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Abstract

Probabilistic topic models such as Latent Dirich-
let Allocation (LDA) discover latent topics from
large corpora by exploiting words’ co-occurring
relation. By observing the topical similarity be-
tween words, we find that some other relation-
s, such as semantic or syntax relation between
words, lead to strong dependence between their
topics. In this paper, sentences are represent-
ed as dependency trees and a Global Topic Ran-
dom Field (GTRF) is presented to model the non-
linear dependencies between words. To infer
our model, a new global factor is defined over
all edges and the normalization factor of GRF
is proven to be a constant. As a result, no in-
dependent assumption is needed when inferring

assumptions. One unrealistic assumption is that the word-
s in a document are “exchangeable”. It implies that, giv-
en a prior topical mixture, the topics of words in a docu-
ment are conditionally independent. Many extensions have
been proposed to relax this assumption but most of them
are limited to linear topical dependencies between words.
Gruber Gruber et al.2007) assumes that the topic prior of
the words in a sentence is dependent on its proceeding sen-
tence’s. ZhuZhu & Eric, 2010 assumes that topic assign-
ment of awords is dependent on its neighboring words with
similar syntax features. However, words may be dependent
with each other in a much more complex manner. In tex-
t processing, words may depend on each other in a tree
structure according to linguistic knowled@sz({torio et al.
2013. In image processing, superpixels are related with
each other spatiallyf & Li , 2007).

our model. Based on it, we develop an efficien-
t expectation-maximization (EM) procedure for

parameter estimation. Experimental results on
four data sets show that GTRF achieves much
lower perplexity than LDA and linear dependen-

cy topic models and produces better topic coher-
ence.

To confirm the existence of topical dependencies in texts,
we analyzed the documents of Reuters-21578 using stan-
dard LDA (topic number = 10) and then conducted a statis-
tic on the similarity between words on topics. The results
are illustrated in Figure 1.
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1. Introduction

I
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Latent Dirichlet Allocation (LDA), first proposed by Blei
et al. in 2003 Blei et al, 2003, is one of the most widely
used probabilistic topic models. In the past ten years st ha
been successfully used to analyze document collections,
images Chi-Chun & Prasenjjt2011), music Hu & Saul
2009 (Shalitetal, 2013 and videos \einshall et al.
2013.

As pointed out by Blei Blei, 2012, LDA makes several

0.1
cor. doc. nei.(d=45, 40, ..., 5, 1) dep.

Figure 1.Topical similarity between words using LDA

Figure 1 shows the average topical similarity between
words in the same corpus (cor.), document (doc.), neigh-
bring area (nei.) and depended word pairs (dep.) respec-
tively. We have following observations. First, the topical
similarity between words in the same document is much
Proceedings of the31*" International Conference on Machine higher than that in the same corpus. It proves that positive
Learning Beijing, China, 2014. JMLR: W&CP volume 32. Copy- correlation exists among the topics of words in the same
right 2014 by the author(s). document and it is the basis of LDA. Second, the topi-



On Modelling Non-linear Topical Dependencies

cal similarity between neighboring words increases with- Symbol —Description

in a decreasing distance ranging from 45 to 1. It im- ~aword, or a vertex in a grapl

plies that neighboring relation is more significant than co- a topic, or a state of vertex.
occurring relation. This has been proven by many existing the topic mixture of a document.
literaturesZhu & Eric, 201Q(Gruber et al.2007). Third, a document that is composed of a
the topics of semantically or syntactically dependent word N fﬁg‘;ﬁmge?fo‘;v\?vgzs in a document
pairs achieve the highest similarity. It means that the syn- K+ the number of topics. '
tactic or semantic dependencies lead to the strongest topi-
cal dependencies and they are able to provide more useful apje 1.Notations of some frequently occurring variables.
information in topic modeling.

asown g

However, modeling these topical dependencies is a noré-1. LDA and itsextensions

trivial task because of the non-linear structures. The maifg o knowledge, although there are lots of studies focus-
challenge is the generation probability of topic assign-ny on modeling the topical dependencies for LDA, there
ments. The nature of Bayesian model requires that the togg ey existing work that models topical dependencies in

ic assignments should be drawn from a legal probabilityy o1y structure. Most of them are of linear chain structure
measure to make sure that the model won'’t lead to unexs, unidirectional tree structure.

pected biases. However, for distributions that can mod-

el the probability of a set of (mutually) dependent vari- LDA (Blei et al, 2003 is a generative three-layer Bayesian
ables, such as Markov Random Field (MRF) and Condi-model assuming that the topics of words in the same docu-
tional Random Field (CRF), the calculation of the normal-ment are conditionally independent. In LDA, the probabil-
ization factor is usually difficult and to some extent im- ity of a topic sequence is:

possible in some scenarios. To overcome this challenge, "

CTRF (Zhu & Eric, 2010 makes an extra independent as- Praa(Z0) = HMulti(an) @
sumption between word pairs. Even though, it can only

model linear topical dependencies between words. Grabq—ﬁTMM (Gruber et al.2007 model assumes that all words
(Boyd-Graber & Blej 200 proposes a model to make use in the same sentence should be assigned to the same topic

.Of the syntactic in_fo_rma’_[ion available f“’T“ parse trees bUtand the topic of one sentence is dependent on its preceding
it only handles unidirectional dependencies. sentence. For a document, it generates a topic sequence
In this paper, we present a novel method to model nonusing a Markov process:

linear structure topical dependencies. The key of our mod- N

el is the embedding of Global Random Field (GRF) for the Praa(20) = p(21]0) Hp(znlznﬂ, 0) @)
sampling of latent topics over words. Except the multino- 2

mial factors used in conventional LDA model, GRF im-
: ' The strategy of seqLDA L@netal, 2010 and STM
ports a new global factor defined over all edges to mode Boyd-Graber & Blej 2008 is similar but in seqLDA, the

the topical dependencies between words. With some con-_". . ! :
topical dependencies are defined on longer units such as

strains that can be easily satisfied, the normalizatiomfact haot 4in STM q ted ditioned
of GRF is proven to be a constant. As a result, no indeSNaPIers and in » WOrds are generated conditioned on

pendent assumption is needed when inferring our modef.helr parents in the parse trees.

We develop an EM algorithm for parameter estimation andCTRF hu & Eric, 2010 relaxes the independent assump-
experimental results on four different copra show that nontion by defining a linear chain Conditional Random Field
linear dependencies do improve the modelling performancen the topic sequence. It differs from HTMM and STM
when comparing with existing methods. that the topical dependencies in CTRF are mutual instead
ff unidirectional. CTRF defines the probability of a topic

Th t of thi i ized as follows. Secti . ) .
© rest of this paper s organized as 1ollows. - section sequence using Generalized Linear Model (GLM):

gives a brief review of related works and Section 3 present

our model. Inference and parameter estimation are present- (20, a) I1.[6(2nl0, @) (2n, 2ns1]0, a)] 2
i i i I i Petrf(Z|0,a) = L 7

ed in Section 4 anq in Section 5 we C(_)nduct experimentson Petrf S, 1L, [6(z010,a)6(zh, 21116, )] 3)

four corpora. Section 6 concludes this paper.

However, the complexity of the log-partition function
2(0) = >, I1,10(2010,a)¢(2;,, 27,1116, a)] prevents ac-
2. Related Work curate inference of CTRF. CTRF makes an assumption that
In this section we give a brief review of related works. the potential functions(-) of different words (pairs) are
Table2 defines some frequently occurring variables. independent with each other to facilitate the calculatibn o
the expectation of (6).
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There are some lines of research aiming at relaxing othtic dependencies between words in topic model.

er assumptions of LDA. NewmaiDévid et al, 2011 pro-

posed a model using the relation of words directly to modgl Global Topic Random Field

ify the distribution of word generation instead of topical

dependencies. Griffithg&fiffiths et al, 2009 presents a In this section, we present Global Topic Random Field
model that automatically identifies if a word is a function- (GTRF), a new model that can exploit topical dependen-
al word or a content word using a Hidden Markov Mod- cy of arbitrary structures. Given a documehtve at first

el (HMM). Markov Topic Random Field (MTRF)Hal, transform it into a grapli’; using the method discussed in
2009 assums that documents are dependent with each otl$ection2.2

er. Posterior RegulizationGanchev et al.2010 defines

constrains on the latent variables to reduce the searching 8.1. Global Random Field

pace. Our model differs from these methods by modeling

mutual topical dependencies between words in non-lineaPNc€ @ document is represented as a graph, the sampling
structure. of topics can be cast into the sampling of this graph. We

propose a random field called Global Random Field (GRF)
to model the sampling process. Before presenting GRF, we

2.2. GraphicR tation of D t g, AR
raphic Representation of Documents start by defining a new distribution.

In most existing research, a document is represented as o . _
unordered collection of words, which is also known as “bagjjv?;g:ree'm? ];.{S\(;elialn ;ndlrsftiidagsr:tpdgf ;;tizz’sg i
- 7 - ) AR -

of words" representation. In these studies, the relatiens b (!, w!)]i = 1.2, .., m} is the edge set and the state of a
tween words are totally abandoned except the co—occurrin§ AR . g .
. . T C .. vertexw is drawn from a finite se¥ = {z;|i = 1,2, ..., k},
relation. Usually, this representation is used to Slmp“fyfunction' L
the the modeling while according to linguistic knowledge, '
words are dependent with each other in a more complex
manner. 1
P(G) = felg) = ] I1 ¢Go) x = >° élzurzum)

weW (w,w")eE

Dependency parsingRyan & Joakim 2011 is a natural
language processing tool which can find the syntax or se-

: : 1. !
mantic relations between words, and then represents a sen- st 1. ¢(2) >0, ¢(2,7) > 0

tence into a tree (See Figulefor example). Most of the 2. Z P(z) =1

linked words in this tree are tightly related with each oth- 2€2

er, e.g.,salesand IPhone5 disappointand invertors In 3. Z d(Np(Z"p(2', 2") =1
practice, we can filter out the edges that link to function 22" ez

words such atheand add new edges using some rules. For 4

example, thesubjectand objectof the same verb. In this
way, with the help of a dependency parser, a sentence can -
be transformed into a graph conveniently. is a probability measure.

In Equationd, ¢(-) is a function defined on a single vertex

disappoint . . . .
I_ Id . ande(-, -) is a function defined on an edggis one sample
nsubj o (topic assignment) afr andz,, is the state (topic) of vertex
f'ei investors w. The proof can be found in Appendix.

et p'e_”*( We call a random field with a distribution as in Equa-

the 'P§0n95 tion 4 a Global Random Field GRF) because the item

gmed Z(w,@,,)_eE (2w, zr) SUMS over through a_lll edge§ in
new G while in MRF or CRF, each factor (potential function)

Sentence: The sales of new iPhone5 disappoint investors. is defined on a Clique- One may find that there is no nor-

malization factor in Equatiod. This is the advantage of
GRF with which in the modeling process, we can avoid the
complex calculation of normalization factor and thus do not

. . .need to make extra independent assumptions.
The graphic representation of documents reserves more in-

formation than “bagof words” representaion and actuallySince there is no constrain on the structur&ofall kinds

has imported linguistic knowledge in it. In the next section of structures are acceptable, ranging from simple stractur
we propose a new model based on a carefully designed raguch as linear chain to complex structures such as tree or
dom field to make use of the non-linear semantic or syntacnetwork.

Figure 2.A dependency tree
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3.2. Modeling topical dependencies Using GRF According to our observation, the linked words have higher
topical similarity. To model positive correlations betwee
topics of linked wordsgoher ent edges should be rewar d-

ed. This can be satisfied by choosing\a < 1 and lower

A2 means higher reward to coherent edges.

Based on GRF, we propose a new mddklbal Topic Ran-
dom Field(GTRF). GTRF differs from standard LDA and
its extensions in the generation of words’ topics.

In GTRF, for document, given a topic mixtured (that
drawn from a Dirichlet prior) and its graphic representatio
Gq = {V, E}, the probability of the topic sequenzef d

Given distribution,,, s, then we have the generation pro-
cedure of a document as follows:

is modeled by: 0. Transform documentinto a graph.
1. Drawé ~ Dir(«).
Patry(20) = |E| [ Muiti(zul0) 2. Draw a topic sequen@~ P, ((z|0)
wev 3. For each ofV word w,, in d:
X Z (O‘Zw,:zw,,)q +O’Zw,¢zw,, Ag) (5) draan ~ ]\/[Ultll(ﬁzmwn).
(W' w'")EE

where o, — 4 L T1Strue In this generation procedure, the topics for a document are

0 zis false sampled at the same time. Topical dependencies between

C.:ompar_lng with Equaupm, we can see thf’ﬂ the fu_nc- related words are modeled using GRF which will reward
tion defined on the topic of a single word is a Multino- .
graphs that contain more coherent edges.

mial distribution parameterized %y and the function de-
fined on a edge igo. 1—2A1 + 0O 1#2/\2) Obviously, ) )
S°. Multi(z|6) = 1 and Multi(z|6) > 0. To satisfy the 4. Inference and Estimation

third constraint, the following equation should hold true: In this section we discuss how to infer the posterior distri-

Z [Multi(z,00) Multi(z,|0) bution and estimate parameters of GTRF. Although in the
Bt Pt conditional probabilityp . ¢ (2|6), there is no log-partition
X (0eymz M+ Oeyia A )] fgnctlon and as a result_the s_ummatlon over an exponen-
tial number of latent topic assignments can been avoided,
= Y (Multi(zur|0) x Multi(z,|0) x A1) pgtr£(2|0) contains a global factor summing over all the
P! =Fwl edges which is difficult to calculate. This factor is approx-
+ Z (Multi(z,|0) x Multi(z,|0) x A2))  imated using Taylor series in this paper.
2t FE 2t
=0T +(1—0T0)N =1 4.1. Posterior Inference
(6)

Like LDA and its extensions, GTRF can not be inferred ex-
actly. We develop a variational inference method for GTR-

1—X @) F. At first we give the probability of a document:
0To

To make Equatioié true, we have:

A=A+

According to Theorem 1, once Equati@ns satisfied, the p(Wle, B) = /p(9|0‘) Zpgrtf(zm Hp(w"Vanﬁ)d@
function defined in EquatioB is a legal probability mea- ‘ "

sure. Parametersy and 5 can not be estimated directly due to
Given a topic sequence we can divide the edge sé  the coupling betweefi and 3. We develop a variational
of G4 into two sets:Ex andEyc. Ec contains edges that  distributiong to approximate:

connect two vertices that have been assigned the same topic

andE ¢ contains the remains. The edgedip are called q(0, 2]y, ) = Dir(f]y) x H Multi(zw, |Pw,)
Coherent Edges. Then Equatiorb can be rewritten as: n

Pgtr(Z0) = |E| H Multi(zw|0) x (|Ec|A\ + |Exc|A2) Following the deduction of standard LDA iBlgi et al,
wev 2003, we can write the likelihood of a documentin GTRF

. |Ec|(1 = A2) into:
= Multi(z]0) x (7 + A2
1 g
(8)

, , , L £ Ey[logp(6]a)] + E4[log p(20)] + E,[log p(W|z, B)]
To derive EquatiorB, we used Equatio” and the fact

|E| = |Ec| + |Enc. — Eq[log q(6)] — Eq[log q(2)]
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All items except the second one can be expanded as in Lfunction of (v, ¢, «, 5, (1, (2, A\2). Among these parame-

DA. Here we only expand the second item to save space: ters,(;, (> are used for Taylor approximation and they can
be embedded with the values(@f— \2)|Ec| + 2| E|6T0
and|E|670 in the previous iteration respectivelyy is an

E, [log p(Z|6)] hyper parameter and it's value is determined by data obser-
_ Eol(1— ) + M| E|670 vations or other methods. The upda_tlng rulesdaoand 5
=E, |:10g (HMultz(zwn,IG) X |Ecl( |E2|)9T9 2|E] ) are the same as in LDA and we omit them to save space.

Here we give the updating rules for
= E, [log ([ [ Multi(zw,0))]

+Eq[log (|Ec|(1 — X2) + X2| E|070)]

1— X2
—E,[log (|E|9T0)} Puwni X Biv €Xp (W(%) + o X Z (pwmi>
(9) (wn,wm)EE

(13)

In the Iastrlllne, the_ﬂrst Iltg_m 'Zth.e sar_:jﬁ asthe I|(Ij<el|i:j0%q 'dnln Equationl3, i is the index of topic and is the index
Pda W.r-t the variational distribution. The second and third o, “i, the vocabulary and,, is one of the words that

item can not be calculated directly so we use Taylor Seriegemantically or syntactically dependentop. From this
to approximate them and we have: equation, we can see that onke< 1, ¢, , the topic dis-
tribution of wordw,, will obtain positive mass fromu,,
. . and therefore after iterations the topic distributionsarf-c
B, [log (1 — M) Ec| + A2|E|670)] — E, [log (|E|67 )] nected words will approach the same.

~E, [C (1= M) Ec| + Aol EJ676) — 14 log (1] Unfortunately, we can not obtain the direct_ updating rule
for 7. As a suboptimal strategy, we updatesing Newton
—E, [ (|E1070) — 1 +1og (2] method and here is the derivationofv.r.t. ~:
oL , ,
— — — = (i =y + ) buw,i) (¥ (1) — V()
= (A7) mtimed - (S22 1) BT T 2 pe)l )
< G162 : (14)
—HogQ —IOgCQ B Cl—C2A2|E| Z ’yi(’yi—l—l)
(10) GG — Y0(70 + 1)

In Equationl0, we use the fact thaf|, which is the num- whereyo =3.;" .
ber of edges itty, is a constant w.r&. The reward given  Clearly, the time complexity of~ is O(N + K') whereN

to coherent edges is controled hy. is the number of words of current document akids the
. L . . _
E,|Eo| can be calcualted as: Ir;/umber of topics. Therefor% can be compute efficient
EBcl= > fu,Pum (11)  with the aboving updating rules, we leverage an EM algo-
(wn,wm)EE rithm to estimate parametessand /3 and the procedure is

substantially the same as in LDA. At the very beginning,
E,(679) can be obtained according to the definition of « and3 are averagely sampled. Then for each iteration, in

Dirichlet distribution: E-step, the algorithms find the bestand ¢ for currenta
. . andg; in M-step,a andg are updated using the obtaingd
E (670 — E 02— ~i(yi + 1) 12 ande.
(070 =D B=D Sy @2

wherey, = S5 ;. 5. Experiments

The rest items inl can be deducted in the same way as/n this section, we conduct several experiments to compare
LDA. GTRF model with standard LDA and CTRF. We choose L-
DA and CTRF for two reasons. First, LDA is chosen as a
baseline that makes no use of relation between words. Sec-
ond, as far as we know, CTRF is the only exiting model can
In the previous subsection, we have completed the deduenodel mutual topical dependencies between words which
tion of the likelihood L and it can be represented as ais similar to our model. STM, HTMM and SeqLDA are

4.2. Parameter Estimation
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nice models but they focuses unidirectional dependenciesments and calculate predicative perplexity on the unseen
between words or chapter so they are not chosen as comne third of documents. Formally, the predicative perplex-

parison models in this paper. ity is defined as:

5.1. Datasets

We use four datasets in our experiments, two are news doc-  perplexity Dycs¢) = exp {_ 242 weamP(V) }
uments and two are research papers. The four datasets used 22ad]

in this paper are: . .
pap whereD;.; is the collection of unseen documents asd

Reuters-21578 It contains 21,578 documents appeared onis the length of document

Reuters newswire in 1987. - . .
Predictive perplexity tells the uncertainty of unseen docu

20NewsGrougs A collection of approximately 20,000 ments given the trained model. Lower predictive perplexity
newsgroup documents. value means the trained model fits the unseen data better.

NIPS datd (A. et al, 2007: The accepted papers of NIPS Because the topics of ICML and NIPS data are more con-

from 2000 to 2005. centrated and the number of documents is fewer, it is not
proper to assume that they contains large number of topic-

Iz%hl/lé' data The accepted papers of ICML from 2007 to S. The_refore,_ we test all three models on ICML and NIPS
data with topic number& = 10, 15, 20, 25. For the oth-

Table 5.1 illustrates these four datasets. As illustrated,er two dataset, we test all three models with topic number

these four datasets are of two different kinds. Retures& = 10, 20,50, 100. In our GTRF model, there is a con-

21578 and 20NewsGroups contain more documents butol parametei, that can not be estimated directly and we

with shorter length while NIPS and ICML data contain test GTRF with\, = 0.2,0.4,0.6,0.8.

less documents but with longer length. What's more im-

portant, the former two datasets are news articles so they 3, Experimental results and analysis

may cover more topics than the two research paper dataset- ] o .
s. We choose these two kinds of datasets intentionally V& compare GTRF with existing models in three ways.

test GTRF’s performance in different scenarios. First, we compare their performance on document model-
ing with perplexity. Then we test the topical similarity of
Dataset #Fofdocs #ofunique Avg#ofwords Words modelled by GTRF to find if GTRF can better model
words per doc the dependencies between words in the documents. At last
Reuters-21578 16,844 13,054 75 we conduct a case study to show the topical coherence of
20NewsGroup 18,828 27,456 108 our model
NIPS 1,000 15,415 1,704 '
ICML 1,004 20,907 2,599 Document Modeling

Figure 3 and Figure4 illustrates the experimental results.
Table 2.lllustration of datasets We repeat each experiment five times and the perplexity
) ) values shown here are the average values. Unsurprisingly,
To implement GTRF, we parse all documents using Stanp ) CTRF and GTRF perform much better than standard

ford Parsef (Marneffe et al. 2009. New edges are added | pa in all four corpora because both CTRF and GTRF
between thesubjectandobjectof the same verb and stop- ;e extra information rather than co-occurring relatéon t

words and the edges connecting to them are removed aftgfcqyer topics.

dependency parsing.
The comparison between the results of CTRF and GTRF is

5.2. Experiments setup interesting. For t_he_ICML and _NIPS data, GTRF produces
much lower predictive perplexity than CTRF whenval-

Following most existing studies on topic model, we testyes from 0.8 to 0.2 (see Figusp While for Reuters-21578

our model and comparison methods in document modelingnd 20NewsGroups data, CTRF performs better than GTR-

and evaluate their performance using predicative perplexiF when), is greater (>0.6)(see Figu#. As discussed in

ty. For all datasets, we train models with two thirds of doc- Section3, lower )\, means higher reward to coherent edges,

Wwwdaviddlewis com/resources/testcollection so one possible reason is that the length of news articles

reuters21578/ is short so that dependency between related words is not
2nttp://qwone.com/ jason/20Newsgroups/ so significant comparing with neighboring words. In fac-
3http://ai.stanford.edu/ gal/Data/NIPS/ t, we can see that the improvements of CTRF and GTRF

“http://nip.stanford.edu/software/lex-parser.shtml on ICML and NIPS data are greater than on Reuters-21578
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—+—LDA —a—CTRF GTRF(0.8) —e—LDA —s—CTRF GTRF(0.8)
GTRF(0.6) —=—GTRF(0.4) GTRF(0.2) GTRF(0.6) +GTRF(O 1) GTRF(0.2)
2400 1200
£ 1600 [
5 1500 X 800
) -
% i % 600 \
L 800 i

200

10 15 ¢ 20 25 K 100
(a) ICML (a) 20NewsGroup
——LDA —a—CTRF GTRF(0.8) —e—LDA —=—CTRF GTRF(0.8)
GTRF(0.6) —=—GTRF(0.4) GTRF(0.2) GTRF(0.6) —=—GTRF(0.4) GTRF(0.2)
1400 1200
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> 1000 | [
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-
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a 400 200
200 ‘
0 200
10 15 ¢ 20 25 10 200 g 50 100
(b) NIPS (b) Reuters-21578

Figure 3.Expetimental results on ICML and NIPS data. Figure 4.Experimental results on 20NewsGroup and Reuters-
21578.
and 20NewsGroups. It can be explained with the same rea-

son. suggests that although lowgs produces lower perplexity,

According to the results illustrated in FiguBeand4, we  the stability of GTRF decreases as well. The most possible
can see that loweh, always leads to lower perplexity. reason is that we reward all coherent edges evenly while
However, it doesn’t mean that, should be given a tiny it shouldn’t be. In our future work we will try to classi-
value (e.g., 0.1 or even smaller). In experiments, we findy edges according to lexical or statistic features and then
that GTRF is to some extent sensitiveXg and lower),  reward them in different manners.
tends to lead to lower stability. TabBshows the variation
coefficient of the perplexity for different, (averaged on
all 4 datasets). The variation coefficient of perplexities i As an echo of the data observation illustrated in Figire
calculated by: Figure 5 shows the topic similarity between words mod-
eled by GTRF, CTRF and LDA on Reuters-21578 (top-
ic number = 10). Comparing with what shown in Figure
o(perp) (15) 1, the topical similarity in the same corpus keeps almost
u(perp) the same while the similarity in GTRF and CTRF between
co-occurring words, neighboring words are much higher.
whereo(-) is the standard derivation and-) is the mean. In particular, GTRF outperforms CTRF on the similarity
The coefficient of variation is a normalized measure (w.r.toetween dependent words. No one would deny that these
the mean). Higher variation coefficient indicates more dis-word pairs should have higher topical similarity. This con-
persion exists from the average value, which means lowelrast proves that GTRF complies human cognition better
stability to our method. than CTRF and LDA.

Topical Similarity

ve(perp) =

A2 0.2 04 06 08 Topical Coherence
ve 0.2287 0.1422 0.0946 0.0756

Figure 6 shows the comparison of topic assignments of
GTRF (K = 10,y = 0.4) and LDA (/X = 10) on the
Table 3.The variation coefficient ok. same document. In LDA, a word is assigned to the same
topic no matter how many times it occurs and no matter
From Table3 we can see that the variation coefficient of what its context is. As a contrast, GTRF can assign differ-
the perplexity increases with the decreasing\ef This  enttopics to different occurrences according to the cdntex
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The U.S. congress and the oil industry are deeply divided on ways the government should assist the
industry, hurt by the sharp fall in oil prices, and the subsequent growth in oil imports, industry analysts said.
“The industry is deeply divided between those who support an oil tariff and those who believe tax
incentives are better.” Said Daniel Yergin, director of Cambridge Energy research associates, which

recently completed a survey of'the U.S. congress on energy issues.
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Figure 6.An example of the comparison between GTRF and LDA.

(top: LDA, bottom:GTRF. Each color stands for a topic.)
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7 o3r topics from large achieve of documents by exploiting topi-
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Ol o doc, nei.(d=45, 40, .., 5, 1) dep. pendent words. While existing models assume that words
in the same document are evenly related, GTRF makes a
Figure 5.Topical similarity between words using GTRF. more reasonable assumption that these words should have

higher topical similarity. We had investigated data obser-

vations to confirm this assumption. To model the complex

For example, in the first row, GTRF assigns “oil" and “in- dependency structures that can not be modfeled b_y exis_ting
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le probability function. By integrating GRF into LDA, our
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