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Abstract
Social instant messaging services (SMS) such as
WhatsApp, Snapchat and WeChat, have signifi-
cantly changed the way people work, live, and com-
municate, attracting increasing attention from mul-
tiple disciplinary including computer science, so-
ciology, psychology, and physics. In SMS, social
groups play a very important role in supporting
communication among multiple users. An interest-
ing question arises: what are the dynamic mech-
anisms underlying the group evolution? Or more
specifically, in an existing group, who should be
invited to join? In this paper, we formalize a novel
problem of predicting potential invitees of groups.
Employing WeChat, the largest social messaging
service in China, as the source for our experimen-
tal data, we develop a probabilistic graph model
to capture the fundamental factors that determine
the probability of a user to be invited to a specific
social group. Our results show that the proposed
model indeed lead to statistically significant pre-
diction improvements over several state-of-the-art
baseline methods.

1 Introduction
The emergence of social instant messaging services, such
as WhatsApp and WeChat, bring a revolutionary change to
the way people work, live and communicate with each other.
One of the most exciting functions of social instant messag-
ing services is that people are able to create groups, which
can greatly facilitate one-to-many communication and bring
people strong sense of community. Thanks to this function,
a project team can form a chat group which contains all
the team members to publish instant notices and coordinate
schedules among members. A school class can also create a
chat group to share information within the class and facilitate
communication after they graduate. The advantages of chat
groups are noticed by many businesses who create groups to
develop their VIP customers. Social groups play a very im-
portant role in social networks, and have a significant impact
on the ecological environment of the social networks. On one
hand, the group can strengthen the inner relationship among
users, and provide a way to know new friends. On the other

hand, the members in a group can determine the life cycle
of the group to a large extent, because if the members in a
group do not know each other or have nothing in common,
the group usually dies in less than a week, and we can pre-
dict it by the structure of the group [Qiu et al., 2016]. User’s
opinion in a group may also conform to the others due to the
group pressure [Tang et al., 2013]. Therefore, an interesting
and meaningful challenge emerges, which is how to predict
who will be invited to join the groups. We refer to this chal-
lenge as invitee prediction problem.

Due to the importance of the groups, many works have
been conducted to analyze and model the dynamics of groups.
For example, [Hopcroft et al., 2004] investigated how groups
changed over time by analysing several snapshots of a cita-
tion graph ranging from 1990 to 2001, where they investigate
the emergence of new communities corresponding to new re-
search topics. [Chakrabarti et al., 2006] introduced evolution-
ary clustering framework to make a tradeoff between current
data and the consistency of sequential time stamps for clus-
tering algorithms. [Palla et al., 2007] conducted an analysis
of dynamic communities on two popular datasets, one is a
network of phone calls between customers of a mobile phone
company in a year’s time, and the other is a collaboration net-
work between scientists. [Ducheneaut et al., 2007] examined
some of the factors that could explain the success or failure of
a game guild based on more than a year of data collected from
five World of Warcraft servers. [Kairam et al., 2012] analyzed
data from several thousand online social networks built on the
Ning platform with the goal of understanding the factors con-
tributing to the growth and longevity of groups within these
networks.

However, all the above works mainly focus on observing
and analyzing the evolution of the whole group, but not the
individual members. Furthermore, the groups in these works
are very different from the groups in social messaging net-
works such as WeChat1, an online instant messaging network
like WhatsApp. Let’s take a look at the unique characters of
the social messaging networks, which are mainly lie in three
aspects:

• Definite Membership. Unlike other online social net-
works where the community membership of users is
sometimes probabilistic or inferred by some algorithms

1http://www.wechat.com/en/
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based on analysing the distribution of edges, such as
Spectral Clustering proposed by [Donath and Hoffman,
1973], in most social messaging networks, the group
membership of users is definite.
• Privacy. In many social instant messaging networks,

such as WeChat, the groups are invisible to their non-
members even if they know the names of the groups.
The growth of groups is in an invitation-only style, i.e.,
the only way for a user to join a group is being invited
by one of the members of this group.
• Limited Capacity. In most social instant messaging net-

works, the size of a group is limited. For example, in
WeChat, the size of a group is maximal to 500. If the
size of a group is larger than 100, the invitees must be
real-name authenticated.

Due to these unique characters, the sense of community in so-
cial instant messaging networks is much stronger than other
online social networks. For both reasons, we need to devise
new models and algorithms to address the problem of invitee
prediction in social messaging networks. [Backstrom et al.,
2006] studied how the evolution of the communities relates to
properties such as the structure of the underlying social net-
works based on DBLP and LiveJournal data sets in which the
membership of users is definite, and use decision-tree tech-
nique to predict the users’ probabilities of joining a group
based on the user’s structural features. [Qiu et al., 2016] in-
vestigated this issue on social instant messaging networks and
predict invitees with Support Vector Machine. However, both
two works only exploit the static features to predict invitees,
ignoring the influence of other users and group constraints
on the probability of invitation, leading to an unsatisfactory
performance.

Unlike the previous works, we aim to focus on individual
users, and develop a reasonable model that can capture all
the information and factors from network structure which re-
flect or have correlation with the users’ probabilities of being
invited to the groups to predict who will be invited to join
the groups in the next period. To this end, we study the in-
vitation behavior and mine the potential factors at three lev-
els including group level, peer level and individual level, and
analyze the different ways in which these factors affect the
users’ probabilities of being invited to the groups. We formu-
late the question and carefully design a novel model based on
factor graph theory, which integrates all the different poten-
tial factors into a unified framework to predict invitees of the
groups. We apply our model to real-world data set, and the
experimental result shows that our model significantly out-
performs the baseline methods. To our best knowledge, this
is the first work which investigates factors at all three levels
and integrates all the potential factors from different levels
into an unified model to predict invitees of social messaging
groups. The contribution in this paper includes:
• We study the correlation between the probability of be-

ing invited to the groups and various factors at different
levels on a real-world social instant messaging network.
• We propose a model integrating all the factors into one

unified framework to predict invitees of social messag-
ing groups. We apply our model on a real-world social

messaging network, achieving better performance than
the baseline methods.

2 Problem Formulation
The friendship between a pair of users in a social messaging
network is usually reciprocal, so we use an undirected graph
G = (V,E,C) to denote a snapshot of the structure of a so-
cial messaging network, where V = {v1, v2, ..., vn} is the
set of all the users, and E = {e1, e2, ..., em} is the set of the
edges between the users, representing the friendship between
two users, andC = {c1, c2, ..., ck} is the set of all the groups.
A group ci ∈ C is denoted as ci = {Vci , Eci}, where Vci is
the set of all the nodes belonging to group ci, and Eci is the
set of all the edges among Vci .

Definition 1 Fringe Node(User). A fringe node of a group
is a node that has at least one friend belonging to this group,
that is:

FN(c) = {v ∈ V \ Vc|∃u : u ∈ Vc ∧ (v, u) ∈ E}.

Definition 2 Fringe-Group Pair. A fringe-group pair con-
sists of a group and one of its fringe nodes, denoted as
y = (v, c), which is a data point in our model. We can extract
all these data points forming a set denoted as Y .

Definition 3 Invitation. For a data point yi = (v, c) and a
time stamp t, let yti = 1 denote that v is invited into c at time
stamp t, and yti = 0 denote that user v is not invited into c.

Problem 1 Invitee Prediction. Let < 1, ..., t > be a se-
quence of time stamps. Please note that the intervals be-
tween these time stamps do not need to be equal. We use
< G1, ..., Gt > to denote the snapshots of the network struc-
ture, and< Y 1, ..., Y t > to denote the invitation behaviors at
all the time stamps. Our goal is to learn a prediction function

f :< G1, ..., Gt >,< Y 1, ..., Y t >→ Y t+1

to infer the invitation behaviors and invitees at time t+ 1.

3 Observations: Who would be invited?
3.1 Data
All the research work in this paper is based on the daily usage
logs from WeChat messaging platform, which is one of the
largest standalone messaging services, having over a billion
created accounts and 938 million active users as of 2017.We
collect all the valid chat groups with names created during
half an hour. We only use non privacy data such as network
structural information for research. We analyze all the dy-
namic information about these groups from their births to one
year later, involving more than 3 millions users, 4 millions
edges and almost 1 million invitation records.

3.2 Observation
The users’ probabilities of being invited to join the groups
could be affected by many factors from the groups, the other
users and themselves. We try to quantitatively capture these
factors. In this subsection, we investigate all the three kinds of
factors, i.e., group constraint, peer correlation and individual
structure attributes, which are at three levels separately.
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(a) Group size change over time
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(b) Group size change over time
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(c) Probability of being invited
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(d) Probabilities of being invited

Figure 1: Size of groups and probabilities of being invited change
with time. (b) and (d) are the zoomed versions with respect to the
time period from 0 to 24 hours. All the probabilities are observed at
a 0.95 confidence interval.

Group Constraint
The groups change all the time, and the fringe users’ probabil-
ities of being invited to the groups change accordingly. In this
subsection, we investigate this correlation qualitatively. To
clearly illustrate the process of the groups evolve in one year,
we set 7 observation points between their births and one year
later, which are half an hour after their births, one hour after
their births, three hours after their births, twenty-four hours
after their births, one month after their births, three months
after their births, six months after their births, nine months
after their births and the end of the observation window, i.e.
one year later after their births. We take the size of each group
at the end of the observation window as the denominator, and
calculate the percentage of each group’s size at each obser-
vation point. We plot the results in Figure 1, where we can
see that the chat groups grow at different velocities at differ-
ent stages in their life cycles. They grow fast in the early
stage after their births, and grow slower as the time passes,
as shown in Fig.1(a). With the size of groups get bigger, the
fringe users of groups get more, and the probabilities of be-
ing invited into the group get smaller accordingly, as shown
in Fig.1(c). To distinctly illustrate the development in the first
twenty-four hours, we zoom it in Fig.1(b) and Fig.1(d). Both
two metrics are observed at a 95% confidence interval.

Peer Correlation
We think that the two fringe users’ probability of being in-
vited to a group have some kinds of correlation if they are
similar enough with regard to this group. In other words, if
one fringe user is invited to join the group, her/his similar
fringe user with regard to this group, which we name as fel-
low fringe user, is probably invited to this group later. We de-
fine this kind of similarity, or fellowship, in two ways. First, if

v1v2

v3 v4

v5

x1
x2

x3

x4

x5

y1
y3

y2

y5

y4

f (yi, xi)

g (yi, ci)

h (yi, yj)

ci

Figure 2: ML-FGM model.

two fringe users of a group are friends, we take them as fellow
fringe users of this group. The other case is that if two fringe
users of a group have more than two common friends already
in this group, they are also regarded as fellow fringe users.
The left part of Fig.2 is a toy example of a social messaging
network, v4 and v5 are the first kind of fellow fringe users,
while v1 and v2, v3 and v4 are both the second kind of fellow
fringe users. We plot the fringe users’ probabilities of be-
ing invited into the groups in the case that one of their fellow
fringe users have been invited to the groups in Fig.3. The yel-
low bar represents the first kind of fellowship, while the blue
bars represent the second kind. The X-axis numbers under
blue bars stand for the numbers of common friends already
in the group which the fellow fringe users share with each
other. For comparison, we plot the average probability of all
the fringe users with a red bar. Obviously, the more common
friends they share, the stronger correlation their probabilities
of being invited to the groups have.

Closeness Between Fringes and Groups
Social messaging groups are usually created with a subject,
such as a school class, a project team, or a big family, etc, so
there is an intuition that the closer a fringe user to the subject
of the group, the more likely she/he gets an invitation into
the group. We can measure this kind of closeness between a
user and a group based on the structure of the network. We
study the effect of the closeness on the probability of being
invited to the groups. The way to examine and measure the
closeness between the fringe users and the chat groups can
be defined from many aspects. To demonstrate this issue, we
take structure attributes for example, which are the number of
the fringe users’ friends already in this group and the number
of the fringe users’ adjacent triads in this group2. For both
metrics, the larger the numbers, the closer the fringe users to
the groups. Figure 4 is the probabilities of being invited to
a chat group as a function of the two metrics, showing that
the closer the fringe users to the chat groups, the more likely

2The adjacent triads of a node is the triads it take part in. The
number of a fringe user’s adjacent triads in the group is the number
of its adjacent triads with the other two nodes both in this group.
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Figure 3: Probabilities of being invited as a function of whether
their fellow fringe users are invited. The red bar represents average
probability. The yellow bar represents the probabilities of being in-
vited when their first kind of fellow fringe users are invited into the
groups. The blue bars represent the probabilities of being invited
when their fellow fringe users with the second relationship are in-
vited into the groups, and the X-axis labels of the blue bars denote
the number of their common friends in the groups. All the probabil-
ities are observed at a 0.95 confidence interval.

for fringe users to be invited to the groups, which is in accord
with our intuition.

4 Invitees Prediction
From the above observation we can see that the fringe nodes’
probabilities of being invited to the group have correlation
with factors from all the three levels, i.e. the group level,
the peer level and the individual level. So how to reasonably
incorporate and utilize all these factor to predict invitees is
a challenge. In this section, we propose an unified model,
Multi-Level Factor Graph Model (ML-FGM), to capture all
these correlations and predict invitees.

4.1 Model Description
Fig. 2 represents the graphical structure of ML-FGM. The left
part of Fig. 2 represents the input social instant messaging
network which can be transformed to a graphical model as
shown in the right part. In ML-FGM, each fringe-group pair
(v, c) is mapped to a variable node y, and the correlations
between the label of y and all kinds of factors are modeled
as factor nodes. Corresponding to the three levels, we design
the following three kinds of factor nodes.

1. Group factor. g(yi, ci) represents the correlation be-
tween yi and the corresponding group, where ci denotes
the corresponding group of yi.

2. Peer factor. h(yi, R(yi)) represents the correlation be-
tween yi and the fellow fringe nodes, where R(yi) de-
notes the set of the fellow fringe nodes of yi.

3. Individual factor. f(yi, xi) represents the correlation
between yi and its structural attributes, where xi denotes
the attributes set of yi.

Let θ be the parameters set of our model. Then our task can
be described as to find a θ∗ so as to maximize the posterior
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Figure 4: Probabilities of being invited to join the groups as func-
tions of closeness between the fringe users and their groups. (a) is
the probability of being invited to join the groups as a function of the
number of friend the fringe users have in the groups. (b) is the prob-
ability of being invited to join the groups as a function of the number
of triads the fringe users have in the groups. The probabilities are
observed at a 0.95 confidence interval.

probability of Y t+1, i.e. P (Y t+1|G1,...,t, Y 1,...,t). Calcu-
lating the posterior probability directly is intractable in such
an social messaging network. However, we can simplify
the maximization by factorizing the ”global” probability as
a product of ”local” factors on the basis of factor graph the-
ory proposed by [Kschischang et al., 2001]. Given G1,...,t

and Y 1,...,t, we get the posterior probability of Y t+1:

P (Y t+1|G1,...,t, Y 1,...,t) =
∏
i

g(yi, ci)h(yi, R(yi))f(yi, xi).

(1)
The three factors can be instantiated in different ways. To

reflect the way that the factors affect or have correlation with
the posterior probability we want to maximize, we define the
group factor and the individual factor as:

g(yi, ci) =
1

Zα
exp{αT g′(yi, ci)}, (2)

f(yi, xi) =
1

Zγ
exp{γT f ′(yi, xi)}, (3)

where g′(·) represents the group’s attributes, and f ′(·) is a
vector of features measuring the intimate degree between a
fringe node and its group; α and γ are their weighting vectors.
For the peer factor, we model it in a Markov random field. By
the Hammersley-Clifford theorem[Hammersley and Clifford,
1971], we can define it as:

h(yi, R(yi)) =
1

Zβ
exp{

∑
yj∈R(yi)

βTh′(yi, yj)}, (4)

where h′(·) is a indicator function to indicate whether the two
fringe nodes have a fellowship, and β is the weighting vector
for all the cases.

4.2 Model Learning
Given the model, we need to estimate its parameters θ =
{α, β, γ}, which can be solved by two steps. First we fig-
ure out the objective function of this problem. Second, we
find a configuration for the free parameters that maximize the
log-likelihood of the objective function, i.e.,

θ∗ = argmaxO(θ).
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Combining Eqs.2, 3 and 4 into Eq.1, we can get the log-
likelihood objective function as follows.

O(θ) =
N∑
i=1

(αT g′(yi, ci) + γT f ′(yi, xi))

+
∑

(yi,yi)∈R

(βTh′(yi, yj))− logZ,

(5)

where Z = ZαZβZγ is a normalization factor, and R is the
set of all the fellow relationships among fringe nodes. To
solve the optimization problem, we adopt a gradient decent
method (or a Newton-Raphson method). Specifically, we
compute the partial derivatives of the objective function(Eq.5)
with regard to each parameter, and get their gradients, which
are follows: (Please note that in the following equations,
without ambiguity, we use Y ′, G, and Y to replace Y t+1,
G1,...,t and Y 1,...,t in Eq.1 respectively for simplicity.)

∂O
∂α

= E[
N∑
i=1

g′(yi, ci)]− EPα(Y ′|G,Y )[
N∑
i=1

g′(yi, ci)].

∂O
∂β

= E[
∑

(yi,yi)∈R

h′(yi, yj)]− EPβ(Y ′|G,Y )[
∑

(yi,yi)∈R

h′(yi, yj)].

∂O
∂γ

= E[
N∑
i=1

f ′(yi, xi)]− EPγ(Y ′|G,Y )[
N∑
i=1

f ′(yi, xi)].

In the first equation, E[
∑N
i=1 g

′(yi, ci)] is the expecta-
tion of the group factor functions given the data dis-
tribution over Y ′, G and Y in the training set, while
EPα(Y ′|G,Y )[

∑N
i=1 g

′(yi, ci)] is the expectation of the group
factor functions under the distribution Pα(Y ′|G, Y ) given by
the estimated model. Similar meaning can be drawn for the
other two equations. To solve the problem of the intractability
of the marginal distribution Pθ(Y ′|G, Y ), which is caused by
the circles in the structure of our graphical model, we adopt
Loopy Belief Propagation(LBP), proposed by [Murphy et al.,
1999]. Then the maximization of log-likelihood of the ob-
jective function can be achieved in two steps. First, we use
LBP to compute marginal distribution of unknown variables
Pθ(Y

′|G, Y ) and the gradient of θ. Second, we update θ with
a learning rate η:

θnew = θold + η · ∂O
∂θ

.

4.3 Inferring Invitees
With the estimated parameter θ, we can infer the labels of
variable nodes by finding a label configuration which maxi-
mizes the log-likelihood of the objective function, i.e.

Y ′∗ = argmaxO(Y ′|G, Y ).

5 Experiments
Having introduced ML-FGM and the algorithm to estimate
the parameters, we now apply the model to real world data
to predict invitees of the chat groups. A tricky and deli-
cate task is how to set the time interval between time stamps
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Figure 5: Size of groups changes with the skewed time. This figure
is similar to Fig.1(a), except that the time labels on X-axis are cubic
root of their genuine values.

(1, ..., t, t + 1). Most previous works on behavior prediction
usually take a fixed time unit, such as one day, one week, etc,
as the time interval. However, from Fig.1 we can see that the
size of groups increases faster in the early stage and slower in
the later stage, so it is obviously not reasonable to set an equal
time interval for every two adjacent time stamps. In this pa-
per, we adopt an elastic time interval strategy that we take the
length of time interval as the cubic function of the sequence
number of the time stamps. Specifically, based on the obser-
vation, we set 1 hour as the time unit, so the first time stamp is
1 hour later after the births of the groups, and the second time
stamp is 23 = 8hrs later after the births of the groups, and the
next time stamp is 33 = 27hrs later, and so on. This method
is inspired by the phenomenon that if we skew time axis by
extraction of cubic root, we can get a ”linear”-like increment
of size of groups as shown in Fig.5. We predict invitees at
the third time stamp, i.e. Y 3, based on the information of the
former two time intervals, i.e. < G1, G2 > and < Y 1, Y 2 >.

To evaluate the effectiveness of our model, we use two
types of baseline methods. The previous works in this field
usually utilize existing classification algorithms to solve such
kind of issue as stated in Section 1. They take attributes
of the nodes as their features to train a model, and use this
model to predict whether a fringe node could be invited to
join the group. We adopt this kind of methods as our first
kind of baselines. Specifically, we choose Support Vector
Machine (SVM) and C4.5 to be the representatives of this
line of methods. In addition, we found that this question can
be converted into another form and addressed by the algo-
rithms for link prediction. Concretely, we can take the groups
as a special kind of nodes, named as virtual nodes. There
will be a link between an ordinary node and a virtual node
if the node is a member of the corresponding group repre-
sented by the virtual node. Therefore predicting whether a
fringe node could be invited to the group is equivalent to pre-
dicting whether a link could be established between an ordi-
nary node and a virtual node. The mainstream ideas of link
prediction with only topological information are measuring
the proximity between the two nodes, denoted as x, y, with
their sets of neighbors, denoted as Γ(x),Γ(y). In this case,
if x represents a group, Γ(x) actually represents the set of
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Table 1: Prediction performance of different methods on WeChat
data set.

Models Precision Recall F1-measure
SVM 0.502 0.269 0.351
C4.5 0.482 0.269 0.346

Adamic/Adar 0.403 0.237 0.298
Preferential Attachment 0.395 0.239 0.298

ML-FGM 0.639 0.303 0.411

members of this group. Here, we choose two popular pre-
dictor Adamic/Adar [Adamic and Adar, 2003] and Preferen-
tial Attachment [Barabási and Albert, 1999; Newman, 2001;
Barabâsi et al., 2002] as the baseline methods in which the
scores between x and y are defined as:

• Adamic/Adar: score(x, y) = Σz∈Γ(x)∩Γ(y)
1

log |Γ(z)| .

• Preferential Attachment: score(x, y) = |Γ(x)| · |Γ(y)|.
We compute Precision, Recall and F1-measure for each al-

gorithm, and compare the performance of ML-FGM with the
baseline methods. For the first kind of baseline algorithms
and our algorithms, this is a straightforward task. How-
ever, there is a little trouble with link predictor, as they only
rank the potential links, and are usually evaluated by Preci-
sion@top K. To make a relatively fair comparison, we set K
to be the number of positive cases that our algorithm infers.
To achieve better generality, all the features and factors fed
into ML-FGM and baseline models only involve topological
structure information of the network but not other information
such as demographics in case there is no such information in
some networks. From the results demonstrated in Table 1, we
can see ML-FGM has a significant advantage in terms of all
the metrics, through catching all the factor from fellow invi-
tees and group information in addition to individual features.

Discussion
The link predictors and the classifiers can only handle the
fringe users’ features to predict invitees, failing to well cap-
ture the other factors which can reflect the natural reason that
a fringe user can be invited to the group. The link predic-
tors only measure the proximity between a group and a fringe
user by the number of the fringe user’s friends already in the
group, which is actually a feature of the fringe user. Our ap-
proach successfully captures all the factors that we can ex-
ploit and combined them into a carefully designed frame-
work, achieving better performance.

To analyze the contribution of each factor, we remove
group factor and peer factor in ML-FGM, and evaluate the
decrease in the prediction performance, as shown in Fig.6.
M-g, M-p, M-gp stand for the removing of group factor, peer
factor and both respectively.

6 Related Work
There are two lines of research related to this work: group
evolution and social instant messaging networks.

Group Evolution. [Sun et al., 2007] applied the Minimum
Description Length principle to find the best partitions in a
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Figure 6: Factor contribution analysis.

time sequence of graphs. [Han and Tang, 2015] presented
a unified probabilistic framework called Community Role
Model (CRM) to model the social network. [Asur et al.,
2009] studied the dynamic relationship between nodes and
communities. They defined four measures to catch the be-
havioral tendencies of nodes contributing to the evolution of
the graph. [Kim and Leskovec, 2013] proposed a nonpara-
metric multi-group membership model for dynamic networks
wherein the present groups can vanish and new groups can
emerge as the network evolves. [Yang et al., 2010] conducted
a longitudinal comparison of the communities evolvement be-
tween two distinct stages.

Social Instant Messaging. [Leskovec and Horvitz, 2008]
studied the data capturing a month of high-level communica-
tion activities within the whole of the Microsoft Messenger.
[Glass and Li, 2010] investigated the influence of technology
acceptance model, social influence [Tang et al., 2009] and de-
mographics on instant messaging adoption in the workplace.
[Church and de Oliveira, 2013] provided a deeper understand-
ing of the motives and perceptions of WhatsApp and learn
more about what it offers above and beyond traditional SMS.
[O’Hara et al., 2014] studied the sociality in WhatsApp.

7 Conclusion
We study the problem of predicting invitees of social groups
by investigating a real-world social messaging network. We
propose a probabilistic graphical model integrating various
factors which can affect and have correlation with the fringe
users’ probabilities of being invited to join the groups from
three levels, including group level, peer level and individual
level, to predict invitees of social groups. The experimental
results on the real world data set demonstrate the advantages
of the proposed model.
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