networks for different
number of computer nodes (1-6 cores). The speedup curve is
close to optimal when the number of cores is relatively small,
and it increases steadily with a lower rate than that of the
optimal line. It can achieve about 4 times speedup for 6 cores.
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IV. EXPERIMENTAL RESULTS

We conduct various experiments in this section to evaluate
and analyze the effectiveness and efficiency of our algorithms
WEBA and GREEDY. All data sets and codes are publicly
available2.

A. Experimental Setup

Date sets.Our experiments are conducted on three different
real-world social networks:

• Coauthor (a co-authorship network with 822,415 nodes
and 2,928,360 undirected edges). Each vertex represents
an author and each edge represents a co-author relation.

• Wikipedia (a co-editorship network with 310,990 nodes
and 10,780,996 undirected edges crawled from wikipedia.
org). Each vertex represents a Wikipedia editor and each
edge represents a co-editing relation.

• Twitter (a following network with 465,023 nodes and
833,590 directed edges crawled from twitter.com). Each
vertex represents a Twitter user account and each edge
represents a following relation. It is well-known that the
web displays a bow-tie structure [20], where 30% of the
vertices are strongly connected. We conduct a bow-tie
analysis on the Twitter network, and discover that only
8% (38,913) of the vertices are strongly connected.

To quantitatively evaluate our algorithms, we construct a
benchmark coauthor network and two benchmark wikipedia
networks. The benchmark coauthor network contains the co-
authorship of more than 8,000 papers published at 27 major
computer science conferences from 2008 to 2010. These con-
ferences cover five research areas: Artificial Intelligence(AI),
Databases (DB), Distributed and Parallel Computing (DP),
Graphics, Vision and HCI (GV), and Networks, Communica-
tions and Performance (NC)3. Computer scientists are usually
associated with one primary subject area, and conferences
associated with different areas usually have different program
committee (PC) members who are academically active in their
respective fields. Then, the PC members of the conferences
in each research area form a co-authorship kernel, which
represents a common research interest of these computer

2http://www.cs.cornell.edu/∼lwang/Data
3AI: IJCAI, AAAI, ICML, UAI, UMAP, NIPS, and AAMAS; DB: VLDB,

SIGMOD, PODS, ICDE, ICDT, and EDBT; DP: PPoPP, PACT, IPDPS, ICPP,
and Euro-Par; GV: SIGGRAPH, CVPR, ICCV, and I3DG; NC: SIGCOMM,
PERFORMANCE, SIGMETRICS, INFOCOM, and MOBICOM.

scientists. Our goal is to uncover the five community kernels
and their kernel members.

Similarly, the two benchmark wikipedia networks contain
the co-editorship of more than 500,000 namespace talk pages
and user personal pages modified by both administrators and
regular editors. The administrators appointed by Wikipedia are
usually knowledgeable in their respective fields, and they are
actively maintaining pages with access to restricted technical
features. Thus, the administrators form a co-editorship kernel,
and our goal is to identify these administrators from others.
Evaluation Measures.To evaluate the performance of WEBA
and GREEDY, consider the following aspects:

• Quantitative performance. We use Precision, Recall,
and F1-score to evaluate and compare WEBA and
GREEDY with other methods. These measures focus on
the number of correct pairs of vertices clustered into the
same community kernel. For example, for any two PC
members in the same field that have coauthored papers
together, if they are grouped into the same community
kernel, then consider it as a correct pair. We use pairwise
resemblance (a.k.a. Jaccard index) to measure how simi-
lar the ground truthA and a community kernelB detected
by an algorithm are. It is defined as|A ∩B|/|A ∪B|.

• Application case study.We conduct case study on the
Twitter network as the anecdotal evidence to further
demonstrate the effectiveness of WEBA.

• Efficiency. We evaluate and compare the efficiency (i.e.
elapsed time required for detecting community kernels)
of WEBA and GREEDY with alternative algorithms, and
analyze the scalability of WEBA.

Comparative Methods. Compare WEBA and GREEDY with
the following algorithms for community kernel detection:

• Local Spectral Partitioning (LSP) [8]: community detec-
tion algorithm based on conductance. This algorithm is
in general a spectral-based graph partitioning method.

• d-LSP: apply LSP to high-degree (top 20%) nodes to
find communities. Degree is considered as the relative
influence of each vertex.

• p-LSP: apply LSP to high-PageRank (top 20%) nodes
[17] to find communities. PageRank is considered as the
relative influence of each vertex.

• M ETIS+MQI [5][6]: community detection algorithm
based on conductance. This algorithm is a flow-based
partitioning method for finding low-conductance cuts.

• L OUVAIN [16]: community detection algorithm based
on modularity. This algorithm is in general a greedy
optimization method.

• NEWMAN 1 [4]: community detection algorithm based on
betweenness. This algorithm is in general an agglomera-
tive hierarchical clustering method.

• NEWMAN 2 [2]: community detection algorithm based on
modularity. This algorithm interprets community detec-
tion as a spectral problem in linear algebra.

• α-β [11]: community detection algorithm based on
(α, β)-community.



TABLE II
ALGORITHM PERFORMANCE COMPARISON ON THE BENCHMARK COAUTHORAND WIKIPEDIA NETWORKS. THE MAXIMUM VALUES FOR EACH

METRIC ARE MARKED BOLD.

M ETRIC M ETHOD W IKIPEDI A COAUTHOR
Talk User Average AI DB DP GV NC Average

Precision

LSP 0.061 0.085 0.073 0.502 0.341 1.000 0.682 0.342 0.573
d-LSP 0.051 0.091 0.071 0.528 0.355 1.000 0.697 0.504 0.617
p-LSP 0.046 0.082 0.064 0.678 0.434 1.000 0.692 0.403 0.641

METIS+MQI 0.049 0.012 0.030 0.847 0.071 0.774 0.692 0.055 0.488
LOUVAIN 0.063 0.122 0.092 0.216 0.122 1.000 0.577 0.272 0.437

NEWMAN1 0.033 0.203 0.118 0.400 0.027 0.834 0.636 0.259 0.431
NEWMAN2 0.039 0.085 0.062 0.298 0.320 0.914 0.170 0.613 0.463

α-β 0.324 0.336 0.330 0.443 0.868 0.807 0.267 0.747 0.626
WEBA 0.456 0.460 0.458 0.852 0.868 1.000 1.000 0.837 0.911

GREEDY 0.334 0.403 0.368 0.830 0.485 0.844 0.856 0.746 0.752

Recall

LSP 0.171 0.315 0.243 0.458 0.268 0.899 0.783 0.398 0.561
d-LSP 0.427 0.273 0.350 0.519 0.381 0.899 0.783 0.463 0.609
p-LSP 0.442 0.237 0.340 0.337 0.428 0.899 0.713 0.491 0.574

METIS+MQI 0.062 0.361 0.212 0.089 0.047 0.899 0.783 0.077 0.379
LOUVAIN 0.388 0.348 0.368 0.184 0.148 0.410 0.783 0.190 0.343

NEWMAN1 0.009 0.077 0.043 0.306 0.075 0.764 0.234 0.174 0.311
NEWMAN2 0.029 0.075 0.052 0.364 0.386 0.211 0.247 0.467 0.335

α-β 0.422 0.427 0.424 0.602 0.371 0.908 0.822 0.568 0.654
WEBA 0.589 0.570 0.580 0.577 0.479 0.899 0.783 0.582 0.664

GREEDY 0.432 0.499 0.466 0.545 0.508 0.899 0.783 0.560 0.659

F1-score

LSP 0.090 0.134 0.112 0.479 0.300 0.947 0.729 0.368 0.565
d-LSP 0.091 0.137 0.114 0.524 0.368 0.947 0.737 0.483 0.612
p-LSP 0.083 0.121 0.102 0.450 0.431 0.947 0.702 0.443 0.595

METIS+MQI 0.055 0.023 0.039 0.162 0.056 0.832 0.735 0.064 0.370
LOUVAIN 0.108 0.181 0.144 0.199 0.134 0.582 0.664 0.224 0.361

NEWMAN1 0.014 0.111 0.062 0.346 0.040 0.797 0.342 0.208 0.347
NEWMAN2 0.033 0.080 0.056 0.327 0.350 0.343 0.202 0.530 0.350

α-β 0.367 0.376 0.372 0.510 0.520 0.854 0.403 0.646 0.587
WEBA 0.514 0.509 0.512 0.688 0.618 0.947 0.878 0.686 0.763

GREEDY 0.377 0.446 0.412 0.658 0.496 0.870 0.818 0.640 0.696

Resemblance

LSP 0.177 0.175 0.176 0.143 0.143 0.223 0.198 0.138 0.169
d-LSP 0.175 0.149 0.162 0.164 0.184 0.223 0.189 0.204 0.193
p-LSP 0.177 0.153 0.165 0.130 0.218 0.223 0.189 0.208 0.194

METIS+MQI 0.130 0.090 0.110 0.022 0.028 0.104 0.068 0.018 0.048
LOUVAIN 0.212 0.245 0.228 0.101 0.109 0.117 0.159 0.102 0.118

NEWMAN1 0.127 0.208 0.168 0.139 0.040 0.193 0.110 0.119 0.120
NEWMAN2 0.131 0.148 0.140 0.137 0.154 0.088 0.071 0.198 0.130

α-β 0.436 0.444 0.440 0.178 0.219 0.213 0.180 0.227 0.203
WEBA 0.561 0.557 0.559 0.234 0.274 0.236 0.229 0.259 0.246

GREEDY 0.445 0.503 0.474 0.216 0.237 0.216 0.207 0.234 0.222

The first seven algorithms are based on the assumption that
communities are densely connected internally and sparsely
connected externally, while the last algorithmα-β, similar
to WEBA, allows communities to have dense external con-
nections. In addition, d-LSP and p-LSP consider the relative
influence of vertices, while the other five do not. All algorithms
are implemented using C++ and all experiments are performed
on a PC running Windows 7 with an Intel(R) Core(TM) 2 CPU
6600 (2.4GHz and 2.39GHz) and 4GB memory.

B. Quantitative Performance

We conduct experiments on the benchmark coauthor and
wikipedia networks to evaluate and compare GREEDY and

WEBA with eight other algorithms. The performance compar-
ison of these algorithms for each metric is given in Table II.
Then, we have the following observations:

Performance comparison. WEBA and GREEDY perform
much better than the other comparative algorithms for de-
tecting community kernels. On average, WEBA achieves a
14–50% and a 15–42% performance improvement over com-
parative algorithms in terms of F1-score for the wikipedia
and coauthor networks. GREEDY also achieves a better per-
formance than comparative algorithms, but on average works
10% and 7% less well than WEBA.

Fundamental assumption. Similar to WEBA, α-β allows
communities to have dense external connections. Thus, it can
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Fig. 5. Sensitivity analysis on the benchmark coauthor network (see PDF for colored version).

achieve a better performance than the rest seven algorithms
when dealing with unbalanced weakly-bipartite networks.
However, it tends to include more vertices in the community
kernels, since the relative influence of vertices is not consid-
ered here. Thus,α-β has higher recall but lower precision.
Link information. The relative influence of vertices is not
considered in the Local Spectral Partitioning (LSP) algorithm.
In d-LSP and p-LSP, we first select the “influential” vertices
with respect to degree and PageRank, and then apply LSP
for finding community kernels. However, such an algorithm
ignores the important link information between auxiliary and
kernel vertices. Thus, though both d-LSP and p-LSP achieve
some improvement with respect to F1-score and pairwise
resemblance, their performance is still not good. Since WEBA
considers the link information between auxiliary and kernel
members, it achieves a much better performance.
Sensitivity analysis. Fig. 5(a) shows the Recall of WEBA,
GREEDY, andα-β as a function of Precision. Fig. 5(b) shows
the F1-score of WEBA, GREEDY, andα-β as a function of
the kernel size. WEBA has the highest Recall for the same
Precision and the highest F1-score for the same kernel size.
α-β is more sensitive to the kernel size change, though in
some cases, it achieves a better F1-score than GREEDY for
the same kernel size.

C. Application Case Study

A typical application of our problem is to identify influential
users. We present an example on the Twitter network, as shown
in Fig. 6. A clear difference can be observed in the results
obtained by WEBA, M ETIS+MQI, and NEWMAN2. The left
figure shows four community kernels obtained by WEBA.
The yellow nodes represent the auxiliary members surround-
ing the four kernels. Some kernel members are enlarged to
highlight the details of the community kernels. Interestingly,
the blue kernel consists of a group of well-known entertainers
and the red kernel consists of a group of active politicians,
which verifies the definition of community kernel. The upper
and lower right figures show four communities obtained by
METIS+MQI and NEWMAN2. By contrast, most of the yellow
nodes are grouped into one of the four communities here, and
the communities are blended with each other. The case study
results further demonstrate the better performance of WEBA
for finding meaningful communities.

D. Efficiency and Scalability

We now evaluate the efficiency performance of GREEDY

and WEBA by comparing their computational time required to
detect community kernels with that of other algorithms on the
Coauthor, Wikipedia, and Twitter networks. We also evaluate
the scalability performance of WEBA with respect to three
main parameters: the number of vertices, the density, and the
kernel size.

The CPU time required by each algorithm for detecting
community kernels in the Coauthor, Wikipedia, and Twitter
networks is given in Fig. 2(a)-2(c). Clearly, both WEBA and
GREEDY significantly reduce the required CPU time compared
with the other algorithms. Further, we analyze the scalability
of WEBA to understand how it can be affected by the network
structure and the input parameter (i.e. kernel size). We generate
a synthetic data set on which a series of experiments are
conducted by varying the number of vertices, the density
|E|/|V |, and the kernel sizek. The analysis results are shown
in Fig. 7(a)-7(c). Clearly, the CPU time required by WEBA
increases (almost) linearly with respect to the number of
vertices, the density, and the kernel size, which demonstrates
the high scalability of WEBA.

V. RELATED WORK

A substantial amount of work has been devoted to the task
of identifying and evaluating close-knit communities in large
social networks, most of which is based on the premise that it
is a matter of common experience that communities exist in
these networks [14]. A community was often considered to be
a subset of vertices that are densely connected internally but
sparsely connected to the rest of the network [2][4][14]. For
example, Newman constructed the measure of betweenness
and modularity to partition a social network into disjoint
communities [2][4]. An information-theoretic framework was
also established to obtain an optimal partition and to find
communities at multiple levels [7][21]. However, communities
can overlap and may also have dense external connections.
Mishra et al. [10] proposed the concept of(α, β)-community
and algorithms to efficiently find such communities. Ahn et
al. [15] provided a novel perspective for finding hierarchical
community structure by categorizing links instead of vertices.

A range of community detection methods have been em-
pirically evaluated and compared in [22]. Community detec-
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Fig. 6. Case study on the Twitter network (see PDF for coloredversion). WEBA discovers four meaningful community kernels from their numerous followers
(colored yellow). The blue kernel consists of entertainersand the red kernel consists of politicians.
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Fig. 7. Scalability performance of WEBA with respect to # vertices, density, and kernel size (no parallelization).

tion problem has been extended to handle query-dependent
cases [23]. Many studies combined link and content infor-
mation for finding meaningful communities [24][25]. The dy-
namic behavior of communities was also extensively explored
in previous work [26]–[29]. Other models have been proposed
to improve the accuracy of community detection in different
scenarios [30]–[33]. New measures have also been proposed
to better evaluate the quality of a community [34][35].

Various techniques have been proposed for identifying and
modeling social influence in large real-world networks. For
example, Crandall et al. [36] studied the interactions between
social influence and selection, Tang et al. [37] analyzed topic-
level social influence in large-scale networks, and Gomez-
Rodriguez et al. [38] developed a method to trace paths of
influence and diffusion through networks.

However, most existing work on community detection has
not considered the difference between kernel and auxiliary

members. The important link information from auxiliary to
kernel members has also been ignored. Other existing work on
social influence has not considered the community structure
of networks. In this paper, we introduce a new problem
of community kernel detection to address these issues, and
propose two algorithms for solving this problem.

VI. CONCLUSION

A structure of community kernels and their auxiliary com-
munities can be found in many real-world social networks
that are unbalanced weakly-bipartite. Community kernels are
particularly useful to distinguish different groups of social
entities and to capture the common property shared by each
group. In this paper, we formally define the problem of
detecting community kernels in large social networks. We
propose a greedy algorithm and an efficient weight-balanced
algorithm WEBA with guaranteed error bound for finding



community kernels. The experimental results on the bench-
mark coauthor and wikipedia networks show that WEBA
significantly improves the performance over traditional cut-
based and conductance-based algorithms, since the relative in-
fluence of vertices and the link information between auxiliary
and kernel members are both considered. The qualitative case
study on the Twitter network further demonstrates the ability of
WEBA to find meaningful community kernels, which reveal
the common profession, interest, or popularity of groups of
influential individuals.

For future work, we would like to explore the dynamic
behavior of community kernels and their auxiliary communi-
ties. We are interested in how community kernels take shape
and evolve over time. In addition, we would like to combine
link and content information in our problem definition and
algorithm design for practical applications, such as query-
dependent community detection.
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APPENDIX

Proof of Theorem 2: By initialization,
∑

v∈V
w(v) = k and 0 6

w(v) 6 1 for eachv ∈ V . According to Algorithm 2, letu, v ∈ V
be a pair of vertices whose assigned weightsw(u) and w(v) are
modified tow′(u) andw′(v) in some iteration.

1) If (u, v) 6∈ E, thenδ = min{1− w(u), w(v)} > 0. Thus,

0 6 w(u) < w
′(u) = w(u) + δ 6 w(u) + (1− w(u)) = 1

0 = w(v)− w(v) 6 w(v)− δ = w
′(v) < w(v) 6 1

The objective functionL(w) is increased by
(

w
′(u)− w(u)

)

∑

p∈N(u)

w(p) +
(

w
′(v)− w(v)

)

∑

p∈N(v)

w(p)

= δ (nw(u)− nw(v)) > 0

2) If (u, v) ∈ E, then

δ = min

{

1− w(u), w(v),
nw(u)− nw(v)

2

}

> 0.

Thus,

0 6 w(u) < w
′(u) = w(u) + δ 6 w(u) + (1− w(u)) = 1

0 = w(v)− w(v) 6 w(v)− δ = w
′(v) < w(v) 6 1



The objective functionL(w) is increased by

w
′(u)w′(v)− w(u)w(v) +

∑

p∈N(u)
p 6=v

δw(p)−
∑

p∈N(v)
p 6=u

δw(p)

= δ · nw(u)− δ · nw(v)− δ
2
> δ

2
> 0

Hence, the validity and correctness of the weight-balanced
algorithm is proved.


