Heterogeneous Graph Representation Learning

Yuxiao Dong, Ziniu Hu, Kuansan Wang, Yizhou Sun, Jie Tang

@IJCAI 2020

Can we get rid of the manual design of meta paths?
Heterogeneous Graphs

academic graph

office graph
Heterogeneous Graph Mining

(a) The schema of heterogeneous academic networks

meta paths

- Classification
 ✓ RankClass, …
- Clustering
 ✓ RankClus, …
- Ranking
 ✓ PathSim, …
- Link Prediction
 ✓ PathPredict, …
- …

1. Yizhou Sun, Jiawei Han. Mining Heterogeneous Information Networks: Principles and Methodologies. M & C Publishers, 2012.
Heterogeneous Graph Representation Learning

- Classification
- Clustering
- Ranking
- Link Prediction

(a) The schema of heterogeneous academic networks

meta paths + graph representation learning

heter. graph representation learning
- metapath2vec, PTE, …
- R-GCN, HetGNN, GEM, …
Heterogeneous Graph Representation Learning

Can we get rid of meta paths?

- Classification
- Clustering
- Ranking
- Link Prediction

heter. graph representation learning
- metapath2vec, PTE, ...
- R-GCN, HetGNN, GEM, ...

(a) The schema of heterogeneous academic networks
Heterogeneous Graph Representation Learning

Heterogeneous Graph Transformer (HGT)

- no manual design of meta paths!
- straightforward for (heterogeneous) graph pre-training, e.g., GPT-GNN

Heterogeneous Graph Representation Learning

Leaderboard for ogbn-mag

[Leaderboard](https://ogb.stanford.edu/)

(as of Dec. 13, 2020)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Method</th>
<th>Test Accuracy</th>
<th>Validation Accuracy</th>
<th>Contact</th>
<th>References</th>
<th>#Params</th>
<th>Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HGT (LADIES Sample)</td>
<td>0.5007 ± 0.0043</td>
<td>0.5124 ± 0.0039</td>
<td>Ziniu Hu</td>
<td>Paper, Code</td>
<td>21,173,389</td>
<td>Tesla K80 (12GB GPU)</td>
</tr>
<tr>
<td>2</td>
<td>GraphSAINT (R-GCN aggr)</td>
<td>0.4751 ± 0.0022</td>
<td>0.4837 ± 0.0026</td>
<td>Matthias Fey – OGB team</td>
<td>Paper, Code</td>
<td>154,366,772</td>
<td>GeForce RTX 2080 (11GB GPU)</td>
</tr>
<tr>
<td>3</td>
<td>R-GCN+FLAG</td>
<td>0.4737 ± 0.0048</td>
<td>0.4835 ± 0.0036</td>
<td>Kezhi Kong</td>
<td>Paper, Code</td>
<td>154,366,772</td>
<td>GeForce RTX 2080 Ti (11GB GPU)</td>
</tr>
<tr>
<td>4</td>
<td>Neighbor Sampling (R-GCN aggr)</td>
<td>0.4678 ± 0.0067</td>
<td>0.4761 ± 0.0068</td>
<td>Matthias Fey – OGB team</td>
<td>Paper, Code</td>
<td>154,366,772</td>
<td>GeForce RTX 2080 (11GB GPU)</td>
</tr>
<tr>
<td>5</td>
<td>SIGN</td>
<td>0.4046 ± 0.0012</td>
<td>0.4068 ± 0.0010</td>
<td>Lingfan Yu (DGL Team)</td>
<td>Paper, Code</td>
<td>3,724,645</td>
<td>Tesla T4 (15GB GPU)</td>
</tr>
</tbody>
</table>

2. Wang et al. Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 2020
Heterogeneous Graph Representation Learning

Yuxiao Dong, Ziniu Hu, Kuansan Wang, Yizhou Sun, Jie Tang

ericdongyx@gmail.com, {bull, yzsun}@cs.ucla.edu,
kuansanw@Microsoft.com, jietang@tsinghua.edu.cn

- data&code: https://github.com/HeterogeneousGraph