
*Tree-structured Conditional Random Fields for
Semantic Annotation

Jie Tang1, Mingcai Hong1, Juanzi Li1, and Bangyong Liang2

1 Department of Computer Science, Tsinghua University
12#109, Tsinghua University, Beijing, 100084. China

j-tang02@mails.tsinghua.edu.cn, {hmc, ljz}@keg.cs.tsinghua.edu.cn
2 NEC Labs China

11th Floor, Innovation Plaza, Tsinghua Science Park, Beijing, 100084, China
liangbangyong@research.nec.com.cn

Abstract. The large volume of web content needs to be annotated by ontologies
(called Semantic Annotation), and our empirical study shows that strong
dependencies exist across different types of information (it means that
identification of one kind of information can be used for identifying the other
kind of information). Conditional Random Fields (CRFs) are the state-of-the-art
approaches for modeling the dependencies to do better annotation. However, as
information on a Web page is not necessarily linearly laid-out, the previous
linear-chain CRFs have their limitations in semantic annotation. This paper is
concerned with semantic annotation on hierarchically dependent data (hierarch-
ical semantic annotation). We propose a Tree-structured Conditional Random
Field (TCRF) model to better incorporate dependencies across the hierarchic-
ally laid-out information. Methods for performing the tasks of model-parameter
estimation and annotation in TCRFs have been proposed. Experimental results
indicate that the proposed TCRFs for hierarchical semantic annotation can
significantly outperform the existing linear-chain CRF model.

1. Introduction

Semantic web requires annotating existing web content according to particular
ontologies, which define the meaning of the words or concepts in the content [1].

In recent years, automatic semantic annotation has received much attention in the
research community. Many prototype systems have been developed using information
extraction methods. The methods usually convert a document into an ‘object’
sequence and then identify a sub-sequence of the objects that we want to annotate (i.e.
targeted instance). (Here, the object can be either natural language units like token
and text line, or structured units indicated by HTML tags like “<table>” and
“<image>”). The methods make use of the contexts information that is previous to
and next to the target instances for the identification task.

Empirical study shows that strong dependencies exist across different types of
targeted instances. The type of dependencies varies in different kinds of documents

* Supported by the National Natural Science Foundation of China under Grant No. 90604025

and different applications, for instance, in Part-Of-Speech (POS) tagging from NLP,
the dependencies between POS labels can be linear-chain [20]; while in object
extraction from web pages, the dependencies can be two-dimensional [26].

Conditional Random Fields (CRFs) are the state-of-the-art approaches in
information extraction taking advantage of the dependencies to do better annotation,
compared with Hidden Markov Model (HMMs) [8] and Maximum Entropy Markov
Model (MEMMs) [17]. However, the previous linear-chain CRFs only model the
linear-dependencies in a sequence of information, and is not able to model
hierarchical dependencies [14] [26].

In this paper, we study the problem of hierarchical semantic annotation. In
hierarchical semantic annotation, targeted instances on a web page can have
hierarchical dependencies with each other, for example, an instance may have a
dependency with another instance in the upper level (i.e. child-parent dependency),
have a dependency with one in the lower level (i.e. parent-child dependency), or have
a dependency with one in the same level (i.e. sibling dependency).

To better incorporate dependencies across hierarchically laid-out information, a
Tree-structured Conditional Random Field (TCRF) model has been proposed in this
paper. We present the graphical structure of the TCRF model as a tree (see Figure 3)
and reformulate the conditional distribution by defining three kinds of edge features.
As the tree structure can be cyclable, exact inference in TCRFs is expensive. We
propose to use the Tree Reparameterization algorithm to compute the approximate
marginal probabilities for edges and vertices. Experimental results indicate that the
proposed TCRF models perform significantly better than the baseline methods for
hierarchical semantic annotation.

The rest of the paper is organized as follows. In Section 2, we introduce related
work. In Section 3, we formalize the problem of hierarchical semantic annotation. In
Section 4, we describe our approach to the problem. Section 5 gives our experimental
results. We make some concluding remarks in Section 6.

2. Related Work

Semantic annotation is an important area in semantic web. Many research efforts have
been made so far. However, much of the previous work views web page as an ‘object’
sequence and focuses on annotating web page by using existing information
extraction techniques. To the best of our knowledge, no previous work has been done
on semantic annotation of hierarchically laid-out information.

1. Semantic Annotation using Rule Induction
Many semantic annotation systems employ rule induction to automate the annotation
process (also called as ‘wrapper’ induction, see [13]).

For example, Ciravegna et al propose a rule learning algorithm, called LP2, and
have implemented an automatic annotation module: Amilcare [4]. The module can
learn annotation rules from the training data. Amilcare has been used in several
annotation systems, for instance, S-CREAM [12]. See also [18] [22].

The rule induction based method can achieve good results on the template based
web pages. However, it cannot utilize dependencies across targeted instances.

2. Semantic Annotation as Classification
The method views semantic annotation as a problem of classification, and automates
the process by employing statistical learning approaches. It defines features for
candidate instances and learns a classifier that can detect the targeted instance from
the candidate ones.

For example, SCORE Enhancement Engine (SEE) supports web page annotation
by using classification model [11]. It first classifies the web page into a predefined
taxonomy; then identifies name entities in the classified web pages; finally recognizes
the relationships between the entities via analysis of the web content.

The classification based method can obtain good results on many annotation tasks.
However, it cannot also use the dependencies across different targeted instances.

3. Semantic Annotation as Sequential Labeling
Different from the rule induction and the classification methods, sequential labeling
enables describing dependencies between targeted instances. The dependencies can be
utilized to improve the accuracy of the annotation.

For instance, Reeve et al propose to utilize Hidden Markov Model (HMM) in
semantic annotation [19]. As a generative model, HMM needs enumerate all possible
observation sequences, and thus requires the independence assumption to ease the
computation. Despite of its usefulness, limited research has been done using the
sequential labeling method in semantic annotation.

4. Information Extraction Methods
Many information extraction methods have been proposed. Hidden Markov Model
(HMM) [8], Maximum Entropy Markov Model (MEMM) [17], Conditional Random
Field (CRF) [14], Support Vector Machines (SVM) [6], and Voted Perceptron [5] are
widely used information extraction models.

Some of the methods only model the distribution of contexts of target instances
and do not model dependencies between the instances, for example, SVM and Voted
Perceptron. Some other methods can model the linear-chain dependencies, for
example, HMM, MEMM, and CRF.

Recently, several research efforts have been also made for modeling the non-linear
dependencies. For instance, Sutton et al propose Dynamic Conditional Random Fields
(DCRFs) [21]. As a particular case, a factorial CRF (FCRF) was used to jointly solve
two NLP tasks (noun phrase chunking and Part-Of-Speech tagging) on the same
observation sequence. Zhu et al propose 2D Conditional Random Fields (2D CRFs)
[26]. 2D CRFs is also a particular case of CRFs. It is aimed at extracting object
information from two-dimensionally laid-out web pages. See also [3].

3. Hierarchical Semantic Annotation

For semantic annotation, we target at detecting targeted instances from a document
and annotating each of the instances by concepts/attributes of a particular ontology.

Information on a web page can be laid-out differently, for example, product
information on a web page is typically two-dimensionally laid-out [26]; and in
Natural Language Processing, word’s POS (Part-Of-Speech) can be organized as a

sequence, and thus viewed as linearly laid-out [20]. In this paper, we concentrate on
semantic annotation on hierarchically laid-out information that we name as
hierarchical semantic annotation. In hierarchical semantic annotation, information is
laid-out hierarchically. An example is shown in Figure 1.

3. Company Directorate Info
 Company directorate secretary: Haokui Zhou
 Representative of directorate: He Zhang
 Address: No. 583-14, Road Linling, Shanghai, China
 Zipcode: 200030
 Email: ajcoob@mail2.online.sh.cn
 Phone: 021-64396600
 Fax: 021-64392118
4. Company Registration Info
 Company registration address: No. 838, Road Zhang Yang, Shanghai, China
 Zipcode: 200122
 Company office address: No. 583-14, Road Linling, Shanghai, China
 Zipcode: 200030
 Email: ajcorp@online.sh.cn
 Phone: 021-64396654

dependency

dependency

Fig 1. Example of Hierarchical laid-out information

In Figure 1, there are two emails. One is the email of the company directorate
secretary and the other is the email of the company registration office. Previous
linear-chain models such as linear-chain CRFs view the text as a token-sequence (or
text-line sequence) and assign a label to each token in the sequence by using
neighborhood contexts (i.e. information previous to and next to the targeted instance).

However, the neighborhood contexts of the two emails are the same with each
other in the linear-chain token-sequence. The neighborhood contexts include tokens
previous to and next to the emails. Tokens previous to the two emails are both
“Email: ” and tokens next to them are also identical “<return>Phone:”. It is inevitable
that the linear-chain CRF models will fail to distinguish them from each other.

By further investigation, we found that the information is hierarchically laid-out:
the two emails are respectively located in two sections and each section has a heading,
i.e. “3. Company directorate Info” and “4. Company Registration Info”. The two
headings can be used to distinguish the two emails from each other. We call it as
hierarchically laid-out information when existing hierarchical dependencies across
information and call the task of semantic annotation on hierarchically laid-out
information as hierarchical semantic annotation. In hierarchical semantic annotation,
we target at improving the accuracy of semantic annotation by incorporating
hierarchical dependencies. For instance, in Figure 1, we can use the upper level
information “3. Company directorate Info” to help identify the email
“ajcoob@mail2.online.sh.cn”.

4. Tree-structured Conditional Random Fields

In this section, we first introduce the basic concepts of Conditional Random Fields
(CRFs) and introduce the linear-chain CRFs, and then we explain a Tree-structured
CRF model for hierarchically laid-out information. Finally we discuss how to perform
parameter estimation and annotation in TCRFs.

4.1 Linear-chain CRFs

Conditional Random Fields are undirected graphical models [14]. As defined before,
X is a random variable over data sequences to be labeled, and Y is a random variable
over corresponding label sequences. All components Yi of Y are assumed to range
over a finite label alphabet Y. CRFs construct a conditional model p(Y|X) with a given
set of features from paired observation and label sequences.

CRF Definition. Let G = (V, E) be a graph such that Y=(Yv)v∈V, so that Y is indexed
by the vertices of G. Then (X, Y) is a conditional random field in case, when
conditioned on X, the random variable Yv obey the Markov property with respect to
the graph: p(Yv|X, Yw, w≠v) = p(Yv|X, Yw, w∽v), where w∽v means that w and v are
neighbors in G.

Thus, a CRF is a random field globally conditioned on the observation X. Linear-
chain CRFs were first introduced by Lafferty et al [14]. The graphical structure of
linear-chain CRFs is shown in Figure 2.

By the fundamental theorem of random fields [10], the conditional distribution of
the labels y given the observations data x has the form

, ,

1(|) exp (, | ,) (, | ,)
() j j e k k v

e E j v V k
p y x t e y x s v y x

Z x
λ μ

∈ ∈

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑ (1)

where x is a data sequence, y is a label sequence, and y|e and y|v are the set of
components of y associated with edge e and vertex v in the linear chain respectively; tj
and sk are feature functions; parameters λj and μk correspond to the feature functions tj
and sk respectively, and are to be estimated from the training data; Z(x) is the
normalization factor, also known as partition function.

4.2 Tree-structured Conditional Random Fields (TCRFs)

Linear-chain CRFs cannot model dependencies across hierarchically laid-out
information. This paper proposes a Tree-structured Conditional Random Field
(TCRF) model which is also a particular case of CRFs. The graphical structure of
TCRFs is a tree (see Figure 3).

From Figure 3, we see that y4 is the parent vertex of y2 and yn-1 (for simplifying
description, hereafter we use parent-vertex to represent the upper-level vertex and use
child-vertex to represent the lower-level vertex of the current vertex). TCRFs can
model the parent-child dependencies, e.g. y4-y2 and y4-yn-1. Furthermore, y2 and yn-1 are
in the same level, which are represented as a sibling dependency in TCRFs.

Here we also use X to denote the random variable over observations, and Y to
denote the random variable over the corresponding labels. Yi is a component of Y at
the vertex i. Same as the linear-chain CRFs, we consider one vertex or two vertices as
a clique in TCRFs. TCRFs can also be viewed as a finite-state model. Each variable Yi
has a finite set of state values and we assume the one-to-one mapping between states
and labels. And thus dependencies across components Yi can be viewed as transitions
between states.

yn-1y3 yn

xn-1

y2y1

x1 x2 x3 xn

…..

yn-1

y4

yn

xn-1

y2

y1

x1 x2 x4 xn

…..

x3

y3

xn-2

yn-2

Fig 2. The Graphical structure of Linear-
chain CRFs Fig 3. The Graphical structure of TCRFs

Let (yp, yc) be the dependency between a parent- and a child-vertices, (yc, yp) be the
dependency between a child- and a parent-vertices, and (ys, ys) be the dependency
between sibling vertices. A TCRF model, as a particular case of CRFs, has the form

,{ , , },

1(|) exp (, | ,) (, | ,)
() pc cp ss

j j e k k v
v V ke E E E j

p y x t e y x s v y x
Z x

λ μ
∈∈

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

(2)

where Epc denotes the set of (yp, yc), Ecp denotes the set of (yc, yp), and Ess denotes the
set of (ys, ys). tj and sk are feature functions.

TCRFs have the same form as that of linear-chain CRFs except that in TCRFs the
edges include parent-child edges, child-parent edges, and sibling-vertices edges while
in CRFs the edges mean the transitions from the previous-state to the current-state.

In semantic annotation, the observation x in TCRFs can correspond to a document
(as the example shown in Figure 1). The label y thus corresponds to the annotation
result for the document. Specifically, xi is a token in the document, and label yi is the
annotation result (called label) to the token, where the label corresponds to either one
of the concept/attribute from a particular ontology or none.

4.3 Parameter Estimation

The parameter estimation problem is to determine the parameters Θ={λ1, λ2,…; μk,
μk+1,…} from training data D={(x(i), y(i))} with empirical distribution (,)p x y . More
specifically, we optimize the log-likelihood objective function with respect to a
conditional model p(y|x, Θ):

() () () ()(,) log (|)i i i i

i

L p x y p y xΘ Θ= ∑ (3)

In the following, to facilitate the description, we use f to denote both the edge
feature function t and the vertex feature function s; use c to denote both edge e and
vertex v; and use λ to denote the two kinds of parameters λ and μ. Thus, the derivative
of the object function with respect to a parameter λj associated with clique index c is:

() () () ()
() () ()(, ,) (|) (, ,)i i i i

j c c j c
i c y cj

L
f c y x p y x f c y x

δ
δλ

Θ ⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∑ ∑∑ (4)

where yi
(c) is the label assignment to clique c in x(i), and y(c) ranges over label

assignments to the clique c. We see that it is the factors p(y(c)|x(i)) that require us to
compute the marginal probabilities. The factors p(y(c)|x(i)) can be again decomposed
into four types of factors: p(yp, yc|x(i)), p(yc, yp|x(i)), p(ys, ys|x(i)), and p(yi|x(i)), as we
have three types of dependencies (described as edges here) and one type of vertex.
Moreover, we also need to compute the global conditional probability p(y(i)|x(i)).

The marginal probabilities can be done using many inference algorithms for
undirected model (for example, Belief Propagation [25]). However, as the graphical
structure in TCRFs can be a tree with cycles, exact inference can be expensive in
TCRFs. We propose utilizing the Tree Reparameterization (TRP) algorithm [24] to
compute the approximate probabilities of the factors. TRP is based on the fact that
any exact algorithm for optimal inference on trees actually computes marginal
distributions for pairs of neighboring vertices. For an undirected graphical model over
variables x, this results in an alternative parameterization of the distribution as:

(,) (,)

(,)1() () (,) () ()
() ()
st s t

s s st s t s s
s V s t V s V s t V s s t t

p x x
p x x x x p x p x

Z p x p x
ϕ ϕ

∈ ∈ ∈ ∈

= ⇒ =∏ ∏ ∏ ∏ (5)

where ()s sxϕ is the potential function on single-vertex xs and (,)st s tx xϕ is the
potential function on edge (xs, xt); and Z is the normalization factor.

TRP consists of two main steps: Initialization and Updates. The updates are a
sequence of Tn→Tn+1 on the undirected graph with edge set E, where T represents the
set of marginal probabilities maintained by TRP including single-vertex marginals
Tu

n+1(xu) and pairwise joint distribution Tuv
n+1(xu, xv); and n denotes the iteration

number. The TRP algorithm is summarized in Figure 4. (The algorithm is adopted
from [21]).
1. Initialization: for every node u and every pair of nodes (u, v), initialize T0 by

0
u uT κϕ= and 0

uv uvT κϕ= , with κ being a normalization factor.

1. TRP Updates: for i=1, 2, …, do:
 Select some spanning tree Γi∈R with edge set Ei, where R={Γi} is a set of

spanning trees.
 Use any exact algorithm, such as belief propagation, to compute exact

marginals pi(x) on Γi. For all (u, v)∈Ei, set

1() ()i i
u u uT x p x+ = , 1 (,)

(,)
() ()

i
i u v

uv u v i i
u v

p x x
T x x

p x p x
+ =

 Set Tuv
i+1 = Tuv

i for all (u, v)∈E/Ei (i.e. all the edges not included in the
spanning treeΓi).

 Stop if termination conditions are met.

Fig 4. The TRP Algorithm

So far, the termination conditions are defined as: if the maximal change of the
marginals is below a predefined threshold or the update times exceed a predefined
number (defined as 1000 in our experiments), then stop the updates. When selecting
spanning trees R={Γi}, the only constraint is that the trees in R cover the edge set of

the original undirected graph U. In practice, we select trees randomly, but we select
first edges that have never been used in any previous iteration.

Finally, to reduce overfitting, we define a spherical Gaussian weight prior p(Θ)
over parameters, and penalize the log-likelihood object function as:

2
() () () ()

2(,) log (|)
2

i i i i

i
L p x y p y x const

λ
σΘ Θ= − +∑

(6)

with gradient

() () ()
() 2(, ,) log () ji i i

j c
i cj

L
f c y x Z x

λδ
δλ σ

Θ ⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ ∑ (7)

where const is a constant.
The function LΘ is convex, and can be optimized by any number of techniques, as

in other maximum-entropy models [14] [2]. In the result below, we used gradient-
based L-BFGS [15], which has previously outperformed other optimization
algorithms for linear-chain CRFs [20].

4.4 Annotation

Annotation (also called as ‘labeling’) is the task to find labels y* that best describe the
observations x, that is, y*=maxyp(y|x). Dynamic programming algorithms are the most
popular methods for this problem. However, it is difficult to directly adopt it for
annotation in TCRFs. Two modes exist in the annotation of TCRFs: known structure
and unknown structure. In the first mode, the hierarchical structure is known, for
example, one can use the document logic structure to infer the hierarchical structure.
Hence, we can use the TRP algorithm to compute the maximal value of p(y|x). In the
second mode, the hierarchical structure is unknown. We used a heuristics based
method and performed the annotation for a given observation xi as follows: (1) use
vertex features to preliminary identify the possible labels for each vertex; (2)
incorporate the edge features to compute all possible label results (that is, to
enumerate all possible hierarchical structures) for an observations xi; (3) use equation
(6) to compute the log-likelihood for each structure and choose one as the annotation
result y* that has the largest log-likelihood. (The annotation in the second mode can
be expensive, the issue and some of the related problems are currently researching,
and will be reported elsewhere.)

4.5 Using TCRFs for Semantic Annotation

Currently, there is still not sufficient Semantic Web content available. Existing web
content should be upgraded to Semantic Web content. Our proposed TCRFs can be
used to create an annotation service, especially for the hierarchically laid-out data.
The output of the service will be generated according to the language pyramid of
Semantic Web, so that agents can automatically handle the semantic information.

TCRFs can be used in two ways. One is to extract the web content (that we are
interested) from its source, annotate it by an ontology, and store it in knowledge base.
The other is to add the annotation results into the web page.

5. Experimental Results

5.1 Data Sets and Evaluation Measures

1. Data Sets
We carried out the experiments on two data sets, one synthetic and one real. For the
real data set, we collected company annual reports from Shanghai Stock Exchange
(http://www.sse.com.cn). We randomly chose in total 3,726 annual reports (in
Chinese) from 1999 to 2004. To evaluate the effectiveness of our approach, we
extracted the Section “Introduction to Company” from each annual report for
experiments. For Chinese tokenization, we used a toolkit proposed in [16].

Company

Basic-Information

Company_Chinese_Name

Company_English_Name

Legal_Representative

Person Company_Secretary

Name

Registered_Address

Secretary_Email

Office_Address

Company_Email

ConceptConceptual relation subClassOf

Newspaper

Accounting_Agency

has_name has_email

has_baic_info has_reg_addr

disseminate_info_for

has_email

has_Accounting_agency
locate_at

has_Chinese_name

has_English_name

legal_representative_of
has_company_secretary

Fig 5. Ontology of company annual report

Figure 5 shows the ontological information (that is we need to annotate) defined
for the annual report. In total, fourteen concepts were defined in the ontology and the
annotation task is to find instances for the fourteen concepts. Most of the concepts
have hierarchical dependencies. Human annotators conducted annotation on all
annual reports.

We also constructed a synthetic data set. The data set contains 62 company annual
reports chosen from the real data set. In this data set, four concepts are defined only:
“Company_Secretary”, “Secretary_Email”, “Registered_Address”, and
“Company_Email”. Where the first two concepts and the last two concepts have the
parent-child dependencies respectively and the concepts “Company_Secretary”,
“Registered-_Address” have the sibling dependency. Every report in the data set
exclusively has the four types of instances and the four instances are organized
hierarchically.

2. Features in Annotation Models

Table 1 indicates the features used in the annotation models.

Table 1. Features used in the annotation models

Category Feature
Edge Feature f(yp, yc), f(yc, yp), f(ys, ys)

{wi}, {wp}, {wc}, {ws} Vertex Feature
{wp, wi}, {wc, wi}, {ws, wi}

Given the j-th vertex in the observation xi, f(yp, yc), f(yc, yp), and f(ys, ys) represent
whether the current vertex has a parent-child dependency with a parent vertex,
whether it has a child-parent dependency with a child vertex, and whether it has a
sibling dependency with a sibling vertex, respectively. For vertex features, each
element in {wi} represents whether the current vertex contains the word wi. Similarly,
each element in {wp}, {wc}, and {ws} represents whether the parent vertex of the
current vertex contains word wp whether its child vertices contain wc, and whether its
sibling vertices contain ws, respectively. {wp, wi} represents whether the current
vertex contains word wi and its parent vertex contains word wp. To save time in some
of our experiments, we omitted the vertex features that appear only once.

3. Evaluation Measures
In all the experiments of annotation, we conducted evaluations in terms of

precision, recall, and F1-measure. By comparison of the previous work, we also give
statistical significance estimates using Sign Test [9].

4. Baselines
To evaluate our model’s effectiveness of incorporating hierarchical dependencies for
semantic annotation, we choose linear-chain CRFs as the baseline models for their
outstanding performance over other sequential models. The linear-chain CRF models
are trained using the same features as those in table 1 (the only difference is that the
linear-chain CRFs uses the linear edge features and the TCRFs uses the hierarchical
edge features).

We also compared the proposed method with the classification based annotation
method, which is another popular annotation method. The classification based method
treats a company annual report as a sequence of text lines, employs two classification
models to respectively identify the start line and the end line of a target instance, and
then view lines that between the start line and the end line as a target (see [7] and [23]
for details). In the experiments, we use Support Vector Machines (SVMs) as the
classification models. In the SVMs models, we use the same features as those in table
1 (excluding the edge features).

5.2 Experiments

We evaluated the proposed method on the two data sets. We conducted the
experiments in the following way. First, we converted each company annual report
into a sequence of text lines; for the SVMs base method, we use the vertex features
and train two SVM models for each concept; for the linear-chain CRFs, we use the
vertex features and the linear edge features to train the models; for TCRFs, we use the

vertex features and the hierarchical edge features to train the models. For training
SVM models we use SVM-light, which is available at http://svmlight.joachims.org/.
For training linear-chain CRF models, we use KEG_CRFs, which is available at
http://keg.cs.tsinghua.edu.cn/persons/tj/.

5.2.1 Experimental Results on the Synthetic Data Set
Table 2 shows the five-fold cross-validation results on the synthetic data set. SVM,
CRF, and TCRF respectively represent the SVMs based method, the linear-chain
CRFs method, and the proposed TCRFs method. Prec., Rec., and F1 respectively
represent the scores of precision, recall, and F1-measure.

Table 2. Performance of semantic annotation on the synthetic data set (%)

SVM CRF TCRF
Annotation Task

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
Company_Secretary 99.26 88.74 93.71 100.0 100.0 100.0 100.0 100.0 100.0

Secretary_Email 50.00 7.52 13.07 50.00 42.86 46.15 100.0 100.0 100.0
Registered_Address 97.46 89.84 93.50 100.0 100.0 100.0 100.0 100.0 100.0

Company_Email 0.00 0.00 0.00 46.15 50.00 48.00 100.0 100.0 100.0
Average 61.68 46.53 50.07 89.15 89.15 89.15 100.0 100.0 100.0

We see that for both “Company_Secretary” and “Registered_Address”, all of the
three methods can achieve high accuracy of annotation. Compared with the SVMs
based method, CRF and TCRF can obtain better results. We can also see that for
“Secretary_Email” and “Company_Email”, the proposed method TCRF significantly
outperforms the SVMs based method and the linear-chain CRFs based method. We
conducted sign tests on the results. The p values are much smaller than 0.01,
indicating that the improvements are statistically significant.

5.2.2 Experimental Results on the Real Data Set
Table 3 shows the five-fold cross-validation results on the real data set. In the table,
we also use SVM, CRF, and TCRF to respectively represent the SVMs based method,
the linear-chain CRFs method, and the proposed TCRFs method; and use Prec., Rec.,
and F1 to respectively represent the scores of precision, recall, and F1-measure.

From the results we see that TCRF can achieve the best performance 89.87% in
terms of F1-measure (outperforming CRF+7.67% and SVM+14.10% on average). In
terms of both precision and recall, CRF can outperform SVM. TCRF again
outperform CRF +3.14% in terms of precision and +12.08% in terms of recall. We
conducted sign tests on the results. The p values are much smaller than 0.01,
indicating that the improvements are statistically significant.

5.2.3 Discussions
(1) Effectiveness of TCRF. In the synthetic data set, the data are hierarchically
organized. TCRF can indeed improve the annotation performance. On annotation of
“Secretary_Email” and “Company_Email”, the SVMs based method only uses the

neighborhood contexts and thus cannot disambiguate them from each other (only
13.07% and 0.00% in terms of F1-measure). The linear-chain CRFs based method can
improve the annotation result by making use of linear dependencies (46.15% and
48.00% respectively). However, as the linear-chain CRFs cannot model hierarchical
dependencies, the improvements are limited. The proposed TCRFs based method can
model the hierarchical dependencies, and obtain the best performance (100.00% and
100.00% respectively). This indicates that the proposed Tree-structured Conditional
Random Fields are effective for the problem of hierarchical semantic annotation.

Table 3. Performance of semantic annotation on the real data set (%)

SVM CRF TCRF
Annotation Task

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
Company_Chinese_Name 88.82 89.40 89.11 82.10 80.69 81.37 84.34 92.72 88.33
Company_English_Name 90.51 95.33 92.86 71.68 80.14 75.66 89.26 88.67 88.96

Legal_Representative 94.84 97.35 96.08 92.86 96.60 94.66 94.84 97.35 96.08
Company_Secretary 99.29 93.33 96.22 91.65 96.99 94.23 77.96 96.67 86.31

Secretary_Email 57.14 8.89 15.39 69.94 56.53 62.34 73.86 97.01 83.87
Registered_Address 98.66 96.71 97.68 94.75 87.20 90.80 84.05 90.13 86.98

Office_Address 70.41 97.54 81.78 77.41 87.06 81.94 86.93 89.86 88.37
Company_Email 0.00 0.00 0.00 84.57 85.64 85.09 95.20 90.84 92.97

Newspaper 100.0 99.34 99.67 94.51 91.97 93.21 98.69 100.0 99.34
Accounting_Agency 83.15 95.63 88.95 73.81 56.77 62.73 79.57 97.19 87.50

Average 78.28 77.35 75.77 83.33 81.96 82.20 86.47 94.04 89.87
(2) Improvements over CRF. In the real data set, TCRF significantly outperforms
the linear-chain CRF for the annotation of most concepts. For the concepts that have
strong hierarchical dependencies, TCRF can achieve much better results than CRF,
for example, on “Secretary_Email” and “Company_Email” TCRF outperforms CRF
by +21.53% and +7.88%, respectively.
(3) Improvements over SVM. In the real data set, TCRF outperforms SVM +8.19%
in terms of precision and +16.69% in terms of recall. The SVMs based method suffers
from the extremely bad results on the annotation of “Secretary_Email” and
“Company_Email”. This is due to that the SVMs based method considers only
neighborhood contexts. Besides the two concepts, TCRF also outperforms SVM on
annotation of some other concepts, for example “Office_Address”. We need notice
that in some cases, TCRF underperforms SVM. For example on
“Company_Chinese_Name” and “Company_English_Name”, TCRF underperforms
SVM by -0.78% and -2.9%, respectively. This is because instances of such concepts
seem to be independent and do not have dependencies with instances of the other
concepts.
(4) Time complexity. We conducted analysis of time complexity of our approach.
We tested the three methods on a computer with two 2.8G Dual-Core CPUs and three

Gigabyte memory. In total, for training and annotating the fourteen concepts, the
SVMs based method takes about 96 seconds and 30 seconds respectively, while the
CRF method takes about 5 minutes 25 seconds and 5 seconds respectively. Our
current implementation of the TCRF method used more time for training and
annotation (about 50 minutes 40 seconds and 50 seconds respectively.) This indicates
that the efficiency of TCRF still needs improvements.
(5) Error analysis. We conducted error analysis on the results of our approach.

There are mainly three types of errors. The first type of errors (about 34.85% of the
errors) is that in some concepts, there are no hierarchical dependencies, for example
“Company_Chinese_Name” and “Company_English_Name”. In such cases, the
proposed TCRFs contrarily result in worse performance than the SVMs based method
that does not consider dependencies. About 28.05% of the errors occur when there are
extra email addresses in the text. The third type of errors was due to extra line breaks
in the text, which mistakenly breaks the targeted instance into multiple lines.

6. Conclusions

In this paper, we investigated the problem of hierarchical semantic annotation. We
proposed a Tree-structured Conditional Random Field (TCRF) model. This model
provides a novel way of incorporating the dependencies across the hierarchical
structure to improve the performance of hierarchical semantic annotation. Using an
approximate algorithm, i.e. Tree Reparameterization (TRP), efficient parameter
estimation and annotation can be performed. Experimental results on two data sets
show that the proposed model significantly outperforms the linear-chain CRF models
and the SVMs based models for annotating hierarchically laid-out data. We also
found that the efficiency of the proposed TCRF model still needs improvements.

References

[1] R. Benjamins and J. Contreras. Six challenges for the semantic web. Intelligent Software
Components. Intelligent Software for the Networked Economy (isoco). 2002.

[2] A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. A maximum entropy approach to
natural language processing. Computational Linguistics, Vol,22,1996. pp. 39-71

[3] R. C. Bunescu, R. J. Mooney. Collective information extraction with relational Markov
networks. In Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics (ACL’04), 2004. pp. 439-446

[4] F. Ciravegna. (LP)2, an adaptive algorithm for information extraction from web-related
texts. In Proceedings of the IJCAI’2001 Workshop on Adaptive Text Extraction and Mining
held in conjunction with 17th IJCAI'2001, Seattle, USA. 2001. pp. 1251-1256

[5] M. Collins. Discriminative training methods for hidden Markov models: Theory and
Experiments with Perceptron Algorithms. In Proceedings of EMNLP’02. 2002.

[6] C. Cortes and V. Vapnik. Support-Vector Networks. Machine Learning, Vol. 20, 1995, pp.
273-297

[7] A. Finn and N. Kushmerick. Multi-level boundary classification for information extraction.
In Proceedings of the ECML’2004, Pisa, 2004. pp.156-167

[8] Z. Ghahramani and M. I. Jordan. Factorial hidden Markov models. Machine Learning,
Vol.29, 1997, pp. 245-273

[9] L. Gillick and S. Cox. Some statistical issues in the compairson of speech recognition
algorithms. In International Conference on Acoustics Speech and Signal Processing, 1989,
Vol. 1: 532-535

[10] J. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. Unpublished
manuscript. 1971.

[11] B. Hammond, A. Sheth, and K. Kochut. Semantic enhancement engine: a modular
document enhancement platform for semantic applications over heterogeneous content, in
real world semantic web applications. IOS Press, 2002. pp. 29-49

[12] S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM - semi-automatic creation of
metadata. In Proceedings of the 13th International Conference on Knowledge Engineering
and Management (EKAW'2002), Siguenza, Spain, 2002. pp. 358-372

[13] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper induction for information
extraction. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI). Nagoya, Japan, 1997. pp. 729-737

[14] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilistic models
for segmenting and labeling sequence data. In Proceedings of the 18th International
Conference on Machine Learning (ICML’01), 2001. pp. 282-289

[15] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 1989. pp. 503-528

[16] T. Lou, R. Song, W.L. Li, and Z.Y. Luo. The design and implementation of a modern
general purpose segmentation system, Journal of Chinese Information Processing, (5), 2001.

[17] A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for
information extraction and segmentation. In Proceedings of the 17th International
Conference on Machine Learning (ICML’00), 2000. pp. 591-598

[18] B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, and M. Goranov. KIM -
semantic annotation platform. In Proceedings of 2nd International Semantic Web
Conference (ISWC'2003), Florida, USA, 2003. pp. 834-849

[19] L. Reeve. Integrating hidden Markov models into semantic web annotation platforms.
Technique Report. 2004.

[20] F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings of
Human Language Technology, NAACL. 2003.

[21] C. Sutton, K. Rohanimanesh, and A. McCallum. Dynamic conditional random fields:
factorized probabilistic models for labeling and segmenting sequence data. In Proceedings
of ICML’2004. 2004.

[22] J. Tang, J. Li, H. Lu, B. Liang, and K. Wang. 2005a. iASA: learning to annotate the
semantic web. Journal on Data Semantic, IV. Springer Press. pp. 110-145

[23] J. Tang, H. Li, Y. Cao, and Z. Tang. Email data cleaning. In Proceedings of
SIGKDD’2005. August 21-24, 2005, Chicago, Illinois, USA. Full paper. pp. 489-499

[24] M. Wainwright, T. Jaakkola, and A. Willsky. Tree-based reparameterization for
approximate estimation on graphs with cycles. In Proceedings of Advances in Neural
Information Processing Systems (NIPS'2001), 2001. pp. 1001-1008

[25] J. Yedidia, W. Freeman, and Y. Weiss. Generalized belief propagation. Advances in
Neural Information Processing Systems (NIPS). 2000.

[26] J. Zhu, Z. Nie, J. Wen, B. Zhang, and W. Ma. 2D conditional random fields for web
information extraction. In Proceedings of ICML’2005.

