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Abstract

Probabilistic topic models such as Latent Dirich-
let Allocation (LDA) discover latent topics from
large corpora by exploiting words’ co-occurring
relation. By observing the topical similarity be-
tween words, we find that some other relation-
s, such as semantic or syntax relation between
words, lead to strong dependence between their
topics. In this paper, sentences are represent-
ed as dependency trees and a Global Topic Ran-
dom Field (GTRF) is presented to model the non-
linear dependencies between words. To infer
our model, a new global factor is defined over
all edges and the normalization factor of GRF
is proven to be a constant. As a result, no in-
dependent assumption is needed when inferring
our model. Based on it, we develop an efficien-
t expectation-maximization (EM) procedure for
parameter estimation. Experimental results on
four data sets show that GTRF achieves much
lower perplexity than LDA and linear dependen-
cy topic models and produces better topic coher-
ence.

1. Introduction

Latent Dirichlet Allocation (LDA), first proposed by Blei
et al. in 2003 (Blei et al., 2003), is one of the most widely
used probabilistic topic models. In the past ten years, it has
been successfully used to analyze document collections,
images (Chi-Chun & Prasenjit, 2011), music (Hu & Saul,
2009) (Shalit et al., 2013) and videos (Weinshall et al.,
2013).

As pointed out by Blei (Blei, 2012), LDA makes several
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assumptions. One unrealistic assumption is that the word-
s in a document are “exchangeable”. It implies that, giv-
en a prior topical mixture, the topics of words in a docu-
ment are conditionally independent. Many extensions have
been proposed to relax this assumption but most of them
are limited to linear topical dependencies between words.
Gruber (Gruber et al., 2007) assumes that the topic prior of
the words in a sentence is dependent on its proceeding sen-
tence’s. Zhu (Zhu & Eric, 2010) assumes that topic assign-
ment of a words is dependent on its neighboring words with
similar syntax features. However, words may be dependent
with each other in a much more complex manner. In tex-
t processing, words may depend on each other in a tree
structure according to linguistic knowledge(Sartorio et al.,
2013). In image processing, superpixels are related with
each other spatially(Li & Li , 2007).

To confirm the existence of topical dependencies in texts,
we analyzed the documents of Reuters-21578 using stan-
dard LDA (topic number = 10) and then conducted a statis-
tic on the similarity between words on topics. The results
are illustrated in Figure 1.
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Figure 1.Topical similarity between words using LDA

Figure 1 shows the average topical similarity between
words in the same corpus (cor.), document (doc.), neigh-
bring area (nei.) and depended word pairs (dep.) respec-
tively. We have following observations. First, the topical
similarity between words in the same document is much
higher than that in the same corpus. It proves that positive
correlation exists among the topics of words in the same
document and it is the basis of LDA. Second, the topi-
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cal similarity between neighboring words increases with-
in a decreasing distance ranging from 45 to 1. It im-
plies that neighboring relation is more significant than co-
occurring relation. This has been proven by many existing
literatures(Zhu & Eric, 2010)(Gruber et al., 2007). Third,
the topics of semantically or syntactically dependent word
pairs achieve the highest similarity. It means that the syn-
tactic or semantic dependencies lead to the strongest topi-
cal dependencies and they are able to provide more useful
information in topic modeling.

However, modeling these topical dependencies is a non-
trivial task because of the non-linear structures. The main
challenge is the generation probability of topic assign-
ments. The nature of Bayesian model requires that the top-
ic assignments should be drawn from a legal probability
measure to make sure that the model won’t lead to unex-
pected biases. However, for distributions that can mod-
el the probability of a set of (mutually) dependent vari-
ables, such as Markov Random Field (MRF) and Condi-
tional Random Field (CRF), the calculation of the normal-
ization factor is usually difficult and to some extent im-
possible in some scenarios. To overcome this challenge,
CTRF (Zhu & Eric, 2010) makes an extra independent as-
sumption between word pairs. Even though, it can only
model linear topical dependencies between words. Graber
(Boyd-Graber & Blei, 2008) proposes a model to make use
of the syntactic information available from parse trees but
it only handles unidirectional dependencies.

In this paper, we present a novel method to model non-
linear structure topical dependencies. The key of our mod-
el is the embedding of Global Random Field (GRF) for the
sampling of latent topics over words. Except the multino-
mial factors used in conventional LDA model, GRF im-
ports a new global factor defined over all edges to model
the topical dependencies between words. With some con-
strains that can be easily satisfied, the normalization factor
of GRF is proven to be a constant. As a result, no inde-
pendent assumption is needed when inferring our model.
We develop an EM algorithm for parameter estimation and
experimental results on four different copra show that non-
linear dependencies do improve the modelling performance
when comparing with existing methods.

The rest of this paper is organized as follows. Section 2
gives a brief review of related works and Section 3 presents
our model. Inference and parameter estimation are present-
ed in Section 4 and in Section 5 we conduct experiments on
four corpora. Section 6 concludes this paper.

2. Related Work

In this section we give a brief review of related works.
Table2 defines some frequently occurring variables.

Symbol Description
w: a word, or a vertex in a graphG
z: a topic, or a state of vertexw.
θ: the topic mixture of a document.
d: a document that is composed of a

sequence of words.
N : the number of words in a document.
K: the number of topics.

Table 1.Notations of some frequently occurring variables.

2.1. LDA and its extensions

To our knowledge, although there are lots of studies focus-
ing on modeling the topical dependencies for LDA, there
is few existing work that models topical dependencies in
graph structure. Most of them are of linear chain structure
or unidirectional tree structure.

LDA (Blei et al., 2003) is a generative three-layer Bayesian
model assuming that the topics of words in the same docu-
ment are conditionally independent. In LDA, the probabil-
ity of a topic sequence is:

plda(z|θ) =
n
∏

Multi(zn|θ) (1)

HTMM (Gruber et al., 2007) model assumes that all words
in the same sentence should be assigned to the same topic
and the topic of one sentence is dependent on its preceding
sentence. For a document, it generates a topic sequence
using a Markov process:

plda(z|θ) = p(z1|θ)
n
∏

2

p(zn|zn−1, θ) (2)

The strategy of seqLDA (Lan et al., 2010) and STM
(Boyd-Graber & Blei, 2008) is similar but in seqLDA, the
topical dependencies are defined on longer units such as
chapters and in STM, words are generated conditioned on
their parents in the parse trees.

CTRF (Zhu & Eric, 2010) relaxes the independent assump-
tion by defining a linear chain Conditional Random Field
on the topic sequence. It differs from HTMM and STM
that the topical dependencies in CTRF are mutual instead
of unidirectional. CTRF defines the probability of a topic
sequence using Generalized Linear Model (GLM):

pctrf (z|θ, a) =

∏

n
[φ(zn|θ, a)φ(zn, zn+1|θ, a)]

∑

z′
∏

n
[φ(z′n|θ, a)φ(z′n, z

′
n+1|θ, a)]

(3)

However, the complexity of the log-partition function
Z(θ) =

∑

z′
∏

n[φ(z
′
n|θ, a)φ(z

′
n, z

′
n+1|θ, a)] prevents ac-

curate inference of CTRF. CTRF makes an assumption that
the potential functionsφ(·) of different words (pairs) are
independent with each other to facilitate the calculation of
the expectation ofZ(θ).
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There are some lines of research aiming at relaxing oth-
er assumptions of LDA. Newman (David et al., 2011) pro-
posed a model using the relation of words directly to mod-
ify the distribution of word generation instead of topical
dependencies. Griffiths (Griffiths et al., 2005) presents a
model that automatically identifies if a word is a function-
al word or a content word using a Hidden Markov Mod-
el (HMM). Markov Topic Random Field (MTRF) (Hal,
2009) assums that documents are dependent with each oth-
er. Posterior Regulization (Ganchev et al., 2010) defines
constrains on the latent variables to reduce the searching s-
pace. Our model differs from these methods by modeling
mutual topical dependencies between words in non-linear
structure.

2.2. Graphic Representation of Documents

In most existing research, a document is represented as an
unordered collection of words, which is also known as “bag
of words" representation. In these studies, the relations be-
tween words are totally abandoned except the co-occurring
relation. Usually, this representation is used to simplify
the the modeling while according to linguistic knowledge,
words are dependent with each other in a more complex
manner.

Dependency parsing (Ryan & Joakim, 2011) is a natural
language processing tool which can find the syntax or se-
mantic relations between words, and then represents a sen-
tence into a tree (See Figure2 for example). Most of the
linked words in this tree are tightly related with each oth-
er, e.g.,salesand IPhone5, disappointand invertors. In
practice, we can filter out the edges that link to function
words such astheand add new edges using some rules. For
example, thesubjectandobjectof the same verb. In this
way, with the help of a dependency parser, a sentence can
be transformed into a graph conveniently.

sales

disappoint

investors

nsubj dobj

Sentence: The sales of new iPhone5 disappoint investors.

the

det

iPhone5

prep_of

new

amod

Figure 2.A dependency tree

The graphic representation of documents reserves more in-
formation than “bagof words” representaion and actually
has imported linguistic knowledge in it. In the next section,
we propose a new model based on a carefully designed ran-
dom field to make use of the non-linear semantic or syntac-

tic dependencies between words in topic model.

3. Global Topic Random Field

In this section, we present Global Topic Random Field
(GTRF), a new model that can exploit topical dependen-
cy of arbitrary structures. Given a documentd, we at first
transform it into a graphGd using the method discussed in
Section2.2.

3.1. Global Random Field

Once a document is represented as a graph, the sampling
of topics can be cast into the sampling of this graph. We
propose a random field called Global Random Field (GRF)
to model the sampling process. Before presenting GRF, we
start by defining a new distribution.

Theorem 1 : Given an undirected graphG =< W,E >

whereW = {wi|i = 1, 2, ..., n} is a set of vertices,E =
{(w′

i, w
′′
i )|i = 1, 2, ...,m} is the edge set and the state of a

vertexw is drawn from a finite setZ = {zi|i = 1, 2, ..., k},
function:

P (G) = fG(g) =
1

|E|

∏

w∈W

φ(zw) ×
∑

(w′,w′′)∈E

φ(zw′ , zw′′ )

s.t. 1. φ(z) > 0, φ(z, z′) > 0

2.
∑

z∈Z

φ(z) = 1

3.
∑

z′,z′′∈Z

φ(z′)φ(z′′)φ(z′, z′′) = 1

(4)

is a probability measure.

In Equation4, φ(·) is a function defined on a single vertex
andφ(·, ·) is a function defined on an edge.g is one sample
(topic assignment) ofG andzw is the state (topic) of vertex
w. The proof can be found in Appendix.

We call a random field with a distribution as in Equa-
tion 4 a Global Random Field(GRF) because the item
∑

(w′,w′′)∈E φ(zw′ , zw′′) sums over through all edges in
G while in MRF or CRF, each factor (potential function)
is defined on a clique. One may find that there is no nor-
malization factor in Equation4. This is the advantage of
GRF with which in the modeling process, we can avoid the
complex calculation of normalization factor and thus do not
need to make extra independent assumptions.

Since there is no constrain on the structure ofG, all kinds
of structures are acceptable, ranging from simple structure
such as linear chain to complex structures such as tree or
network.
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3.2. Modeling topical dependencies Using GRF

Based on GRF, we propose a new modelGlobal Topic Ran-
dom Field(GTRF). GTRF differs from standard LDA and
its extensions in the generation of words’ topics.

In GTRF, for documentd, given a topic mixtureθ (that
drawn from a Dirichlet prior) and its graphic representation
Gd = {V,E}, the probability of the topic sequencez of d
is modeled by:

pgtrf (z|θ) =
1

|E|

∏

w∈V

Multi(zw|θ)

×
∑

(w′,w′′)∈E

(

σzw′=zw′′
λ1 + σzw′ 6=zw′′

λ2

)

where σx =

{

1 x is true

0 x is false

(5)

Comparing with Equation4, we can see that the func-
tion defined on the topic of a single word is a Multino-
mial distribution parameterized byθ and the function de-
fined on a edge is(σz1

e=z2
e
λ1 + σz1

e 6=z2
e
λ2). Obviously,

∑

z Multi(z|θ) = 1 andMulti(z|θ) > 0. To satisfy the
third constraint, the following equation should hold true:

∑

zw′ ,zw′′

[

Multi(zw′ |θ)Multi(zw′′ |θ)

× (σzw′=zw′′
λ1 + σzw′ 6=zw′/′

λ2)
]

=
∑

zw′=zw′′

(

Multi(zw′ |θ)×Multi(zw′′ |θ)× λ1

)

+
∑

zw′ 6=zw′′

(

Multi(zw′ |θ)×Multi(zw′′ |θ)× λ2)
)

= θ
T
θλ1+(1− θ

T
θ)λ2 = 1

(6)
To make Equation6 true, we have:

λ1 = λ2 +
1− λ2

θT θ
(7)

According to Theorem 1, once Equation7 is satisfied, the
function defined in Equation5 is a legal probability mea-
sure.

Given a topic sequencez, we can divide the edge setE
of Gd into two sets:EC andENC . EC contains edges that
connect two vertices that have been assigned the same topic
andENC contains the remains. The edges inEC are called
Coherent Edges. Then Equation5 can be rewritten as:

pgtrf (z|θ) =
1

|E|

∏

w∈V

Multi(zw|θ) × (|EC |λ1 + |ENC |λ2)

=
∏

w∈V

Multi(zw|θ)×

(

|EC |(1− λ2)

|E|θT θ
+ λ2

)

(8)

To derive Equation8, we used Equation7 and the fact
|E| = |EC |+ |ENC |.

According to our observation, the linked words have higher
topical similarity. To model positive correlations between
topics of linked words,coherent edges should be reward-
ed. This can be satisfied by choosing aλ2 < 1 and lower
λ2 means higher reward to coherent edges.

Given distributionPgtrf , then we have the generation pro-
cedure of a document as follows:

0. Transform documentd into a graphGd.
1. Drawθ ∼ Dir(α).
2. Draw a topic sequencez ∼ Pgtrf (z|θ)
3. For each ofN wordwn in d:

drawwn ∼ Multi(βzn,wn).

In this generation procedure, the topics for a document are
sampled at the same time. Topical dependencies between
related words are modeled using GRF which will reward
graphs that contain more coherent edges.

4. Inference and Estimation

In this section we discuss how to infer the posterior distri-
bution and estimate parameters of GTRF. Although in the
conditional probabilitypgtrf (z|θ), there is no log-partition
function and as a result the summation over an exponen-
tial number of latent topic assignments can been avoided,
pgtrf (z|θ) contains a global factor summing over all the
edges which is difficult to calculate. This factor is approx-
imated using Taylor series in this paper.

4.1. Posterior Inference

Like LDA and its extensions, GTRF can not be inferred ex-
actly. We develop a variational inference method for GTR-
F. At first we give the probability of a document:

p(w|α, β) =
∫

p(θ|α)
∑

z

pgrtf (z|θ)
∏

n

p(wn|zwn , β)dθ

Parametersα andβ can not be estimated directly due to
the coupling betweenθ andβ. We develop a variational
distributionq to approximatep:

q(θ, z|γ, ϕ) = Dir(θ|γ)×
∏

n

Multi(zwn|ϕwn)

Following the deduction of standard LDA in (Blei et al.,
2003), we can write the likelihood of a document in GTRF
into:

L , Eq

[

log p(θ|α)] + Eq

[

log p(z|θ)
]

+ Eq

[

log p(w|z, β)
]

− Eq

[

log q(θ)
]

− Eq

[

log q(z)
]
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All items except the second one can be expanded as in L-
DA. Here we only expand the second item to save space:

Eq

[

log p(z|θ)
]

= Eq

[

log
(

∏

n

Multi(zwn |θ)×
|EC |(1− λ2) + λ2|E|θT θ

|E|θT θ

)

]

= Eq

[

log
(

∏

n

Multi(zwn |θ)
)]

+ Eq

[

log
(

|EC |(1− λ2) + λ2|E|θT θ
)]

− Eq

[

log
(

|E|θT θ
)]

(9)

In the last line, the first item is the same as the likelihood in
plda w.r.t the variational distribution. The second and third
item can not be calculated directly so we use Taylor series
to approximate them and we have:

Eq

[

log
(

(1− λ2)|EC |+ λ2|E|θT θ
)]

− Eq

[

log
(

|E|θT θ
)]

≈ Eq

[

ζ
−1
1

(

(1− λ2)|EC |+ λ2|E|θT θ
)

− 1 + log ζ1
]

− Eq

[

ζ
−1
2

(

|E|θT θ
)

− 1 + log ζ2
]

=

(

1− λ2

ζ1

)

Eq(|EC |)−

(

ζ1 − ζ2λ2

ζ1ζ2
|E|

)

Eq(θ
T
θ)

+ log ζ1 − log ζ2
(10)

In Equation10, we use the fact that|E|, which is the num-
ber of edges inGd, is a constant w.r.tGd. The reward given
to coherent edges is controled byλ2.

Eq|EC | can be calcualted as:

Eq|EC | =
∑

(wn,wm)∈E

ϕ
T
wn

ϕwm (11)

Eq(θ
T θ) can be obtained according to the definition of

Dirichlet distribution:

Eq(θ
T
θ) =

K
∑

Eqθ
2
i =

K
∑ γi(γi + 1)

γ0(γ0 + 1)
(12)

whereγ0 =
∑K

i γi.

The rest items inL can be deducted in the same way as
LDA.

4.2. Parameter Estimation

In the previous subsection, we have completed the deduc-
tion of the likelihoodL and it can be represented as a

function of (γ, ϕ, α, β, ζ1, ζ2, λ2). Among these parame-
ters,ζ1, ζ2 are used for Taylor approximation and they can
be embedded with the values of(1 − λ2)|EC |+ λ2|E|θT θ
and|E|θT θ in the previous iteration respectively.λ2 is an
hyper parameter and it’s value is determined by data obser-
vations or other methods. The updating rules forα andβ
are the same as in LDA and we omit them to save space.
Here we give the updating rules forϕ.

ϕwni ∝ βiv exp



Ψ(γi) +
1− λ2

ζ1
×

∑

(wn,wm)∈E

ϕwmi





(13)

In Equation13, i is the index of topic andv is the index
of wn in the vocabulary andwm is one of the words that
semantically or syntactically dependent onwn. From this
equation, we can see that onceλ2 < 1, ϕwn , the topic dis-
tribution of wordwn will obtain positive mass fromwm

and therefore after iterations the topic distributions of con-
nected words will approach the same.

Unfortunately, we can not obtain the direct updating rule
for γ. As a suboptimal strategy, we updateγ using Newton
method and here is the derivation ofL w.r.t. γ:

∂L

∂γi
=
(

αi − γi +
∑

n

φwni

)(

Ψ′(γi)−Ψ′(γ0)
)

−
ζ1 − ζ2λ2

ζ1ζ2
|E|

(

∑

K

γi(γi + 1)

γ0(γ0 + 1)

)′ (14)

whereγ0 =
∑K

i γi.

Clearly, the time complexity of∂L
∂γi

isO(N +K) whereN
is the number of words of current document andK is the
number of topics. Therefore,∂L

∂γi
can be compute efficient-

ly.

With the aboving updating rules, we leverage an EM algo-
rithm to estimate parametersα andβ and the procedure is
substantially the same as in LDA. At the very beginning,
α andβ are averagely sampled. Then for each iteration, in
E-step, the algorithms find the bestγ andϕ for currentα
andβ; in M-step,α andβ are updated using the obtainedγ
andϕ.

5. Experiments

In this section, we conduct several experiments to compare
GTRF model with standard LDA and CTRF. We choose L-
DA and CTRF for two reasons. First, LDA is chosen as a
baseline that makes no use of relation between words. Sec-
ond, as far as we know, CTRF is the only exiting model can
model mutual topical dependencies between words which
is similar to our model. STM, HTMM and SeqLDA are
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nice models but they focuses unidirectional dependencies
between words or chapter so they are not chosen as com-
parison models in this paper.

5.1. Datasets

We use four datasets in our experiments, two are news doc-
uments and two are research papers. The four datasets used
in this paper are:

Reuters-215781: It contains 21,578 documents appeared on
Reuters newswire in 1987.

20NewsGroups2: A collection of approximately 20,000
newsgroup documents.

NIPS data3 (A. et al., 2007): The accepted papers of NIPS
from 2000 to 2005.

ICML data: The accepted papers of ICML from 2007 to
2013.

Table 5.1 illustrates these four datasets. As illustrated,
these four datasets are of two different kinds. Retures-
21578 and 20NewsGroups contain more documents but
with shorter length while NIPS and ICML data contain
less documents but with longer length. What’s more im-
portant, the former two datasets are news articles so they
may cover more topics than the two research paper dataset-
s. We choose these two kinds of datasets intentionally to
test GTRF’s performance in different scenarios.

Dataset # of docs # of unique Avg # of words
words per doc

Reuters-21578 16,844 13,054 75
20NewsGroup 18,828 27,456 108

NIPS 1,000 15,415 1,704
ICML 1,004 20,907 2,599

Table 2.Illustration of datasets

To implement GTRF, we parse all documents using Stan-
ford Parser4 (Marneffe et al., 2006). New edges are added
between thesubjectandobjectof the same verb and stop-
words and the edges connecting to them are removed after
dependency parsing.

5.2. Experiments setup

Following most existing studies on topic model, we test
our model and comparison methods in document modeling
and evaluate their performance using predicative perplexi-
ty. For all datasets, we train models with two thirds of doc-

1http://www.daviddlewis.com/resources/testcollections/
reuters21578/

2http://qwone.com/ jason/20Newsgroups/
3http://ai.stanford.edu/ gal/Data/NIPS/
4http://nlp.stanford.edu/software/lex-parser.shtml

uments and calculate predicative perplexity on the unseen
one third of documents. Formally, the predicative perplex-
ity is defined as:

perplexity(Dtest) = exp

{

−

∑

d

∑

w∈d ln p(w)
∑

d |d|

}

whereDtest is the collection of unseen documents and|d|
is the length of documentd.

Predictive perplexity tells the uncertainty of unseen docu-
ments given the trained model. Lower predictive perplexity
value means the trained model fits the unseen data better.

Because the topics of ICML and NIPS data are more con-
centrated and the number of documents is fewer, it is not
proper to assume that they contains large number of topic-
s. Therefore, we test all three models on ICML and NIPS
data with topic numbersK = 10, 15, 20, 25. For the oth-
er two dataset, we test all three models with topic number
K = 10, 20, 50, 100. In our GTRF model, there is a con-
trol parameterλ2 that can not be estimated directly and we
test GTRF withλ2 = 0.2, 0.4, 0.6, 0.8.

5.3. Experimental results and analysis

We compare GTRF with existing models in three ways.
First, we compare their performance on document model-
ing with perplexity. Then we test the topical similarity of
words modelled by GTRF to find if GTRF can better model
the dependencies between words in the documents. At last
we conduct a case study to show the topical coherence of
our model.

Document Modeling

Figure3 and Figure4 illustrates the experimental results.
We repeat each experiment five times and the perplexity
values shown here are the average values. Unsurprisingly,
both CTRF and GTRF perform much better than standard
LDA in all four corpora because both CTRF and GTRF
uses extra information rather than co-occurring relation to
discover topics.

The comparison between the results of CTRF and GTRF is
interesting. For the ICML and NIPS data, GTRF produces
much lower predictive perplexity than CTRF whenλ2 val-
ues from 0.8 to 0.2 (see Figure3). While for Reuters-21578
and 20NewsGroups data, CTRF performs better than GTR-
F whenλ2 is greater (>0.6)(see Figure4). As discussed in
Section3, lowerλ2 means higher reward to coherent edges,
so one possible reason is that the length of news articles
is short so that dependency between related words is not
so significant comparing with neighboring words. In fac-
t, we can see that the improvements of CTRF and GTRF
on ICML and NIPS data are greater than on Reuters-21578
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Figure 3.Experimental results on ICML and NIPS data.

and 20NewsGroups. It can be explained with the same rea-
son.

According to the results illustrated in Figure3 and4, we
can see that lowerλ2 always leads to lower perplexity.
However, it doesn’t mean thatλ2 should be given a tiny
value (e.g., 0.1 or even smaller). In experiments, we find
that GTRF is to some extent sensitive toλ2 and lowerλ2

tends to lead to lower stability. Table3 shows the variation
coefficient of the perplexity for differentλ2 (averaged on
all 4 datasets). The variation coefficient of perplexities is
calculated by:

vc(perp) =
σ(perp)

µ(perp)
(15)

whereσ(·) is the standard derivation andµ(·) is the mean.
The coefficient of variation is a normalized measure (w.r.t
the mean). Higher variation coefficient indicates more dis-
persion exists from the average value, which means lower
stability to our method.

λ2 0.2 0.4 0.6 0.8
vc 0.2287 0.1422 0.0946 0.0756

Table 3.The variation coefficient ofλ2.

From Table3 we can see that the variation coefficient of
the perplexity increases with the decreasing ofλ2. This
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Figure 4.Experimental results on 20NewsGroup and Reuters-
21578.

suggests that although lowerλ2 produces lower perplexity,
the stability of GTRF decreases as well. The most possible
reason is that we reward all coherent edges evenly while
it shouldn’t be. In our future work we will try to classi-
fy edges according to lexical or statistic features and then
reward them in different manners.

Topical Similarity

As an echo of the data observation illustrated in Figure1,
Figure 5 shows the topic similarity between words mod-
eled by GTRF, CTRF and LDA on Reuters-21578 (top-
ic number = 10). Comparing with what shown in Figure
1, the topical similarity in the same corpus keeps almost
the same while the similarity in GTRF and CTRF between
co-occurring words, neighboring words are much higher.
In particular, GTRF outperforms CTRF on the similarity
between dependent words. No one would deny that these
word pairs should have higher topical similarity. This con-
trast proves that GTRF complies human cognition better
than CTRF and LDA.

Topical Coherence

Figure 6 shows the comparison of topic assignments of
GTRF (K = 10, λ2 = 0.4) and LDA (K = 10) on the
same document. In LDA, a word is assigned to the same
topic no matter how many times it occurs and no matter
what its context is. As a contrast, GTRF can assign differ-
ent topics to different occurrences according to the context.
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The U.S. congress and the oil industry are deeply divided on ways the government should assist the 

industry, hurt by the sharp fall in oil prices, and the subsequent growth in oil imports, industry analysts said. 

“The industry is deeply divided between those who support an oil tariff and those who believe tax 

incentives are better.” Said Daniel Yergin, director of Cambridge Energy research associates, which 

recently completed a survey of the U.S. congress on energy issues.
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Figure 6.An example of the comparison between GTRF and LDA.

(top: LDA, bottom:GTRF. Each color stands for a topic.)
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Figure 5.Topical similarity between words using GTRF.

For example, in the first row, GTRF assigns “oil" and “in-
dustry" the same topic and thus leads to higher topic coher-
ent. We also test the result of CTRF, it can to some extent
assign same topic to adjacent words but failed to deal with
long distance word pairs or triples such as “government ...
assist... industry".

In conclusion, the reason for the good performance of
GTRF is on two-fold. First, GTRF integrates more infor-
mation than existing models. GTRF is to some extent a
semi-supervised model because the dependency parser is
trained on human annotated data. Therefore, importing de-
pendency parser is somehow equivalent to importing hu-
man linguistic knowledge. Secondly, when inferring GTR-
F, we make no extra assumption which means GTRF will
treat different priors evenly. However, there is one more
thing need further research: the control parameterλ2. Al-
though in experiments we observed that a smallerλ2 will
reward coherent edges more and leads to lower perplexity,
it will brings potential risk to our model. In a more realistic
manner, we should reward coherent edges discriminatively
according to their lexical or statistical features insteadof
reward them evenly. This is our future work.

6. Conclusions

In this paper, we have proposed a novel model, Global Top-
ic Random Field (GTRF) that aims at discoverring latent
topics from large achieve of documents by exploiting topi-
cal dependencies between semantically or syntactically de-
pendent words. While existing models assume that words
in the same document are evenly related, GTRF makes a
more reasonable assumption that these words should have
higher topical similarity. We had investigated data obser-
vations to confirm this assumption. To model the complex
dependency structures that can not be modeled by existing
models, we have proposed GRF, a random field with a sim-
ple probability function. By integrating GRF into LDA, our
GTRF model can both model complex structures and be in-
ferred conveniently. We also have developed a variational
inference and efficient EM algorithm to estimate GTRF’s
parameters and conducted series of experiments on differ-
ent kinds of corpora. Experimental results show that GTR-
F achieves significantly better performance than existing
start-of-the-art models.
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Appendix

Proof of Theorem 1

Let’s consider a graphG′ =< W,E′ > that contains all
vertices but only one edge inG. Without loss of generality,
we letE′ = {(w1, w2)} andW¬ = W − {w1, w2}, then
we have:

fG′(g) =
∏

w∈W

φ(zw) × φ(zw1
, zw2

)

=
∏

w∈W¬

φ(zw) × [φ(zw1
)φ(zw2

)φ(zw1
, zw2

)]
(16)

SummingfG′ over all possibleg, we obtain:

∑

g

fG′(g) =
∑

g

[

∏

w∈W¬

φ(zw) × [φ(zw1
)φ(zw2

)φ(zw1
, zw2

)]

]

=
∏

w∈W¬

∑

zw∈Z

φ(zw)×
∑

zw1
,zw2

∈Z

[

φ(zw1
)φ(zw2

)φ(zw1
, zw2

)
]

= 1
(17)

To prove Equation17, one can expand the second row and
then it is clear that the expanded formula is the sum offG′

over all possibleg, no more, no less. The last equal-sign
holds because of the constrains defined inTheorem 1.


