
Keyword-Based Knowledge Graph Exploration Based on
Quadratic Group Steiner Trees

Yuxuan Shi1,2 , Gong Cheng1∗ , Trung-Kien Tran2 , Jie Tang3 and Evgeny Kharlamov2,4

1State Key Laboratory for Novel Software Technology, Nanjing University, China
2Bosch Center for Artificial Intelligence, Renningen, Germany

3Department of Computer Science and Technology, Tsinghua University, China
4Department of Informatics, University of Oslo, Norway

yxshi@smail.nju.edu.cn, gcheng@nju.edu.cn, {trungkien.tran, evgeny.kharlamov}@de.bosch.com,
jietang@tsinghua.edu.cn

Abstract
Exploring complex structured knowledge graphs
(KGs) is challenging for non-experts as it requires
knowledge of query languages and the underlying
structure of the KGs. Keyword-based exploration
is a convenient paradigm, and computing a group
Steiner tree (GST) as an answer is a popular im-
plementation. Recent studies suggested improving
the cohesiveness of an answer where entities have
small semantic distances from each other. How-
ever, how to efficiently compute such an answer is
open. In this paper, to model cohesiveness in a gen-
eralized way, the quadratic group Steiner tree prob-
lem (QGSTP) is formulated where the cost func-
tion extends GST with quadratic terms represent-
ing semantic distances. For QGSTP we design a
branch-and-bound best-first (B3F) algorithm where
we exploit combinatorial methods to estimate lower
bounds for costs. This exact algorithm shows prac-
tical performance on medium-sized KGs.

1 Introduction
A knowledge graph (KG) is a collection of annotated and in-
terconnected entities. By offering a flexible way to structure
and integrate information, KGs have been widely used in AI
applications. Consider a sample KG in Fig. 1 which describes
various relations between physicists, institutions, and cities.

Task. When a user such as a data journalist looks into
a machine-readable KG, a fundamental task is KG explo-
ration. Users often explore a complex structured KG with
difficulty. For those who lack expertise in formulating for-
mal queries or whose vague information needs can hardly be
formalized, machine-assisted KG exploration is crucial [Lis-
sandrini et al., 2020]. While various AI-empowered meth-
ods have been devised to support this task, such as KG
summarization [Cheng et al., 2016; Cheng et al., 2017a]
and relevance-based entity recommendation [Gu et al., 2019;
Zhou et al., 2020], the most commonly adopted user interface
is based on keyword queries: a user explores a KG by easily
∗Contact Author

Figure 1: An example KG and two extracted subgraphs: a seman-
tically cohesive subgraph T1 and a semantically incohesive sub-
graph T2 for answering the query “melvin schwartz, emil wolf”.

submitting a set of keywords expressing an information need.
State-of-the-art methods [Shi et al., 2020] efficiently find and
present an optimum subgraph extracted from the KG that con-
tains all the keywords in the query. For example, Fig. 1 shows
two extracted subgraphs T1 and T2 for answering the query
“melvin schwartz, emil wolf”. An optimum subgraph will be
computed and returned as an answer.
Motivation. In the literature it was standard to assign
weights to vertices or edges in a KG and then compute a
minimum-weight connected subgraph that contains all the
keywords in a query as an optimum answer [Ding et al., 2007;
Li et al., 2016; Shi et al., 2020], aka a group Steiner tree
(GST) [Ihler, 1991]. The underlying assumption is: an ag-
gregation of salient graph elements (i.e., with small weights)
constitute a good answer. However, the assumption has re-
cently been challenged: by analyzing industrial KGs, it was
suggested to improve the cohesiveness of an answer where
entities (i.e., vertices) have small semantic distances from
each other [Cheng and Kharlamov, 2017], e.g., having sim-
ilar types, textual annotations, or topics. The suggestion has
been supported by empirical studies focusing on different
concrete measures of semantic distance [Cheng et al., 2017b;
Bryson et al., 2020]. As an example, T2 in Fig. 1 is an unin-
teresting mixture of disparate entities despite their salience,
while T1 cohesively and meaningfully describes physicists
and their advisors. Although the effectiveness of such cohe-
sive answers in KG exploration has been accepted, one prob-
lem remains: how to efficiently compute a cohesive answer.
This is our research target in this paper.
Quadratic GST problem. The standard GST problem
minimizes the total weight of the vertices or edges in a sub-

graph. This cost function cannot model implicit relationships
between graph elements such as semantic distances. Recently
we have extended it to calculate the total weight of graph el-
ements and their semantic distances [Shi et al., 2021]. This
extended optimization problem is referred to as the quadratic
group Steiner tree problem (QGSTP) since semantic distance
is a quadratic term involving two graph elements. QGSTP is
fundamentally more difficult than the GST problem. Indeed,
quadratic terms are harder to optimize. Moreover, weights
and semantic distances require joint optimization while their
values could be independent from each other.
Algorithm B3F. To solve QGSTP, we design an exact algo-
rithm named B3F that guarantees to find an optimum solution.
B3F is an iterative branch-and-bound algorithm and it per-
forms best-first search in each iteration. We define a branch
of the search space as a set of subgraphs that subsume a com-
mon path. We leverage the path to develop a lower bound
estimation for the costs of the subgraphs in the branch, where
we manipulate and integrate combinatorial methods includ-
ing set covering and maximum matching.
Contributions. Below we summarize our contributions.

• We design the first exact algorithm B3F for QGSTP. We
significantly prune the search space of B3F by devising
an effective lower bound estimation for costs.

• We conduct extensive experiments on public KGs and
queries. B3F computes more cohesive answers than the
classical GST and it runs in comparable time.

2 Related Work
2.1 GST-Based Exploration
Keyword-based KG exploration has been commonly formu-
lated as a GST problem to extract a minimum-weight tree
that contains all the keywords in a query [Ding et al., 2007;
Li et al., 2016; Shi et al., 2020], or as a variant of this prob-
lem [Kargar and An, 2011; Le et al., 2014; Yang et al., 2019].
They assume that aggregating salient graph elements with
small weights produces a good answer, but they ignore the
semantic relationships between elements. Indeed, a set of
salient elements may not form a semantically cohesive sub-
graph and hence not a meaningful answer.

Our work extends this line of research by incorporating se-
mantic distances between elements and formulating QGSTP
to compute cohesive answers. Our cost function contains
quadratic terms that are harder to optimize.

2.2 Cohesiveness Computation
The above shortcoming of GST-based exploration has been
noticed when researchers processed industrial KGs and they
suggested computing cohesive answers [Cheng and Khar-
lamov, 2017]. The suggestion is supported by a user study
where a concrete measure of semantic distance was imple-
mented based on entity types [Cheng et al., 2017b]. By
comparing pairs of answers, users preferred more cohesive
answers where entities have similar types. Another imple-
mented measure of semantic distance relies on random walk
with restart [Bryson et al., 2020], to which a specific heuristic
algorithm was presented to compute such cohesive answers.

Our work addresses efficient computation of cohesive an-
swers, which is not considered in [Cheng and Kharlamov,
2017; Cheng et al., 2017b]. Our algorithm computes an op-
timum solution to QGSTP while the algorithms in [Bryson
et al., 2020; Shi et al., 2021] cannot guarantee to find an
optimum solution. Regarding other studies of “cohesive-
ness” in graph search and exploration [Dass et al., 2015;
Zhu et al., 2018], their definitions are orthogonal to ours.

2.3 Query Interpretation
To interpret a keyword query (or a natural language question)
for KG exploration, one popular approach is to transform the
keyword query into a formal query and then execute the for-
mal query over a standard query engine [Tran et al., 2009;
Pound et al., 2012; Shekarpour et al., 2013; Sun et al., 2020].
The formal query is typically a graph pattern that formally
represents the meaning of the keyword query and is matched
with the KG to retrieve answers.

Our work is suitable for vague information needs that can
hardly be interpreted as a precise graph pattern, e.g., explor-
ing relationships between a set of entities [Cheng, 2020; Li
et al., 2020; Cheng et al., 2020]. The above transformation-
based methods are targeted at information lookup where there
is a specific query intent that can be represented by a graph
pattern. The two lines of research are complementary.

3 Problem
3.1 Preliminaries
A KG is a directed graph denoted by G = 〈V,E〉, where V is
a set of vertices representing entities, and E ⊆ V ×V is a set
of directed edges representing relations between entities. We
allow the edges in a path/tree to be in different directions.

Let K be the set of all keywords. A matching function
hits : K 7→ 2V maps each keyword to a subset of vertices.
The concrete implementation of hits, e.g., either syntacti-
cally or semantically matching keywords with vertex annota-
tions, is not our focus. For simplicity our formulation omits
edge mapping but it can be transformed into vertex mapping:
for each edge (u, v) we create a vertex w with the annotation
of (u, v); then replace (u, v) by two edges (u,w) and (w, v).
A query Q ⊆ K is a set of g keywords Q = {k1, . . . , kg}. To
ease the notation we write hits(ki) as Ki for 1 ≤ i ≤ g. We
call Ki keyword vertices.

Similar to the GST problem [Ihler, 1991], given G =
〈V,E〉 we define a feasible answer to Q as a subgraph of G
denoted by T = 〈VT , ET 〉 such that: (1) T is connected,
(2) T contains at least one keyword vertex from each Ki for
1 ≤ i ≤ g, and (3) T is structurally minimal for (1) and (2),
i.e., none of its proper subgraphs satisfy both (1) and (2), so
T is a tree where leaf vertices must be keyword vertices. For
example, T1 and T2 in Fig. 1 are two feasible answers to the
query “melvin schwartz, emil wolf”.

3.2 Problem Formulation
Let wt(v) be the non-negative weight of vertex v; small wt
represents salience. Let sd(vi, vj) be the non-negative se-
mantic distance between vertices vi and vj ; small sd repre-
sents cohesiveness. The concrete computation of wt and sd

is independent from our approach. The cost of a feasible an-
swer T = 〈VT , ET 〉 is the total weight of its vertices and their
semantic distances:
cost(T) = α

∑
v∈VT

wt(v) + (1− α)
∑

vi,vj∈VT
i<j

sd(vi, vj) ,

(1)
where α ∈ [0, 1] is a parameter. An optimum answer is a fea-
sible answer that minimizes cost. This optimization prob-
lem is referred to as the quadratic group Steiner tree prob-
lem (QGSTP) [Shi et al., 2021]. It extends the cost function
of the vertex-weighted GST problem [Ihler, 1991; Klein and
Ravi, 1995] by introducing a quadratic term sd(vi, vj) repre-
senting an extra cost that will be paid if two vertices vi and vj
are both included in T .

3.3 Problem Complexity
Theorem 1. QGSTP is an NP-hard optimization problem.

Proof. We can reduce two NP-hard problems to QGSTP.
It is straightforward to reduce the vertex-weighted Steiner

tree problem to an instance of QGSTP where α = 1 and
|Ki| = 1 for 1 ≤ i ≤ g.

Alternatively, we reduce the quadratic set cover problem to
an instance of QGSTP where α = 1 − α and vertices in G
are pairwise adjacent. Thus, sets containing an element cor-
respond to vertices mapped to from a keyword.

Compared with the vertex-weighted GST problem,
QGSTP is more difficult due to the extended optimization of
the quadratic sd which is independent from wt. For example,
vertices that are adjacent in KGs can be semantically distant.

4 Approach
QGSTP is an NP-hard optimization problem, for which a
brute-force algorithm would be computationally prohibitive
even on small KGs. We present a Branch-and-Bound Best-
First algorithm, abbreviated to B3F. It is the first exact algo-
rithm for QGSTP. As we will see in the experiments it shows
promising performance on medium-sized KGs.

Before presenting B3F, we define some terms. For path p,
its length len(p) is the number of edges in p. The distance
between two vertices is the length of a shortest path connect-
ing them. The eccentricity of vertex v is the greatest distance
between v and other vertices. The radius and diameter of
graph T , denoted by rad(T) and diam(T), are the minimum
and maximum eccentricity of the vertices in T , respectively.
A central vertex is a vertex of minimum eccentricity. For two
graphs T and T ′, we write T � T ′ if T is a subgraph of T ′.

4.1 Basic Idea
In general, B3F iteratively explores the search space in a top-
down manner (i.e., branching). Branches where feasible an-
swers cannot be better than the optimal answer found so far
are discarded (i.e., bounding). In each iteration, the most
promising branch is explored (i.e., best-first).

Algorithm 1 B3F
Input: G = 〈V,E〉, Q = {k1, . . . , kg}, integer d
Output: Topt

1: Topt ← null; /* We define cost(null) =∞. */
2: PQ← an empty min-priority queue of paths;

3: for all v ∈
g⋃

i=1

Ki do

4: PQ.insert(v);
5: for i = 1 to g do
6: Pi ← an empty set of paths;
7: while PQ is not empty do
8: ptop ← PQ.pull();
9: if cost(ptop) ≥ cost(Topt) then

10: break the while loop;
11: for all ki ∈ QK(Vptop) do
12: Pi ← Pi ∪ {ptop};
13: for all 〈p1, . . . , pg〉 ∈ P1 × · · · × Pg containing ptop

and having a common end vertex do
14: T ← merge p1, . . . , pg;
15: if T is structurally minimal then
16: if cost(T) < cost(Topt) then
17: Topt ← T ;
18: if len(ptop) < d then
19: for all v ∈ V that is adjacent from/to the end vertex

of ptop and is outside ptop do
20: p← grow ptop to v with one edge;
21: PQ.insert(p);
22: return Topt

Answer construction. B3F constructs a feasible answer by
merging g paths p1, . . . , pg where each pi starts from a key-
word vertex in Ki and they end at a common vertex. For
example, T1 in Fig. 1 is constructed by merging two paths:

M. Schwartz doctoral advisor−−−−−−−→ J. Steinberger academic advisor−−−−−−−−→ E. Fermi

E. Wolf notable student←−−−−−−− M. Born notable student−−−−−−−→ E. Fermi

Branching. Each path p defines a branch of the search
space where each feasible answer T satisfies p � T . A longer
path defines a smaller search space; thus, path growing cor-
responds to branching. B3F iteratively enumerates paths that
grow from keyword vertices. For each enumerated path p,
we estimate cost(p). It is a lower bound for the costs of the
feasible answers in the branch defined by p:

cost(p) ≤ min
T : p�T

cost(T) . (2)

Best-first search and bounding. B3F performs best-first
search. In each iteration, it processes an enumerated path ptop
that minimizes cost. If cost(ptop) ≥ cost(Topt) where
Topt denotes the optimal answer found so far, B3F will be
terminated and return Topt; such bounding discards all feasi-
ble answers in the unprocessed branches. If cost(ptop) <
cost(Topt), new feasible answers will be constructed by
merging ptop with other processed paths that end at the same
vertex as ptop; then Topt may be updated. B3F completes the
current iteration by growing ptop to enumerate longer paths.

4.2 Algorithm B3F
B3F is detailed in Algorithm 1. Following common prac-
tice [Kacholia et al., 2005; Cheng et al., 2017b], we intro-
duce an extra input d representing the largest allowed depth
of search to prevent large subgraphs (i.e., diam > 2d) which
are not favored by users [Cheng et al., 2017b].
Topt denotes the optimal answer found so far (line 1). Paths

to be processed are kept in priority queue PU and sorted by
their cost values in ascending order (line 2); we will elabo-
rate the computation of cost in Section 4.4. Paths that grow
from keyword vertices are iteratively enumerated. Initially,
each keyword vertex is treated as a path of length zero and
inserted into PQ to be processed (lines 3–4). For each key-
word ki ∈ Q, we maintain the set Pi of processed paths that
contain a keyword vertex in Ki (lines 5–6).

In each iteration (line 7), ptop which minimizes cost in PQ
is pulled to process (line 8). If cost(ptop) ≥ cost(Topt), the
algorithm will be terminated (lines 9–10). Otherwise, ptop is
added to each proper Pi (lines 11–12). Specifically, Vptop is
the set of vertices in ptop, and we define

QK(Vptop) = {ki ∈ Q : Vptop ∩Ki 6= ∅} . (3)

New feasible answers are constructed with ptop. We con-
sider each combination of paths in P1 × · · · × Pg such that
ptop is in this combination where all the paths have a com-
mon end vertex (line 13). They are merged into a subgraph T
which clearly is connected and covers all the keywords in Q
(line 14). If T is also structurally minimal (line 15), i.e., it
is a feasible answer, and its cost is smaller than cost(Topt)
(line 16), it will replace Topt (line 17).

Longer paths are enumerated by growing ptop with one
edge (lines 19–20), and are inserted into PQ to be pro-
cessed (line 21). Growing is conditioned on the length of ptop
(line 18), subject to the largest allowed depth of search.

Finally, Topt is an optimum answer and is returned (line 22).

4.3 Algorithm Analysis
Correctness. Consider Lemma 2 which decomposes a fea-
sible answer into a set of paths.

Lemma 2. Every feasible answer T s.t. diam(T) ≤ 2d can
be constructed by merging g paths p1, . . . , pg such that for
1 ≤ i ≤ g: (1) len(pi) ≤ d, (2) the start vertex of pi is
in Ki, and (3) all pi have a common end vertex.

Proof. Since T = 〈VT , ET 〉 is a tree, it is known in graph
theory that: rad(T) = b diam(T)+1

2 c ≤ b 2d+1
2 c = d. There-

fore, T has a central vertex c that is at most d hops away from
every vertex in T . For 1 ≤ i ≤ g, since VT ∩ Ki 6= ∅, we
choose vi ∈ VT ∩Ki and let pi be the unique path between vi
and c in T . All such pi satisfy (1)–(3) of the lemma, and by
merging them we can construct T .

The correctness theorem follows directly from Lemma 2.

Theorem 3. B3F returns an optimum answer s.t. diam ≤ 2d.

Proof. Consider a variant of B3F where we fix cost = −∞;
thus branches are never discarded. When this variant is fin-
ished, P1, . . . , Pk contain all possible paths that start from

keyword vertices and are at most d long. All their combina-
tions have been used to construct feasible answers, including
the combination that produces an optimum answer according
to Lemma 2. Therefore, Topt is an optimum answer.

Now consider the standard version of B3F where cost is
properly estimated. When it is terminated early, according to
the definition of cost, it is impossible to discard a feasible
answer better than Topt, so Topt is an optimum answer.

Time complexity. For G = 〈V,E〉, let |V | = n and |E| =
m. There are O(n) keyword vertices, starting from which
O(nd+1) paths are enumerated and processed. Fibonacci
heap allows O(log nd+1) time for pull and O(1) time for in-
sert. All the queue operations takeO(nd+1(d+1) log n) time.
To construct feasible answers, O(ng(d+1)) combinations of
paths are merged. Each combination uses O(gd+1) time for
merging and O((gd+1)2) time for calculating cost, assum-
ing O(1) for computing sd. Therefore, finding an optimum
answer takes O((gd+1)2ng(d+1)) time. The total time com-
plexity of B3F is O(nd+1(d+ 1) log n+ (gd+ 1)2ng(d+1)).
It increases exponentially with g and d, which are very small
in practice. By early termination based on our lower bound
estimation of cost described in Section 4.4, B3F can achieve
promising performance on medium-sized KGs.

4.4 Lower Bound Estimation
For path p = 〈Vp, Ep〉, properly estimating cost(p) is the
key to the performance of B3F and is one of our main techni-
cal contributions. To ensure Eq. (2), we analyze the cost of an
arbitrary feasible answer T = 〈VT , ET 〉 that satisfies p � T .
For convenience, we decompose the cost function in Eq. (1):
cost(T) = α · costwt(T) + (1− α) · costsd(T) , where

costwt(T) =
∑
v∈VT

wt(v) , costsd(T) =
∑

vi,vj∈VT
s.t. i<j

sd(vi, vj) .

(4)
We will separately estimate a lower bound for each part.
Note that the estimated bounds must be independent from T .
Moreover, the estimation per se should be computationally
inexpensive to improve the overall performance of B3F.

Lower Bound Estimation for costwt(T)
We expand costwt(T) in Eq. (4):

costwt(T) =
∑
v∈Vp

wt(v) +
∑

v∈(VT \Vp)

wt(v) . (5)

The first sum is independent from T and is directly calcu-
lated. For the second sum, we estimate its lower bound using
the smallest total weight of other vertices besides Vp that are
needed for T to cover all the keywords inQ. The computation
of this total weight is formulated as the following instance of
the weighted set cover problem (WSCP):

universe of elements: Q \ QK(Vp) ,

sets of elements: each ∅ ⊂ Q′ ⊆ (Q \ QK(Vp))

s.t. ∃v ∈ V, QK({v}) \ QK(Vp) = Q′ ,

weights of sets: min
v∈V : QK({v})\QK(Vp)=Q′

wt(v) for Q′ .

(6)

Let Q′
opt be an optimum solution to Eq. (6) computed by dy-

namic programming. The total weight of the sets in Q′
opt

forms a lower bound for the second sum in Eq. (5). To con-
clude, we estimate the following lower bound for costwt(T):

costwt(T) ≥
∑
v∈Vp

wt(v) +
∑

Q′∈Q′
opt

min
v∈V : QK({v})\QK(Vp)=Q′

wt(v) ,

(7)
which is independent from T .

Although WSCP is NP-hard, there are at most (2g − 1)
unique instances of WSCP to solve, where g is the number
of keywords in Q; each instance takes a unique proper subset
of Q as the universe. Since g is very small in practice, both
the number of unique instances of WSCP and the size of each
instance are small. Therefore, in practice the time for the
above estimation is relatively neglectable in B3F.

Lower Bound Estimation for costsd(T)

We assume sd satisfies symmetry and triangle inequality. We
expand costsd(T) in Eq. (4):

costsd(T) ≥
∑

vi,vj∈Vp
s.t. i<j

sd(vi, vj) +
∑

vi∈(VT \Vp), vj∈Vp

sd(vi, vj)

≥
∑

vi,vj∈Vp
s.t. i<j

sd(vi, vj) + r · min
vi∈V

∑
vj∈Vp

sd(vi, vj) .

(8)
The first sum is independent from T and is directly calcu-
lated. In the second sum, r represents the smallest number
of other vertices besides Vp that are needed for T to cover all
the keywords inQ. The computation of r is formulated as the
following instance of the set cover problem (SCP):

universe of elements: Q \ QK(Vp) ,

sets of elements: each ∅ ⊂ Q′′ ⊆ (Q \ QK(Vp))

s.t. ∃v ∈ V, QK({v}) \ QK(Vp) = Q′′ .

(9)

Let Q′′
opt be an optimum solution to Eq. (9) computed by

dynamic programming. The number of sets in Q′′
opt forms r

in Eq. (8), i.e., r = |Q′′
opt|.

To estimate a lower bound for the minimum in Eq. (8), our
idea is: for vi ∈ V , its semantic distance from some ver-
tices in Vp may be very small, but its total semantic distance
from all the vertices in Vp cannot be arbitrarily small due to
triangle inequality. Therefore, we construct a complete undi-
rected graph H where vertices are Vp and the edge between
vi, vj ∈ Vp has weight sd(vi, vj). Let M be a maximum
weighted matching inH , which puts 2b |Vp|

2 c vertices in pairs.
Let M̃ be the sum of edge weights in M . Since sd satisfies
triangle inequality, we have

M̃ ≤ min
vi∈V

∑
vj∈Vp

sd(vi, vj) . (10)

Now we can turn to estimate a lower bound for M̃ . When
|Vp| is even, the edges in H can be partitioned into |Vp| − 1

perfect matchings according to graph theory, so

M̃ ≥

∑
vi,vj∈Vp

s.t. i<j

sd(vi, vj)

|Vp| − 1
. (11)

When |Vp| is odd, let Hk be the subgraph of H from which
vk ∈ Vp and its incident edges are removed. Let Mk be a
maximum weighted matching in Hk, and let M̃k be the sum
of edge weights in Mk. For each vk ∈ Vp, we have∑

vi,vj∈Vp
s.t. i<j

sd(vi, vj) =
∑

vi,vj∈(Vp\{vk})
s.t. i<j

sd(vi, vj)

+
∑

v∈(Vp\{vk})

sd(v, vk) .

(12)

Summing this equation over all vk ∈ Vp, we have

|Vp|
∑

vi,vj∈Vp
s.t. i<j

sd(vi, vj)

=
∑

vk∈Vp

(
∑

vi,vj∈(Vp\{vk})
s.t. i<j

sd(vi, vj) +
∑

v∈(Vp\{vk})

sd(v, vk))

=
∑

vk∈Vp

∑
vi,vj∈(Vp\{vk})

s.t. i<j

sd(vi, vj) + 2
∑

vi,vj∈Vp
s.t. i<j

sd(vi, vj) ,

(13)
from which we obtain

∑
vi,vj∈Vp

s.t. i<j

sd(vi, vj) =
∑

vk∈Vp

∑
vi,vj∈(Vp\{vk})

s.t. i<j

sd(vi, vj)

|Vp| − 2

≤
∑

vk∈Vp

M̃k ≤ |Vp| · M̃ ,

(14)

that is,

M̃ ≥

∑
vi,vj∈Vp

s.t. i<j

sd(vi, vj)

|Vp|
. (15)

Combining Eqs. (8)(10)(11)(15), we estimate the follow-
ing lower bound for costsd(T):

costsd(T) ≥ (1 +
|Q′′opt|

1 + 2b |Vp|−1

2
c
)

∑
vi,vj∈Vp

s.t. i<j

sd(vi, vj) , (16)

which is independent from T .
In practice, the time for the above estimation is relatively

neglectable in B3F because: first, following our analysis
about WSCP, the time for computing |Q′′

opt| is relatively ne-
glectable; second, the sum in Eq. (16) can be incrementally
calculated when p is enumerated by growing its sub-path.

5 Experiments
We experimented with a 3.5GHz CPU and 24GB memory.

Code: https://github.com/nju-websoft/B3F .

5.1 Datasets
We used five versions of three public KGs. They represent
small to medium-sized KGs as shown in Table 1.

https://github.com/nju-websoft/B3F

KG Query
Source |V | |E| Qty g

MND MONDIAL 40,890 120,690 34 2–4
L1 LUBM 20,797 82,590 200 2–6
L4 LUBM 91,045 370,654 200 2–6
D20K DBpedia 20,000 37,017 128 2–6
D100K DBpedia 100,000 205,743 241 2–6

Table 1: KGs and Queries

MONDIAL1 (MND) is a geographical KG that has been
popularly used for evaluating keyword querying. We reused
50 queries provided by [Coffman and Weaver, 2014] but
removed those containing unmatchable keywords. Our
matching function returns vertices whose textual annotations
(i.e., literals) contain the given keyword.

LUBM2 is a benchmark for generating synthetic KGs in
the university domain. We generated two KGs describing
one university (L1) and four universities (L4). We generated
200 synthetic queries following the procedure in [Li et al.,
2016]. Specifically, we varied two parameters: the number of
keywords in a query (i.e., g) and the average number of ver-
tices matched with each keyword in a query (denoted by f).
For each g ∈ {2, 3, 4, 5, 6} and each f ∈ {5, 10, 50, 100} we
generated 10 queries. Given g and f , to generate a query we
created g pseudo keywords and we let each pseudo keyword
match with an average of f random vertices.

From the well-known encyclopedic KG of DBpedia3 we
extracted two subgraphs D20K and D100K consisting of dif-
ferent numbers of vertices with the largest degrees and all the
edges between them. We reused 429 queries provided by [Ha-
sibi et al., 2017] but removed those containing unmatchable
keywords, i.e., the given keyword is not contained in any label
annotations (rdfs:label) of vertices.

5.2 Cost Function and Parameters

Concrete implementations of wt and sd are not our research
focus. We reused existing normalized PageRank for wt:

wt(v) = 1− sigmoid

log
PageRank(v)

min
v′∈V

PageRank(v′)

 . (17)

For semantic distance sd, we followed [Cheng et al., 2017b]
to compute the Jaccard distance between sets of types of enti-
ties in DBpedia to capture ontological semantics. This is not
suitable for MONDIAL and LUBM where each entity has a
single type. On these datasets, we computed the angular dis-
tance between 10-dimensional embedding vectors of entities
generated by pyRDF2Vec4 to capture structural semantics.

For the parameter α in the cost function we compared two
values: α = 0.3 and α = 0.7. For the largest allowed depth
of search in B3F we set d = 3 since subgraphs of diam > 6
would be too large to present in real applications.

1https://www.dbis.informatik.uni-goettingen.de/Mondial
2http://swat.cse.lehigh.edu/projects/lubm/
3https://wiki.dbpedia.org/ (version 2016-10)
4https://github.com/IBCNServices/pyRDF2Vec

MND L1 L4 D20K D100K

Time
B3F (α = 0.3) 1.68 1.84 30.96 4.09 261.14
B3F (α = 0.7) 1.31 2.42 32.50 6.52 101.12
DPBF 0.19 16.15 113.00 2.29 25.41

Ratio B3F (α = 0.3) 0.89 0.47 0.53 0.79 0.64
B3F (α = 0.7) 0.92 0.56 0.63 0.80 0.65

Table 2: Mean Run Time (seconds) and Mean Cohesiveness Ratio

5.3 Baseline
We are the first to propose an exact algorithm for QGSTP.
We compared our algorithm with DPBF [Ding et al., 2007],
a state-of-the-art exact algorithm for the standard vertex-
weighted GST problem which is a simple special case of
QGSTP. DPBF minimizes the total weight of the vertices
in an answer but is unaware of semantic distance. Re-
cent faster algorithms for the GST problem [Li et al., 2016;
Shi et al., 2020] were not compared because they were de-
signed for edge weights but could not handle vertex weights.

5.4 Efficiency Results
Recall that our research target in this paper is to efficiently
solve QGSTP. Thus, run time is our main evaluation metric.
Metric. We measured the mean run time of each algorithm
for answering a query. The results are shown in Table 2.
Comparison with baseline. The run time of B3F and
DPBF was generally at the same level of magnitude. B3F
was 3.48–8.78 times as fast as DPBF on L1 and L4, but was
1.79–10.28 times as slow as DBPF on the other KGs.
Scalability. B3F was fast on small KGs of 20k–40k ver-
tices. It only used 1.31–6.52 seconds to answer a query on
MND, L1, and D20K. However, it took 30.96–261.14 sec-
onds on medium-sized KGs of about 100k vertices like L4
and D100K, i.e., the run time grew superlinearly with the
number of vertices. In Fig. 2 we break down the results under
α = 0.3 by g, the number of keywords in a query. The run
time grew noticeably when g was increased. Similar results
under α = 0.7 are shown in Fig. 3.
Discussion. On small and medium-sized KGs, B3F showed
promising performance comparable to DPBF but note that
B3F solved a harder problem where cohesiveness was mod-
eled by quadratic terms to produce better answers. The per-
formance is acceptable for many enterprise-level applications
such as analytics-oriented exploration which is more focused
on answer quality rather than run time. Moreover, one could
easily improve the performance by parallelizing the execution
of B3F, e.g., by processing multiple combinations of paths in
parallel. However, B3F and DPBF are exact algorithms for
NP-hard problems and they have exponential run time in the
worst case. They may not be the best choice for applications
where KGs are extremely large and run time rather than an-
swer quality is the main concern. For such applications, one
may consider more scalable approximation algorithms [Shi et
al., 2021; Shi et al., 2020].

5.5 Effectiveness Results
Our research is focused on efficient algorithms for the gener-
alized QGSTP, rather than the effectiveness of its concrete im-

https://www.dbis.informatik.uni-goettingen.de/Mondial
http://swat.cse.lehigh.edu/projects/lubm/
https://wiki.dbpedia.org/
https://github.com/IBCNServices/pyRDF2Vec

(a) MND (b) L1 (c) L4 (d) D20K (e) D100K

Figure 2: Mean cohesiveness ratio and run time of B3F (α = 0.3) under different values of g.

(a) MND (b) L1 (c) L4 (d) D20K (e) D100K

Figure 3: Mean cohesiveness ratio and run time of B3F (α = 0.7) under different values of g.

plementation in KG exploration which has been empirically
demonstrated by case or user studies [Cheng et al., 2017b;
Bryson et al., 2020]. Here we mainly aimed to extend such
qualitative studies by quantitatively comparing the cohesive-
ness of our quadratic GSTs with standard GSTs.

Metric. For each query we measured cohesiveness ratio:

cohesiveness ratio =
costsd(TB3F)

costsd(TDPBF)
, (18)

where costsd is defined in Eq. (4); TB3F and TDPBF represent
the answers computed by B3F and DPBF, respectively. The
mean cohesiveness ratios for a query are shown in Table 2.

Comparison with baseline. The ratios were in the range of
0.47–0.92, i.e., quadratic GSTs were 8%–53% more cohesive
than standard GSTs. It partially justified the advantage of
cohesive answers reported in [Cheng et al., 2017b]. Similar
to our efficiency experiment, in Fig. 2 and Fig. 3 we break
down the results by g, the number of keywords in a query.
We did not observe explicit correlation between them.

Case study. In Fig. 4 we show two answers computed by
different methods for a query on DBpedia in our experiments.
The GST computed by DPBF is more compact and contains
more salient entities such as France, but it is not a cohesive
subgraph. The four entities have different types and are se-
mantically distant from each other. They do not constitute a
meaningful answer. By comparison, the quadratic GST com-
puted by B3F is a cohesive subgraph where the five entities
have the same type and are semantically close to each other. It
meaningfully describes relations between military conflicts.

6 Conclusion
QGSTP has been formulated for improving the cohesiveness
of answers for KG exploration. This generalized model of-

(a) A GST computed by DPBF.

(b) A quadratic GST computed by B3F.

Figure 4: Two answers computed by different methods for the query
“France, World War II, Normandy” on DBpedia.

fers the flexibility to measure weights, semantic distances,
and tune their combination. To solve QGSTP we proposed
B3F. Compared with exact algorithms for computing standard
GSTs, our exact algorithm for QGSTP computed more cohe-
sive answers in comparable run time. It showed promising
performance on medium-sized KGs which have supported
many real-life applications. It can also be used as a baseline
for evaluating approximation algorithms for QGSTP.

Acknowledgments
This work was supported in part by the National Key R&D
Program of China (2018YFB1005100), in part by the NSFC
(62072224), and in part by the Fundamental Research Funds
for the Central Universities (0202-14380084).

References
[Bryson et al., 2020] Spencer Bryson, Heidar Davoudi,

Lukasz Golab, Mehdi Kargar, Yuliya Lytvyn, Piotr
Mierzejewski, Jaroslaw Szlichta, and Morteza Zihayat.
Robust keyword search in large attributed graphs. Inf. Retr.
J., 23(5):502–524, 2020.

[Cheng and Kharlamov, 2017] Gong Cheng and Evgeny
Kharlamov. Towards a semantic keyword search over in-
dustrial knowledge graphs (extended abstract). In IEEE
BigData 2017, pages 1698–1700, 2017.

[Cheng et al., 2016] Gong Cheng, Cheng Jin, and Yuzhong
Qu. HIEDS: A generic and efficient approach to hierarchi-
cal dataset summarization. In IJCAI 2016, pages 3705–
3711, 2016.

[Cheng et al., 2017a] Gong Cheng, Cheng Jin, Wentao Ding,
Danyun Xu, and Yuzhong Qu. Generating illustrative snip-
pets for open data on the web. In WSDM 2017, pages 151–
159, 2017.

[Cheng et al., 2017b] Gong Cheng, Fei Shao, and Yuzhong
Qu. An empirical evaluation of techniques for ranking
semantic associations. IEEE Trans. Knowl. Data Eng.,
29(11):2388–2401, 2017.

[Cheng et al., 2020] Gong Cheng, Shuxin Li, Ke Zhang, and
Chengkai Li. Generating compact and relaxable answers
to keyword queries over knowledge graphs. In ISWC 2020,
Part I, pages 110–127, 2020.

[Cheng, 2020] Gong Cheng. Relationship search over
knowledge graphs. ACM SIGWEB Newsl., 2020(Sum-
mer):3, 2020.

[Coffman and Weaver, 2014] Joel Coffman and Alfred C.
Weaver. An empirical performance evaluation of relational
keyword search techniques. IEEE Trans. Knowl. Data
Eng., 26(1):30–42, 2014.

[Dass et al., 2015] Ananya Dass, Aggeliki Dimitriou, Cem
Aksoy, and Dimitri Theodoratos. Incorporating cohesive-
ness into keyword search on linked data. In WISE 2015,
Part II, pages 47–62, 2015.

[Ding et al., 2007] Bolin Ding, Jeffrey Xu Yu, Shan Wang,
Lu Qin, Xiao Zhang, and Xuemin Lin. Finding top-k min-
cost connected trees in databases. In ICDE 2007, pages
836–845, 2007.

[Gu et al., 2019] Yu Gu, Tianshuo Zhou, Gong Cheng,
Ziyang Li, Jeff Z. Pan, and Yuzhong Qu. Relevance search
over schema-rich knowledge graphs. In WSDM 2019,
pages 114–122, 2019.

[Hasibi et al., 2017] Faegheh Hasibi, Fedor Nikolaev,
Chenyan Xiong, Krisztian Balog, Svein Erik Bratsberg,
Alexander Kotov, and Jamie Callan. DBpedia-Entity v2:
A test collection for entity search. In SIGIR 2017, pages
1265–1268, 2017.

[Ihler, 1991] Edmund Ihler. The complexity of approximat-
ing the class Steiner tree problem. In WG 1991, pages
85–96, 1991.

[Kacholia et al., 2005] Varun Kacholia, Shashank Pandit,
Soumen Chakrabarti, S. Sudarshan, Rushi Desai, and
Hrishikesh Karambelkar. Bidirectional expansion for key-
word search on graph databases. In VLDB 2005, pages
505–516, 2005.

[Kargar and An, 2011] Mehdi Kargar and Aijun An. Key-
word search in graphs: Finding r-cliques. PVLDB,
4(10):681–692, 2011.

[Klein and Ravi, 1995] Philip N. Klein and R. Ravi. A nearly
best-possible approximation algorithm for node-weighted
Steiner trees. J. Algorithms, 19(1):104–115, 1995.

[Le et al., 2014] Wangchao Le, Feifei Li, Anastasios Ke-
mentsietsidis, and Songyun Duan. Scalable keyword
search on large RDF data. IEEE Trans. Knowl. Data Eng.,
26(11):2774–2788, 2014.

[Li et al., 2016] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and
Rui Mao. Efficient and progressive group Steiner tree
search. In SIGMOD 2016, pages 91–106, 2016.

[Li et al., 2020] Shuxin Li, Gong Cheng, and Chengkai Li.
Relaxing relationship queries on graph data. J. Web Se-
mant., 61-62:100557, 2020.

[Lissandrini et al., 2020] Matteo Lissandrini, Torben Bach
Pedersen, Katja Hose, and Davide Mottin. Knowledge
graph exploration: where are we and where are we going?
ACM SIGWEB Newsl., 2020(Summer):4, 2020.

[Pound et al., 2012] Jeffrey Pound, Alexander K. Hudek,
Ihab F. Ilyas, and Grant E. Weddell. Interpreting keyword
queries over web knowledge bases. In CIKM 2012, pages
305–314, 2012.

[Shekarpour et al., 2013] Saeedeh Shekarpour, Axel-
Cyrille Ngonga Ngomo, and Sören Auer. Question
answering on interlinked data. In WWW 2013, pages
1145–1156, 2013.

[Shi et al., 2020] Yuxuan Shi, Gong Cheng, and Evgeny
Kharlamov. Keyword search over knowledge graphs via
static and dynamic hub labelings. In WWW 2020, pages
235–245, 2020.

[Shi et al., 2021] Yuxuan Shi, Gong Cheng, Trung-Kien
Tran, Evgeny Kharlamov, and Yulin Shen. Efficient com-
putation of semantically cohesive subgraphs for keyword-
based knowledge graph exploration. In WWW 2021, 2021.

[Sun et al., 2020] Yawei Sun, Lingling Zhang, Gong Cheng,
and Yuzhong Qu. SPARQA: skeleton-based semantic
parsing for complex questions over knowledge bases. In
AAAI-IAAI-EAAI 2020, pages 8952–8959, 2020.

[Tran et al., 2009] Thanh Tran, Haofen Wang, Sebastian
Rudolph, and Philipp Cimiano. Top-k exploration of query
candidates for efficient keyword search on graph-shaped
(RDF) data. In ICDE 2009, pages 405–416, 2009.

[Yang et al., 2019] Yueji Yang, Divyakant Agrawal, H. V. Ja-
gadish, Anthony K. H. Tung, and Shuang Wu. An efficient
parallel keyword search engine on knowledge graphs. In
ICDE 2019, pages 338–349, 2019.

[Zhou et al., 2020] Tianshuo Zhou, Ziyang Li, Gong Cheng,
Jun Wang, and Yuang Wei. GREASE: A generative model
for relevance search over knowledge graphs. In WSDM
2020, pages 780–788, 2020.

[Zhu et al., 2018] Yuanyuan Zhu, Qian Zhang, Lu Qin, Lijun
Chang, and Jeffrey Xu Yu. Querying cohesive subgraphs
by keywords. In ICDE 2018, pages 1324–1327, 2018.

	Introduction
	Related Work
	GST-Based Exploration
	Cohesiveness Computation
	Query Interpretation

	Problem
	Preliminaries
	Problem Formulation
	Problem Complexity

	Approach
	Basic Idea
	Algorithm B3F
	Algorithm Analysis
	Lower Bound Estimation
	Lower Bound Estimation for costwt(T)
	Lower Bound Estimation for costsd(T)

	Experiments
	Datasets
	Cost Function and Parameters
	Baseline
	Efficiency Results
	Effectiveness Results

	Conclusion

