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Abstract

A person’s career trajectory is composed of his/her
past working or studying affiliations (institutions)
at different times. Knowing people’s, especially
scholars’, career trajectories can help the govern-
ment make more scientific strategies to allocate re-
sources and attract talents, help companies make
smart recruiting plans, and individuals find appro-
priate co-researchers or job opportunities. The pa-
per focuses on inferring career trajectories in the
academic social network. For about 1/3 of authors
not having any affiliations in the dataset, we need to
infer the missings at various years. Traditional af-
filiation/location inferring methods focus on infer-
ring a stationary location (one and only) for a per-
son. Nevertheless, people won’t stay at a place all
their lives. We propose a Space-Time Factor Graph
Model (STFGM) incorporating spacial and tempo-
ral correlations to fulfill the challenging and new
task. Experiments show our approach significantly
outperforms baselines. At last, for the case study,
we develop several applications based on our ap-
proach which demonstrate the effectiveness further.

1 Introduction

The tough competition on personalized information services
in a variety of domains such as personalized search engine,
intelligent recommendation for TV programs, merchandise,
jobs etc. has driven the demand for more precise user profiling
[Tguchi, 2007; Park and Chang, 2009; Sugiyama et al., 2004,
Yu et al., 2006; Abel et al., 2011; Xue, 2010]. A user’s af-
filiation is an important part of her/his profile. Just as the
saying goes: ”You cannot judge of a man till you know his
whole story”. Exploring the past affiliations a person have
been studying or working at different times can help better
profile him/her, knowing the career trajectories of many peo-
ple in a specific research area can better understand the de-
velopment of an area. These can benefit many applications.
For instance, the government could better grasp the transi-
tions of talents and accordingly make more scientific policies
relating resources allocating, talents attracting etc.; compa-
nies can design smart recruiting plans or just find candidates
with specific experience and individuals can find appropriate
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Figure 1: Affiliation statistics on AMiner vs ORCID.

co-researchers or job opportunities to extend the academic or
professional network.

There are some efforts to collect the affiliations of re-
searchers, e.g. ORCID, which requires the user to add her/his
profile manually. Unfortunately, the information obtained
solely from users themselves is sometimes incomplete. To au-
tomatically get the affiliation of a specified user, a usual way
is to find her/his home page and then use machine learning
techniques to extract from it. Nevertheless, extracting the for-
matted temporal affiliations from an unstructured biography
paragraph is non-trivial, let alone many even don’t have home
pages [Ceglowski et al., 2003; Tang et al., 2010].

Thanks to the development of the academic social net-
works such as AMiner! and MAG? [Tang et al., 2008;
Sinha et al., 2015], we can relatively easily get authors’ affili-
ations in published papers. However, the problem of inferring
affiliations trajectories from academic social networks still
poses challenges. The affiliation information is sparse in the
dataset. We sampled about 1.5 million authors in AMiner and
found that 0.55 million authors (accounting for 35.9%) don’t
have any affiliations in their papers, and there are only 11.8%
of them having more than one affiliation (Figure 1.a). We also
investigated a sample of ORCID for comparison. There are
59.7% (about 5 times of previous one) of people with more
than one affiliation (Figure 1.b).

Moreover, traditional affiliation/location inferring methods
rarely concern about the time, but people would not tend to
stay in one place all their lives. Inferring temporal affiliations
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is more challenging. To the best of our knowledge, there have
not been any researches about this.

To address the novel problem and the obstacles related, we
propose a Space-Time Factor Graph Model (STFGM) which
directly models the similarity between authors, and incorpo-
rates time and space correlations. At last, for the case study,
we develop several applications based on our approach which
demonstrate the effectiveness further.

2 Problem Definition

Assume G = {G'} is a time-aware academic network with
G' = (V}, VL, E") where all the superscripts ¢ denote time,
VIf is the affiliation-known authors at time ¢, Vé is the
affiliation-unknown authors, V* = V} UV}, E is the coau-
thoring relations. Suppose A is the affiliation set, the objec-
tive is to learn a predictive function, f : Vé — A

3 Related Work

There have been a lot of research studies on location infer-
ence. Generally speaking, they can be classified into 3 cate-
gories. Studies in the first one tried to predict a user/object’s
location through the content of the user/object. For instance,
some tried to predict a user’s location from his/her tweets.
Cheng et al. explored words’ different distributions over re-
gions to identify words in tweets with a strong local geo-
scope [Cheng er al., 2010]. Eisenstein et al. used a geographic
topic model to find topic-specific regional distinctions [Eisen-
stein ef al., 2010]. Chen et al. used a topic model to determine
user’s interests which were then mapped to locations [Chen et
al.,2013]. Wing et al. leveraged language model and informa-
tion retrieval technology to infer users’ locations [Wing and
Baldridge, 2011]. Some other tried to predict webpage’s ge-
ographical region via exploring its content based on heuristic
rules [Amitay er al., 2004]. Ikawa et al. tried to predict each
microblog’s location instead of user’s through learning out
location-relevant keywords from past messages [Ikawa er al.,
2012]. One of the limitations of these methods is that they
could not get high-resolution locations such as some univer-
sity or some corporation etc. because language style won’t
change significantly in small scale of an area, let alone the
more objective academic language in research papers.

The second category leverages the network correlations of
users. For example, Davis Jr et al. predicted the user’s loca-
tion with the highest frequent one in the friends, and con-
firmed friend number would influence precision [Davis Jr et
al., 2011]. Jurgens tried to use the social network to pre-
dict the user’s location. He used Spatial Label Propagation
to select a known neighbors’ label for unlabeled users and
propagate the inferred mappings until convergence [Jurgens,
2013]. Backstrom et al. modeled friendship probability as
a function of distance, and they selected the predicted loca-
tion which maximizes the joint likelihood[Backstrom et al.,
2010]. McGee et al. incorporated social tie strengths between
users to improve location prediction [McGee er al., 2013].

The third category uses both users’ content and network
connections. Li et al. treated users and user-tweeted venues as
nodes in a network and used respective gaussian distributions

to model the nodes’ influence scopes. The model tends to se-
lect the neighbor with the smallest influence scope [Li et al.,
2012]. Another work leveraged users’ content to infer their
locations if the content contains local words and used friend-
ship to infer locations of users without local words [Ryoo and
Moon, 2014].

The general focus of previous methods using network con-
nections is how to select out the nearest neighbor. Most used
an indirect metric of neighbors such as the highest frequent,
geometric median or the smallest influence scope etc. In fact,
it often may not be the best choice because few took into ac-
count the features of the target person and the neighbor pair,
which function together to determine the distance. Previous
efforts inspired us to build our model and our work was mo-
tivated most by McGee et al.’s with differences: We directly
model the tuple of the user, neighbor and time simultaneously
to allow social tie strengths varying with time. What’s more,
we incorporate the correlations of the tuples in space and time
which boost our performance further.

4 Proposed Method

Before proceeding, we first introduce some baseline solutions
for this problem.

Time Stretch. If we know a person’s affiliations at some
discrete years, then the missing affiliations between the years
can be predicted with the ones near the affiliation-known
years. The approach cannot be adopted if none of the affil-
iations of a person are known.

Statistics-Based model. The idea is that the opportunities
to work with someone in the same affiliation are much larger
than that in different affiliations. Our survey of 2 million
randomly selected papers confirmed the assumption, which
showed that about 71.3% papers have two or more coauthors
from the same affiliation. To predict a missing affiliation of
an author at a time ¢, we can use the affiliation that the most
coauthors belong to.

Influence model. We borrow the idea from [Li er al.,
2012], the affiliation-known author ¢’s influence at differ-
ent locations can be modeled by a gaussian distribution with

o

mean L; and covariance >.; = < 0
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3_) , where L; is the au-
thor’s location, o; reflects the influence ability and can be es-
timated by affiliation-known coauthors. A wide influence per-
son collaborates with many people far apart, while a person
with small influence tends to collaborate with people nearby.
To predict a missing affiliation of an author in a year, we com-
pute that year’s affiliation-known coauthors’ influence abili-
ties and choose the one with the smallest.

Space label propagation. When the affiliation-missing au-
thor’s affiliations are inferred, they can be used as known
nodes to infer other unknown ones. When inferring a missing
affiliation, we choose the affiliation that the most coauthors
belong to rather than their locations’ simplex median used
in [Jurgens, 2013]. Because simplex median often results in
wield or institution-free locations such as seas or coast.

Rank-SVM. The problem of inferring affiliation can be
formulated as a multiclass classification where the classes are
the set of available affiliations. However, the number of dif-



ferent affiliations exceeds 10 thousand in our dataset. The 1
vs. 10k+ classification model will fail with limited features.
Thus, we change the multiclass classification problem into
a binary classification problem. At time ¢, each author a is
associated with individual features vec(a)? while each coau-
thorship < a1, a;2 > is associated with coauthoring features
vec(a;1,a;2)" and a binary label y! to indicate whether a;;
and a;o belong to the same affiliation. Then given a train-
ing data, we can build a two-class rankSVM model based on
MLE [Scholz, 1985]

y! = argmax P(y!|x!) (1)

where ! £ [vec(ayy ), vec(ain), vec(ai, a;z)] is the combi-
nation of individual and coauthoring features. The approach
predicts the coauthor with the highest similarity score.

Some of the methods above use some temporal connection,
some leverage the spacial connection and some capture the
features of the node pairs. But none can model them all in a
unified way. Then we introduce our model in detail.

4.1 Space-Time Factor Graph Model(STFGM)
The general idea of our model is trying to find the affiliation-
known coauthor who has the same affiliation as the target au-
thor with missing affiliation.

—a— Time Factor
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Figure 2: Space-Time Factor Graph Model(STFGM).

Figure 2 gives a simplified picture of our STFGM. Each
green point with common ¢ outside, representing a tuple of
<Time t, Author a;;, Author a;o >, is an observation in-
stance where a;; is the target author and a;o is a coauthor
with known affiliation at ¢. That is, a;; € Vi, a2 € V[,
(ai1,a:2) € E*. Associated with each observation instance
is a hidden binary-valued variable representing the affiliation
similarity between the two authors. If they belong to the same
affiliation at that time, the hidden value is 1, otherwise 0.

Attribute factor function: captures the features of each
tuple < t,a;1,a;2 > and characterizes how the observed tu-
ple features (the respective features of the two authors and the
concurrent features between them) contribute to the similar-
ity of the authors in the tuple. The function is defined as an
exponential-linear function:

L1
f(@i,y;) = = exp {w'®(x,y)} )

t t
where ! [vec(asr ), vee(an), vec(asr, a2)]t is the fea-
ture vector embracing a;; and a;s ’s respective and shared

A

common features at time ¢; y! € {0,1} denotes whether
the two authors in tuple < t,a;1,a;2 > are in the same
affiliation at time ¢ ; w 2= (wp,w;) is the weighting vec-
tor; & £ (®o, ®,)7 is the vector of feature functions with
(2}, yf) = 10—z}, k € {0,1} defined as indicator func-
tion.

Given any a tuple < t,a;1,a;2 >, the attributes extracted
in our system include the features of target author a;; (con-
sisting of the number of coauthors of author a;; at time ¢,
the number of all the coauthors of author a;;, the number of
papers published by author a;; at time ¢, the number of all
papers published by author a;1), the features of the coauthor
a;2 (made up of the number of coauthors of author a;- at time
t, the number of all the coauthors of author a;o, the number
of papers published by author ¢ at time a;2, the number of all
papers published by author a;2), and the shared features of
author a;1 and a;5 (comprised by the number of times author
a;1 and a;2 collaborated at time ¢, the number of all the times
author a;1 and a;o collaborated ever).

Space factor function: captures the correlation between
the hidden variables at the same time (We refer to this corre-
lation as spacial correlation). It’s defined as an exponential-
linear function:

1
Syi, Ns(yi)) = Z—exp S BTEWL Y 3)
P Y ENs(yD)
where Ns(y!) denotes neighbors which have spacial corre-
lations with y!, ¥ = (¥y,...¥:)T, C is the number of
types of spacial correlations, ¥, = (W90 @0l ¢lo yll)
Ur (Yt yt) £ Lytpyt=)y 1 <c<C,0< k1< 1.

We extract two kinds of spacial correlation edges in our im-
plemented system. Suppose the hidden variables correspond-
ing to instances < t,a,i > and < t,a,j > are y; and y}
respectively,

DIf author ¢ and j have the same affiliation at time ¢, we
add a space-correlation edge between y; and y.

2)If author ¢ and j have the same affiliation at any time, we
add another space-correlation edge between y! and y§

Time factor function: captures the temporal correlation
between different times on the same author pair (We call
the correlation temporal correlation). It’s defined as an
exponential-linear function:

Tyl Nr(y)) £ Zi expq Y. ALy ) p @
! yt ENT(yt)
where N7 (y!) denotes neighbors who have temporal corre-
lations with !, @ £ (Q4,...,Q¢/)T, C’ is the number of
types of temporal correlations, 2. = (020, Q01 Q10 Q1)
O (yh,f) & Ly —py 1 < CLO< K<
We extract two kinds of temporal correlation edges also.
DIf the two instances < t,a,? > and < t + 1,a,¢ > are
observed, suppose the corresponding hidden variables are y!
and y/ ™! respectively, we add an one-order time-correlation

i
edge between y! and y/*.



2)If the two instances < t,a,¢ > and < t+2, a, ¢ > are ob-
served, suppose the corresponding hidden variables are y! and
yit? respectlvely, we add another two-order time-correlation
edge between y! and yt+2

Model learning: Now we combine all the factors, observa-
tion instances and hidden variables into a unified model. We
reuse Mg and Nr to denote all the space and time relations.
Define X £ {x!} UNsUNpand Y £ {y!} which are two
sets representing all the observation instances and the hidden
variables respectively.

HHf i, yi)
= &,%ﬂ,exl} {(‘*‘THBT77T) Zzg(yf)}

Zig exp {HTQ(Y)}

P(Y|X,8) Syt Ns (i) Tt N (u)
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Gisan aggregatlon of the factor functions over all the hidden
variables. 8 = (w7, Br .~ ~T)T' is the parameter configuration
of the model, Zy £ Z,, Z3Z~ is the normalization term. For
Y is partially labeled, we define our log-likelihood objective
function (O(6) = logP(YL|X,8) ) on the labeled data Y.
We use Y'|Y' ¥ to denote the label configuration Y” that satis-
fies all the known labels Y'~.

Learning the STFGM model is to estimate a parameter con-
figuration 8™, so that the log-likelihood objective function is
maximized.

0* = argmax O(0) = argmaxlogP(Y*|X,8) (6)

where g(y!) = (®(xt,yt)T

We use gradient ascent algorithm to solve.

20(0) _
oo = 2

Y"YL
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)

The computing of P(Y'|Y*, X) and Py(Y|X) can be ap-
proximated using Loopy Belief Propagation (LBP)[Murphy
et al., 1999]. We perform LBP twice, one time giving the la-
beled data and another time not giving it. Denoting 7 as the
learning rate, finally, the 8" can be iteratively updated until
convergence by:

90(8)
0

Inferring Missing Affiliations: After learning out param-
eter set 6, we can compute the similarity probability of each
tuple instance. Given a € V}, for each candidate i € V}/ sat-
isfying (a,i) € E?, suppose the corresponding hidden vari-
able for the tuple < ¢, a, i > is y!, then the most likely person
with the same affiliation at ¢ is:

it = argmang(yf =1|X) )
Finally, the affiliation of atuthor a at t can be predicted as:

Predict(a,t) = Af filiation(i*,t) (10)

=0,4+7 ®)
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S Experiments

5.1 Experimental Setup

Datasets
We evaluate our method on datasets constructed from two fa-
mous academic networks: AMiner and MAG.

AMiner: abbreviation for ArnetMiner, an expertise search
and mining service for researcher social networks. Currently,
the academic network includes more than 231,832,378 publi-
cations and 127,513,531 researchers.

MAG: abbreviation for Microsoft Academic Graph, a het-
erogeneous graph containing scientific publication records,
citation relationships between those publications, as well
as authors, institutions, journals, conferences, and fields
of study, which has more than 126,909,021 papers and
114,698,044 authors.

Datasets construction: To simultaneously construct our
training and testing datasets from AMiner and MAG respec-
tively, we first randomly choose 1336 target authors with at
least ten years of affiliations available in their papers and
present in both AMiner and MAG, we then collect all their
and their coauthors’ information in AMiner and MAG respec-
tively. The total authors involved in our datasets constructed
from AMiner and MAG are 57037, 147543 respectively. Af-
ter that, in order to generate training and testing datasets, we
introduce two split methods: First one, we randomly split
the target authors into training and testing datasets, with
the testing authors not knowing any affiliations in training
datasets. We call this splitting method Inter-person train-
test split. Another one, we randomly select some affiliation-
known years of every author into training datasets and other
years into testing. We call this Intra-person train-test split.

According to the testing-dataset “ground truth”, we can
compute the algorithms’ precision in the dataset (abbrevi-
ated to P1). The way of getting “ground truth” in the last
paragraph is very common in machine learning, especially
when getting the real ground truth is impossible or the cost is
huge. One shortcoming of the above setting is that the ground
truth extracted from the dataset could be inaccurate, e.g., the
affiliations of a paper are ascribed to the wrong coauthors, or
a paper is ascribed to a wrong author due to name ambigu-
ity. Therefore, We further evaluate the performance in terms
of the true precision in the real world (abbreviated to P2).
To get the real world ground truth, we organized a group of
researchers to search out the target authors’ curricula vitae on
the Internet and to organize the information searched out into
<when, who, where> format. The granularity of time is year.
Each result item was rechecked by two people. Finally, 722
curricula vitae were found and 21544 high-quality informa-
tion items were got. We released the dataset at the site?.

Evaluation metrics

We use Ratcliff & Obershelp pattern matching algorithm to
compute the affiliation strings’ similarity scores [Ratcliff and
Metzener, 1988]. If the score is greater than 0.6 (maximum
is 1), we treat them the same; otherwise, the different. Be-
cause many affiliations can be written in different ways by
different people, we have tested other thresholds and found

*https://www.aminer.cn/careerMap



Table 1: Performance comparison of different methods

| Precision in dataset(P1) [ Precision in real world(P2)

Method | AMiner MAG | AMiner MAG

Inter-person train-test split \
Statistics-based | 67.48 70.31 | 56.61 64.49
Influence model | 68.98 74.22 | 5597 64.68
Space label propagation | 71.00 79.23 | 54.58 60.18
SVM-Rank | 73.91 76.47 | 55.56 66.48
STFGM | 8298 87.32 | 66.87 76.89

Intra-person train-test split \
Statistics-based | 67.07 71.86 | 55.35 64.31
Influence model | 62.77 70.01 | 50.93 61.49
Space label propagation ‘ 70.77 80.18 ‘ 54.51 59.31
SVM-Rank | 69.35 7816 | 51.02 68.51
Time-Stretch | 82.02 86.83 | 68.57 75.98
STFGM | 90.43 92.42 | 7218 82.48

0.6 can get most positive pairs with a less than 5% false posi-
tive ones. When the inferred <author, time, affiliation> tuple
is the same as the ground truth, the right items increase 1. The
precision is the ratio of the right items to the total items. The
train-test ratio is set to 6:4. For each splitting, we run 10 times
and report average results in the following section. It’s worth
noting that this is a hit at one problem”, so we don’t compute
recall and F1.

5.2 Experiment Results

Performance Analysis

We compare the performance of all methods in two datasets
and on two precision evaluation metrics. Table 1 shows the
performance. We find that precisions in the real world have
a 6% - 17% drop than ones in the dataset. The performance
drop in the real world is inevitable and easy to understand be-
cause we never use any information in the real world ground
truth to train our models. For STFGM, the Inter-person splits
have lower performance than their Intra-person counterparts,
because it’s harder to predict a person’s affiliations without
knowing any his/her affiliations in any years. However, the
models other than Time-Stretch and STFGM don’t achieve
significant improvement even with some known affiliations
in the Intra-person split, because these models cannot cap-
ture the temporal connections. The Time-Stretch method can
beat methods other than STFGM because personal temporal
connections with himself are stronger than space connections
with other coauthors. Overall, STFGM achieves the best per-
formance because it incorporates spacial and temporal con-
nections together as well as personal attributes.

Factor Contribution Analysis

We now give an in-depth analysis of the effects of different
factors. We examine the contribution of different factors by
removing each of them. Figure 3(a) shows the results in two
datasets with the Inter-person split. Figure 3(b) is the coun-
terpart with intra-person split. In Figure 3(a), we can see
clearly that the performance drops significantly about 7% -
11% without space factors. The time factors also have 1%
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Figure 3: Factor contribution analysis. A-P and M-P stand for pre-
cision in AMiner and MAG respectively. P1 stands for precision in
the dataset and P2 stands for precision in the real world. TimeFac-
torl, TimeFactor2, SpaceFactor] and SpaceFactor2 each stands for
removing the corresponding correlations in factor graph. (a) Perfor-
mance comparison of Inter-person train-test split. (b)Performance
comparison of Intra-person train-test split.
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Figure 4: Train/test Ratio Analysis. P1 stands for precision in the
dataset and P2 stands for precision in the real world. (a) Perfor-
mance comparison of Inter-person train-test split. (b) Performance
comparison of Intra-person train-test split.

- 3% performance boost contribution. While in Figure 3(b),
time factors contribute more than space factors. Especially in
MAG, time factors contribute 13% - 39 %. This is because
with the Intra-person split there are more time connections
from training instances to testing instances in target persons,
while with Inter-person split all the affiliations of the target
persons are unknown.

Train/test Ratio Analysis

From Figure 3(a), we can see the performance with the Inter-
person split keeps relatively stable as test sample ratio in-
creases. While with the Intra-person split, Figure 3(b) demon-
strates the performance goes down slightly with the increas-
ing of test sample ratio. This is because the time connections
from training instances to testing instances in target persons
decreases as train sample ratio drops. However, even with a
low training ratio of 0.1 (test ratio 0.9), the performance is
also highly acceptable.

Complexity Analysis

Suppose the number of instances and edges in STFGM is |V/|
and | E/|, the time complexity is O(|V'| + | E|). Generally, our
model takes 50 - 100 iterations to converge. For a typical con-
figuration of 80719 instances and 133947 edges, it takes 4
minutes to converge in a MacBook with 2.5 GHz Intel Core
i7 and 16G 1600MHz DDR3 Memory, while the other meth-
ods take less than a minute. Good news is this can be done
offline when precision is the priority concern, and the learn-
ing process of the model can be further accelerated by graph
partition and parallel computing technologies.




Scholar Career Trajectory

armuination: | |VAmine Search

a

O® e

+ 1988 -1989 : cern geneva switzerland Da Xi Yang

Figure 5: Scholar Career Trajectory for Tim Berners-Lee.
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Figure 6: Scholars Group Migration Heatmap in 1970.

6 Case Study

Based on our proposed STFGM model, we then developed
several applications as the case study.

6.1 APP 1: Scholar Career Trajectory

Given an author in the academic social network, this applica-
tion can automatically list out the author’s career experiences
and draw the trajectory path on the map. Figure 5 is the results
generated automatically by ”Tim Berners-Lee”, 2016 Turing
Award winner. The results basically accord with the bio on
his homepage.

6.2 APP 2: Scholars Group Migration Heatmap

In this application, we collect top 10000 scientists in aca-
demic network sorted by h-index, then we infer and draw all
their trajectories covering one century (from 1913 to 2016)
into one dynamic map. The reason for selecting top scien-
tists is they often attract a bunch of other scientists working
with them, so their migrations are more representative and
may reflect some trends. We then merge nearby persons into
hotspots with radius 50km and take hotspots as our research
objects in order that their group behavior can be more ro-
bust. For a vivid example of the application, as is well-known,
Los Angeles became a focus for intellectual discourse in the
1970s after 10 years of urban decay in 1960s.* Figure 6 cer-
tificate the history, clearly showing that many from the east
coast of the U.S. migrated to Los Angeles in 1970.

On further analysis, we find some interesting phenomena.
Figure 7(a) plots the distribution of the active scholars over
years. ”Active” indicates that they still published some pa-
per(s). We see most of the top scholars are still active in recent
ten years. Figure 7(b) plots the number of hotspots distributed
over years. The phenomenon revealed is even more amazing
that the biggest and the second biggest drops coincide aston-
ishingly well with two historic economic recessions at those

*https://www.laconservancy.org/explore-la/curating-
city/modern-architecture-la/history-la-modernism/1970-1980-
los-angeles

number of people
IS
=

number of hots

o o«
2 2
pots,
o
o

80

1953-54
60 Recession
40

2000 2020 1920 1940

1958,60-61
Recession

1960 1980 2000
year

N
=~

1920 1940 1960 1980
year

(a) (b)

Figure 7: (a) People distribution. (b) Hotspots distribution.
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Figure 8: (a) Transitions between/in countries. (b) Dynamics of sev-
eral big cities.

periods. ° Figure 8(a) depicts all the transitions between or
in countries, we can see most transitions happened domesti-
cally. The most frequently emigrating terminal of other coun-
tries is the U.S. and the top 3 inter-country mutual transitions
are (U.S., U.K)), (U.S., Canada), and (U.S., Germany). This
is reasonable because the U.K. has a deep historical connec-
tion with the U.S., Canada is the biggest neighbor of the U.S.
and Germany has many world-famous scientists. Figure 8(b)
shows the dynamics of some big cities. We can see cities at
East coast of the United States such as Boston and Baltimore
enjoy a considerably higher growth rate than other places, but
the uptrend turns to the downside after the year 2005. Beijing
exhibits a very different growth pattern — starting up very late
near the year 1990, but the immigration trend rises signifi-
cantly in recent years.

7 Conclusions

The paper focuses on temporal location inferring in the
academic social network. We propose a Space-Time Factor
Graph Model (STFGM) incorporating spacial and temporal
correlations to fulfill the task. Experiments on two datasets
(Aminer and MAG) demonstrate our STFGM outperforms
baselines significantly by 5%-27%. The model developed is
general and can be adopted in other datasets with time and
space dimensions. At last, we develop two applications to
demonstrate the effectiveness of our model further.

Shttps://en.wikipedia.org/wiki/Recession_of_1953
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