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Abstract. The large volume of web content needs to be annotated by ontologies 
(called Semantic Annotation), and our empirical study shows that strong 
dependencies exist across different types of information (it means that 
identification of one kind of information can be used for identifying the other 
kind of information). Conditional Random Fields (CRFs) are the state-of-the-art 
approaches for modeling the dependencies to do better annotation. However, as 
information on a Web page is not necessarily linearly laid-out, the previous 
linear-chain CRFs have their limitations in semantic annotation. This paper is 
concerned with semantic annotation on hierarchically dependent data (hierarch-
ical semantic annotation). We propose a Tree-structured Conditional Random 
Field (TCRF) model to better incorporate dependencies across the hierarchic-
ally laid-out information. Methods for performing the tasks of model-parameter 
estimation and annotation in TCRFs have been proposed. Experimental results 
indicate that the proposed TCRFs for hierarchical semantic annotation can 
significantly outperform the existing linear-chain CRF model. 

1. Introduction 

Semantic web requires annotating existing web content according to particular 
ontologies, which define the meaning of the words or concepts in the content [1].  

In recent years, automatic semantic annotation has received much attention in the 
research community. Many prototype systems have been developed using information 
extraction methods. The methods usually convert a document into an ‘object’ 
sequence and then identify a sub-sequence of the objects that we want to annotate (i.e. 
targeted instance). (Here, the object can be either natural language units like token 
and text line, or structured units indicated by HTML tags like “<table>” and 
“<image>”). The methods make use of the contexts information that is previous to 
and next to the target instances for the identification task.  

Empirical study shows that strong dependencies exist across different types of 
targeted instances. The type of dependencies varies in different kinds of documents 

                                                           
* Supported by the National Natural Science Foundation of China under Grant No. 90604025 



and different applications, for instance, in Part-Of-Speech (POS) tagging from NLP, 
the dependencies between POS labels can be linear-chain [20]; while in object 
extraction from web pages, the dependencies can be two-dimensional [26]. 

Conditional Random Fields (CRFs) are the state-of-the-art approaches in 
information extraction taking advantage of the dependencies to do better annotation, 
compared with Hidden Markov Model (HMMs) [8] and Maximum Entropy Markov 
Model (MEMMs) [17]. However, the previous linear-chain CRFs only model the 
linear-dependencies in a sequence of information, and is not able to model 
hierarchical dependencies [14] [26].  

In this paper, we study the problem of hierarchical semantic annotation. In 
hierarchical semantic annotation, targeted instances on a web page can have 
hierarchical dependencies with each other, for example, an instance may have a 
dependency with another instance in the upper level (i.e. child-parent dependency), 
have a dependency with one in the lower level (i.e. parent-child dependency), or have 
a dependency with one in the same level (i.e. sibling dependency).  

To better incorporate dependencies across hierarchically laid-out information, a 
Tree-structured Conditional Random Field (TCRF) model has been proposed in this 
paper. We present the graphical structure of the TCRF model as a tree (see Figure 3) 
and reformulate the conditional distribution by defining three kinds of edge features. 
As the tree structure can be cyclable, exact inference in TCRFs is expensive. We 
propose to use the Tree Reparameterization algorithm to compute the approximate 
marginal probabilities for edges and vertices. Experimental results indicate that the 
proposed TCRF models perform significantly better than the baseline methods for 
hierarchical semantic annotation.  

The rest of the paper is organized as follows. In Section 2, we introduce related 
work. In Section 3, we formalize the problem of hierarchical semantic annotation. In 
Section 4, we describe our approach to the problem. Section 5 gives our experimental 
results. We make some concluding remarks in Section 6. 

2. Related Work 

Semantic annotation is an important area in semantic web. Many research efforts have 
been made so far. However, much of the previous work views web page as an ‘object’ 
sequence and focuses on annotating web page by using existing information 
extraction techniques. To the best of our knowledge, no previous work has been done 
on semantic annotation of hierarchically laid-out information. 

1. Semantic Annotation using Rule Induction 
Many semantic annotation systems employ rule induction to automate the annotation 
process (also called as ‘wrapper’ induction, see [13]).  

For example, Ciravegna et al propose a rule learning algorithm, called LP2, and 
have implemented an automatic annotation module: Amilcare [4]. The module can 
learn annotation rules from the training data. Amilcare has been used in several 
annotation systems, for instance, S-CREAM [12]. See also [18] [22]. 

The rule induction based method can achieve good results on the template based 
web pages. However, it cannot utilize dependencies across targeted instances. 



2. Semantic Annotation as Classification 
The method views semantic annotation as a problem of classification, and automates 
the process by employing statistical learning approaches. It defines features for 
candidate instances and learns a classifier that can detect the targeted instance from 
the candidate ones. 

For example, SCORE Enhancement Engine (SEE) supports web page annotation 
by using classification model [11]. It first classifies the web page into a predefined 
taxonomy; then identifies name entities in the classified web pages; finally recognizes 
the relationships between the entities via analysis of the web content. 

The classification based method can obtain good results on many annotation tasks. 
However, it cannot also use the dependencies across different targeted instances. 

3. Semantic Annotation as Sequential Labeling 
Different from the rule induction and the classification methods, sequential labeling 
enables describing dependencies between targeted instances. The dependencies can be 
utilized to improve the accuracy of the annotation. 

For instance, Reeve et al propose to utilize Hidden Markov Model (HMM) in 
semantic annotation [19]. As a generative model, HMM needs enumerate all possible 
observation sequences, and thus requires the independence assumption to ease the 
computation. Despite of its usefulness, limited research has been done using the 
sequential labeling method in semantic annotation. 

4. Information Extraction Methods 
Many information extraction methods have been proposed. Hidden Markov Model 
(HMM) [8], Maximum Entropy Markov Model (MEMM) [17], Conditional Random 
Field (CRF) [14], Support Vector Machines (SVM) [6], and Voted Perceptron [5] are 
widely used information extraction models. 

Some of the methods only model the distribution of contexts of target instances 
and do not model dependencies between the instances, for example, SVM and Voted 
Perceptron. Some other methods can model the linear-chain dependencies, for 
example, HMM, MEMM, and CRF.  

Recently, several research efforts have been also made for modeling the non-linear 
dependencies. For instance, Sutton et al propose Dynamic Conditional Random Fields 
(DCRFs) [21]. As a particular case, a factorial CRF (FCRF) was used to jointly solve 
two NLP tasks (noun phrase chunking and Part-Of-Speech tagging) on the same 
observation sequence. Zhu et al propose 2D Conditional Random Fields (2D CRFs) 
[26]. 2D CRFs is also a particular case of CRFs. It is aimed at extracting object 
information from two-dimensionally laid-out web pages. See also [3]. 

3. Hierarchical Semantic Annotation 

For semantic annotation, we target at detecting targeted instances from a document 
and annotating each of the instances by concepts/attributes of a particular ontology. 

Information on a web page can be laid-out differently, for example, product 
information on a web page is typically two-dimensionally laid-out [26]; and in 
Natural Language Processing, word’s POS (Part-Of-Speech) can be organized as a 



sequence, and thus viewed as linearly laid-out [20]. In this paper, we concentrate on 
semantic annotation on hierarchically laid-out information that we name as 
hierarchical semantic annotation. In hierarchical semantic annotation, information is 
laid-out hierarchically. An example is shown in Figure 1. 

3. Company Directorate Info
      Company directorate secretary: Haokui Zhou
      Representative of directorate: He Zhang
      Address: No. 583-14, Road Linling, Shanghai, China
      Zipcode: 200030
      Email: ajcoob@mail2.online.sh.cn
      Phone: 021-64396600
      Fax: 021-64392118
4. Company Registration Info
      Company registration address: No. 838, Road Zhang Yang, Shanghai, China
      Zipcode: 200122
      Company office address: No. 583-14, Road Linling, Shanghai, China
      Zipcode: 200030
      Email: ajcorp@online.sh.cn
      Phone: 021-64396654

dependency

dependency

 
Fig 1. Example of Hierarchical laid-out information  

In Figure 1, there are two emails. One is the email of the company directorate 
secretary and the other is the email of the company registration office. Previous 
linear-chain models such as linear-chain CRFs view the text as a token-sequence (or 
text-line sequence) and assign a label to each token in the sequence by using 
neighborhood contexts (i.e. information previous to and next to the targeted instance).  

However, the neighborhood contexts of the two emails are the same with each 
other in the linear-chain token-sequence. The neighborhood contexts include tokens 
previous to and next to the emails. Tokens previous to the two emails are both 
“Email: ” and tokens next to them are also identical “<return>Phone:”. It is inevitable 
that the linear-chain CRF models will fail to distinguish them from each other.  

By further investigation, we found that the information is hierarchically laid-out: 
the two emails are respectively located in two sections and each section has a heading, 
i.e. “3. Company directorate Info” and “4. Company Registration Info”. The two 
headings can be used to distinguish the two emails from each other. We call it as 
hierarchically laid-out information when existing hierarchical dependencies across 
information and call the task of semantic annotation on hierarchically laid-out 
information as hierarchical semantic annotation. In hierarchical semantic annotation, 
we target at improving the accuracy of semantic annotation by incorporating 
hierarchical dependencies. For instance, in Figure 1, we can use the upper level 
information “3. Company directorate Info” to help identify the email 
“ajcoob@mail2.online.sh.cn”.  

4. Tree-structured Conditional Random Fields 

In this section, we first introduce the basic concepts of Conditional Random Fields 
(CRFs) and introduce the linear-chain CRFs, and then we explain a Tree-structured 
CRF model for hierarchically laid-out information. Finally we discuss how to perform 
parameter estimation and annotation in TCRFs. 



4.1 Linear-chain CRFs 

Conditional Random Fields are undirected graphical models [14]. As defined before, 
X is a random variable over data sequences to be labeled, and Y is a random variable 
over corresponding label sequences. All components Yi of Y are assumed to range 
over a finite label alphabet Y. CRFs construct a conditional model p(Y|X) with a given 
set of features from paired observation and label sequences. 

CRF Definition. Let G = (V, E) be a graph such that Y=(Yv)v∈V, so that Y is indexed 
by the vertices of G. Then (X, Y) is a conditional random field in case, when 
conditioned on X, the random variable Yv obey the Markov property with respect to 
the graph: p(Yv|X, Yw, w≠v) = p(Yv|X, Yw, w∽v), where w∽v means that w and v are 
neighbors in G. 

Thus, a CRF is a random field globally conditioned on the observation X. Linear-
chain CRFs were first introduced by Lafferty et al [14]. The graphical structure of 
linear-chain CRFs is shown in Figure 2. 

By the fundamental theorem of random fields [10], the conditional distribution of 
the labels y given the observations data x has the form 
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where x is a data sequence, y is a label sequence, and y|e and y|v are the set of 
components of y associated with edge e and vertex v in the linear chain respectively; tj 
and sk are feature functions; parameters λj and μk correspond to the feature functions tj 
and sk respectively, and are to be estimated from the training data; Z(x) is the 
normalization factor, also known as partition function. 

4.2 Tree-structured Conditional Random Fields (TCRFs) 

Linear-chain CRFs cannot model dependencies across hierarchically laid-out 
information. This paper proposes a Tree-structured Conditional Random Field 
(TCRF) model which is also a particular case of CRFs. The graphical structure of 
TCRFs is a tree (see Figure 3).  

From Figure 3, we see that y4 is the parent vertex of y2 and yn-1 (for simplifying 
description, hereafter we use parent-vertex to represent the upper-level vertex and use 
child-vertex to represent the lower-level vertex of the current vertex). TCRFs can 
model the parent-child dependencies, e.g. y4-y2 and y4-yn-1. Furthermore, y2 and yn-1 are 
in the same level, which are represented as a sibling dependency in TCRFs.  

Here we also use X to denote the random variable over observations, and Y to 
denote the random variable over the corresponding labels. Yi is a component of Y at 
the vertex i. Same as the linear-chain CRFs, we consider one vertex or two vertices as 
a clique in TCRFs. TCRFs can also be viewed as a finite-state model. Each variable Yi 
has a finite set of state values and we assume the one-to-one mapping between states 
and labels. And thus dependencies across components Yi can be viewed as transitions 
between states. 
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Fig 2. The Graphical structure of Linear-
chain CRFs  Fig 3. The Graphical structure of TCRFs 

Let (yp, yc) be the dependency between a parent- and a child-vertices, (yc, yp) be the 
dependency between a child- and a parent-vertices, and (ys, ys) be the dependency 
between sibling vertices. A TCRF model, as a particular case of CRFs, has the form 
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where Epc denotes the set of (yp, yc), Ecp denotes the set of (yc, yp), and Ess denotes the 
set of (ys, ys). tj and sk are feature functions. 

TCRFs have the same form as that of linear-chain CRFs except that in TCRFs the 
edges include parent-child edges, child-parent edges, and sibling-vertices edges while 
in CRFs the edges mean the transitions from the previous-state to the current-state. 

In semantic annotation, the observation x in TCRFs can correspond to a document 
(as the example shown in Figure 1). The label y thus corresponds to the annotation 
result for the document. Specifically, xi is a token in the document, and label yi is the 
annotation result (called label) to the token, where the label corresponds to either one 
of the concept/attribute from a particular ontology or none.  

4.3 Parameter Estimation 

The parameter estimation problem is to determine the parameters Θ={λ1, λ2,…; μk, 
μk+1,…} from training data D={(x(i), y(i))} with empirical distribution ( , )p x y . More 
specifically, we optimize the log-likelihood objective function with respect to a 
conditional model p(y|x, Θ): 

( ) ( ) ( ) ( )( , ) log ( | )i i i i

i

L p x y p y xΘ Θ= ∑  (3) 

In the following, to facilitate the description, we use f to denote both the edge 
feature function t and the vertex feature function s; use c to denote both edge e and 
vertex v; and use λ to denote the two kinds of parameters λ and μ. Thus, the derivative 
of the object function with respect to a parameter λj associated with clique index c is: 
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where yi
(c) is the label assignment to clique c in x(i), and y(c) ranges over label 

assignments to the clique c. We see that it is the factors p(y(c)|x(i)) that require us to 
compute the marginal probabilities. The factors p(y(c)|x(i)) can be again decomposed 
into four types of factors: p(yp, yc|x(i)), p(yc, yp|x(i)), p(ys, ys|x(i)), and p(yi|x(i)), as we 
have three types of dependencies (described as edges here) and one type of vertex. 
Moreover, we also need to compute the global conditional probability p(y(i)|x(i)).  

The marginal probabilities can be done using many inference algorithms for 
undirected model (for example, Belief Propagation [25]). However, as the graphical 
structure in TCRFs can be a tree with cycles, exact inference can be expensive in 
TCRFs. We propose utilizing the Tree Reparameterization (TRP) algorithm [24] to 
compute the approximate probabilities of the factors. TRP is based on the fact that 
any exact algorithm for optimal inference on trees actually computes marginal 
distributions for pairs of neighboring vertices. For an undirected graphical model over 
variables x, this results in an alternative parameterization of the distribution as: 
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where ( )s sxϕ  is the potential function on single-vertex xs and ( , )st s tx xϕ  is the 
potential function on edge (xs, xt); and Z is the normalization factor. 

TRP consists of two main steps: Initialization and Updates. The updates are a 
sequence of Tn→Tn+1 on the undirected graph with edge set E, where T represents the 
set of marginal probabilities maintained by TRP including single-vertex marginals 
Tu

n+1(xu) and pairwise joint distribution Tuv
n+1(xu, xv); and n denotes the iteration 

number. The TRP algorithm is summarized in Figure 4. (The algorithm is adopted 
from [21]). 
1. Initialization: for every node u and every pair of nodes (u, v), initialize T0 by 

0
u uT κϕ=  and 0

uv uvT κϕ= , with κ being a normalization factor. 

1. TRP Updates: for i=1, 2, …, do: 
 Select some spanning tree Γi∈R with edge set Ei, where R={Γi} is a set of 

spanning trees. 
 Use any exact algorithm, such as belief propagation, to compute exact 

marginals pi(x) on Γi. For all (u, v)∈Ei, set 

1( ) ( )i i
u u uT x p x+ = , 1 ( , )

( , )
( ) ( )

i
i u v

uv u v i i
u v

p x x
T x x

p x p x
+ =  

 Set Tuv
i+1 = Tuv

i for all (u, v)∈E/Ei (i.e. all the edges not included in the 
spanning treeΓi). 

 Stop if termination conditions are met. 

Fig 4. The TRP Algorithm 

So far, the termination conditions are defined as: if the maximal change of the 
marginals is below a predefined threshold or the update times exceed a predefined 
number (defined as 1000 in our experiments), then stop the updates. When selecting 
spanning trees R={Γi}, the only constraint is that the trees in R cover the edge set of 



the original undirected graph U. In practice, we select trees randomly, but we select 
first edges that have never been used in any previous iteration. 

Finally, to reduce overfitting, we define a spherical Gaussian weight prior p(Θ) 
over parameters, and penalize the log-likelihood object function as: 

2
( ) ( ) ( ) ( )

2( , ) log ( | )
2

i i i i

i
L p x y p y x const

λ
σΘ Θ= − +∑  

(6) 

with gradient 

( ) ( ) ( )
( ) 2( , , ) log ( ) ji i i

j c
i cj

L
f c y x Z x

λδ
δλ σ

Θ ⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ ∑  (7) 

where const is a constant. 
The function LΘ is convex, and can be optimized by any number of techniques, as 

in other maximum-entropy models [14] [2]. In the result below, we used gradient-
based L-BFGS [15], which has previously outperformed other optimization 
algorithms for linear-chain CRFs [20]. 

4.4 Annotation 

Annotation (also called as ‘labeling’) is the task to find labels y* that best describe the 
observations x, that is, y*=maxyp(y|x). Dynamic programming algorithms are the most 
popular methods for this problem. However, it is difficult to directly adopt it for 
annotation in TCRFs. Two modes exist in the annotation of TCRFs: known structure 
and unknown structure. In the first mode, the hierarchical structure is known, for 
example, one can use the document logic structure to infer the hierarchical structure. 
Hence, we can use the TRP algorithm to compute the maximal value of p(y|x). In the 
second mode, the hierarchical structure is unknown. We used a heuristics based 
method and performed the annotation for a given observation xi as follows: (1) use 
vertex features to preliminary identify the possible labels for each vertex; (2) 
incorporate the edge features to compute all possible label results (that is, to 
enumerate all possible hierarchical structures) for an observations xi; (3) use equation 
(6) to compute the log-likelihood for each structure and choose one as the annotation 
result y* that has the largest log-likelihood. (The annotation in the second mode can 
be expensive, the issue and some of the related problems are currently researching, 
and will be reported elsewhere.) 

4.5 Using TCRFs for Semantic Annotation 

Currently, there is still not sufficient Semantic Web content available. Existing web 
content should be upgraded to Semantic Web content. Our proposed TCRFs can be 
used to create an annotation service, especially for the hierarchically laid-out data. 
The output of the service will be generated according to the language pyramid of 
Semantic Web, so that agents can automatically handle the semantic information.  



TCRFs can be used in two ways. One is to extract the web content (that we are 
interested) from its source, annotate it by an ontology, and store it in knowledge base. 
The other is to add the annotation results into the web page. 

5. Experimental Results 

5.1 Data Sets and Evaluation Measures 

1. Data Sets 
We carried out the experiments on two data sets, one synthetic and one real. For the 
real data set, we collected company annual reports from Shanghai Stock Exchange 
(http://www.sse.com.cn). We randomly chose in total 3,726 annual reports (in 
Chinese) from 1999 to 2004. To evaluate the effectiveness of our approach, we 
extracted the Section “Introduction to Company” from each annual report for 
experiments. For Chinese tokenization, we used a toolkit proposed in [16]. 

Company

Basic-Information

Company_Chinese_Name

Company_English_Name

Legal_Representative

Person Company_Secretary

Name

Registered_Address

Secretary_Email

Office_Address

Company_Email
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Newspaper

Accounting_Agency

has_name has_email

has_baic_info has_reg_addr

disseminate_info_for

has_email

has_Accounting_agency
locate_at

has_Chinese_name

has_English_name

legal_representative_of
has_company_secretary

 
Fig 5. Ontology of company annual report 

Figure 5 shows the ontological information (that is we need to annotate) defined 
for the annual report. In total, fourteen concepts were defined in the ontology and the 
annotation task is to find instances for the fourteen concepts. Most of the concepts 
have hierarchical dependencies. Human annotators conducted annotation on all 
annual reports.  

We also constructed a synthetic data set. The data set contains 62 company annual 
reports chosen from the real data set. In this data set, four concepts are defined only: 
“Company_Secretary”, “Secretary_Email”, “Registered_Address”, and 
“Company_Email”. Where the first two concepts and the last two concepts have the 
parent-child dependencies respectively and the concepts “Company_Secretary”, 
“Registered-_Address” have the sibling dependency. Every report in the data set 
exclusively has the four types of instances and the four instances are organized 
hierarchically. 

2. Features in Annotation Models 



Table 1 indicates the features used in the annotation models. 

Table 1. Features used in the annotation models 

Category Feature 
Edge Feature f(yp, yc), f(yc, yp), f(ys, ys) 

{wi}, {wp}, {wc}, {ws} Vertex Feature 
{wp, wi}, {wc, wi}, {ws, wi}

Given the j-th vertex in the observation xi, f(yp, yc), f(yc, yp), and f(ys, ys) represent 
whether the current vertex has a parent-child dependency with a parent vertex, 
whether it has a child-parent dependency with a child vertex, and whether it has a 
sibling dependency with a sibling vertex, respectively. For vertex features, each 
element in {wi} represents whether the current vertex contains the word wi. Similarly, 
each element in {wp}, {wc}, and {ws} represents whether the parent vertex of the 
current vertex contains word wp whether its child vertices contain wc, and whether its 
sibling vertices contain ws, respectively. {wp, wi} represents whether the current 
vertex contains word wi and its parent vertex contains word wp. To save time in some 
of our experiments, we omitted the vertex features that appear only once. 

3. Evaluation Measures 
In all the experiments of annotation, we conducted evaluations in terms of 

precision, recall, and F1-measure. By comparison of the previous work, we also give 
statistical significance estimates using Sign Test [9]. 

4. Baselines 
To evaluate our model’s effectiveness of incorporating hierarchical dependencies for 
semantic annotation, we choose linear-chain CRFs as the baseline models for their 
outstanding performance over other sequential models. The linear-chain CRF models 
are trained using the same features as those in table 1 (the only difference is that the 
linear-chain CRFs uses the linear edge features and the TCRFs uses the hierarchical 
edge features). 

We also compared the proposed method with the classification based annotation 
method, which is another popular annotation method. The classification based method 
treats a company annual report as a sequence of text lines, employs two classification 
models to respectively identify the start line and the end line of a target instance, and 
then view lines that between the start line and the end line as a target (see [7] and [23] 
for details). In the experiments, we use Support Vector Machines (SVMs) as the 
classification models. In the SVMs models, we use the same features as those in table 
1 (excluding the edge features). 

5.2 Experiments 

We evaluated the proposed method on the two data sets. We conducted the 
experiments in the following way. First, we converted each company annual report 
into a sequence of text lines; for the SVMs base method, we use the vertex features 
and train two SVM models for each concept; for the linear-chain CRFs, we use the 
vertex features and the linear edge features to train the models; for TCRFs, we use the 



vertex features and the hierarchical edge features to train the models. For training 
SVM models we use SVM-light, which is available at http://svmlight.joachims.org/. 
For training linear-chain CRF models, we use KEG_CRFs, which is available at 
http://keg.cs.tsinghua.edu.cn/persons/tj/. 

5.2.1 Experimental Results on the Synthetic Data Set 
Table 2 shows the five-fold cross-validation results on the synthetic data set. SVM, 
CRF, and TCRF respectively represent the SVMs based method, the linear-chain 
CRFs method, and the proposed TCRFs method. Prec., Rec., and F1 respectively 
represent the scores of precision, recall, and F1-measure. 

Table 2. Performance of semantic annotation on the synthetic data set (%) 

SVM CRF TCRF 
Annotation Task 

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 
Company_Secretary 99.26 88.74 93.71 100.0 100.0 100.0 100.0 100.0 100.0 

Secretary_Email 50.00 7.52 13.07 50.00 42.86 46.15 100.0 100.0 100.0 
Registered_Address 97.46 89.84 93.50 100.0 100.0 100.0 100.0 100.0 100.0 

Company_Email 0.00 0.00 0.00 46.15 50.00 48.00 100.0 100.0 100.0 
Average 61.68 46.53 50.07 89.15 89.15 89.15 100.0 100.0 100.0 

We see that for both “Company_Secretary” and “Registered_Address”, all of the 
three methods can achieve high accuracy of annotation. Compared with the SVMs 
based method, CRF and TCRF can obtain better results. We can also see that for 
“Secretary_Email” and “Company_Email”, the proposed method TCRF significantly 
outperforms the SVMs based method and the linear-chain CRFs based method. We 
conducted sign tests on the results. The p values are much smaller than 0.01, 
indicating that the improvements are statistically significant. 

5.2.2 Experimental Results on the Real Data Set 
Table 3 shows the five-fold cross-validation results on the real data set. In the table, 
we also use SVM, CRF, and TCRF to respectively represent the SVMs based method, 
the linear-chain CRFs method, and the proposed TCRFs method; and use Prec., Rec., 
and F1 to respectively represent the scores of precision, recall, and F1-measure. 

From the results we see that TCRF can achieve the best performance 89.87% in 
terms of F1-measure (outperforming CRF+7.67% and SVM+14.10% on average). In 
terms of both precision and recall, CRF can outperform SVM. TCRF again 
outperform CRF +3.14% in terms of precision and +12.08% in terms of recall. We 
conducted sign tests on the results. The p values are much smaller than 0.01, 
indicating that the improvements are statistically significant. 

5.2.3 Discussions 
(1) Effectiveness of TCRF.  In the synthetic data set, the data are hierarchically 
organized. TCRF can indeed improve the annotation performance. On annotation of  
“Secretary_Email” and “Company_Email”, the SVMs based method only uses the 



neighborhood contexts and thus cannot disambiguate them from each other (only 
13.07% and 0.00% in terms of F1-measure). The linear-chain CRFs based method can 
improve the annotation result by making use of linear dependencies (46.15% and 
48.00% respectively). However, as the linear-chain CRFs cannot model hierarchical 
dependencies, the improvements are limited. The proposed TCRFs based method can 
model the hierarchical dependencies, and obtain the best performance (100.00% and 
100.00% respectively). This indicates that the proposed Tree-structured Conditional 
Random Fields are effective for the problem of hierarchical semantic annotation. 

Table 3. Performance of semantic annotation on the real data set (%) 

SVM CRF TCRF 
Annotation Task 

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 
Company_Chinese_Name 88.82 89.40 89.11 82.10 80.69 81.37 84.34 92.72 88.33 
Company_English_Name 90.51 95.33 92.86 71.68 80.14 75.66 89.26 88.67 88.96 

Legal_Representative 94.84 97.35 96.08 92.86 96.60 94.66 94.84 97.35 96.08 
Company_Secretary 99.29 93.33 96.22 91.65 96.99 94.23 77.96 96.67 86.31 

Secretary_Email 57.14 8.89 15.39 69.94 56.53 62.34 73.86 97.01 83.87 
Registered_Address 98.66 96.71 97.68 94.75 87.20 90.80 84.05 90.13 86.98 

Office_Address 70.41 97.54 81.78 77.41 87.06 81.94 86.93 89.86 88.37 
Company_Email 0.00 0.00 0.00 84.57 85.64 85.09 95.20 90.84 92.97 

Newspaper 100.0 99.34 99.67 94.51 91.97 93.21 98.69 100.0 99.34 
Accounting_Agency 83.15 95.63 88.95 73.81 56.77 62.73 79.57 97.19 87.50 

Average 78.28 77.35 75.77 83.33 81.96 82.20 86.47 94.04 89.87 
(2) Improvements over CRF. In the real data set, TCRF significantly outperforms 
the linear-chain CRF for the annotation of most concepts. For the concepts that have 
strong hierarchical dependencies, TCRF can achieve much better results than CRF, 
for example, on “Secretary_Email” and “Company_Email” TCRF outperforms CRF 
by +21.53% and +7.88%, respectively.  
(3) Improvements over SVM. In the real data set, TCRF outperforms SVM +8.19% 
in terms of precision and +16.69% in terms of recall. The SVMs based method suffers 
from the extremely bad results on the annotation of “Secretary_Email” and 
“Company_Email”. This is due to that the SVMs based method considers only 
neighborhood contexts. Besides the two concepts, TCRF also outperforms SVM on 
annotation of some other concepts, for example “Office_Address”. We need notice 
that in some cases, TCRF underperforms SVM. For example on 
“Company_Chinese_Name” and “Company_English_Name”, TCRF underperforms 
SVM by -0.78% and -2.9%, respectively. This is because instances of such concepts 
seem to be independent and do not have dependencies with instances of the other 
concepts. 
(4) Time complexity. We conducted analysis of time complexity of our approach. 
We tested the three methods on a computer with two 2.8G Dual-Core CPUs and three 



Gigabyte memory. In total, for training and annotating the fourteen concepts, the 
SVMs based method takes about 96 seconds and 30 seconds respectively, while the 
CRF method takes about 5 minutes 25 seconds and 5 seconds respectively. Our 
current implementation of the TCRF method used more time for training and 
annotation (about 50 minutes 40 seconds and 50 seconds respectively.) This indicates 
that the efficiency of TCRF still needs improvements.  
(5) Error analysis. We conducted error analysis on the results of our approach. 

There are mainly three types of errors. The first type of errors (about 34.85% of the 
errors) is that in some concepts, there are no hierarchical dependencies, for example 
“Company_Chinese_Name” and “Company_English_Name”. In such cases, the 
proposed TCRFs contrarily result in worse performance than the SVMs based method 
that does not consider dependencies. About 28.05% of the errors occur when there are 
extra email addresses in the text. The third type of errors was due to extra line breaks 
in the text, which mistakenly breaks the targeted instance into multiple lines. 

6. Conclusions 

In this paper, we investigated the problem of hierarchical semantic annotation. We 
proposed a Tree-structured Conditional Random Field (TCRF) model. This model 
provides a novel way of incorporating the dependencies across the hierarchical 
structure to improve the performance of hierarchical semantic annotation. Using an 
approximate algorithm, i.e. Tree Reparameterization (TRP), efficient parameter 
estimation and annotation can be performed. Experimental results on two data sets 
show that the proposed model significantly outperforms the linear-chain CRF models 
and the SVMs based models for annotating hierarchically laid-out data. We also 
found that the efficiency of the proposed TCRF model still needs improvements. 
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