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ABSTRACT
Usually scientists breed research ideas inspired by previous publi-
cations, but they are unlikely to follow all publications in the un-
bounded literature collection. The volume of literature keeps on
expanding extremely fast, whilst not all papers contribute equal
impact to the academic society. Being aware of potentially influ-
ential literature would put one in an advanced position in choos-
ing important research references. Hence, estimation of potential
influence is of great significance. We study a challenging prob-
lem of identifying potentially influential literature. We examine a
set of hypotheses on what are the fundamental characteristics for
highly cited papers and find some interesting patterns. Based on
these observations, we learn to identify potentially influential liter-
ature via Future Influence Prediction (FIP), which aims to estimate
the future influence of literature. The system takes a series of fea-
tures of a particular publication as input and produces as output the
estimated citation counts of that article after a given time period.
We consider several regression models to formulate the learning
process and evaluate their performance based on the coefficient of
determination (R2). Experimental results on a real-large data set
show a mean average predictive performance of 83.6% measured in
R2. We apply the learned model to the application of bibliography
recommendation and obtain prominent performance improvement
in terms of Mean Average Precision (MAP).
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H.3.7 [Information Storage and Retrieval]: Digital Libraries;
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1. INTRODUCTION
Effective scientific research requires keeping up with a large,

ever-growing body of literature because scientists need to “stand on
the shoulder of giants” (knowledge learnt from Isaac Newton). But
how? Searching for meaningful work is tedious and it is very possi-
ble to miss important developments in areas outside a researcher’s
specialty. More critically, it may miss some potentially influential
literature. In fact, considerable research work starts from a small
number of initial papers and then explores papers near (citing or
cited by) those papers. Therefore, to identify influential literature
has long been viewed as one of the most important challenges in
data mining for scientific literature. The rapid evolution of scien-
tific research has been creating a huge volume of publications every
year, and the explosive trend continues. Figure 1 shows statistics on
a large literature database in Computer Science1. Figure 1.(a) visu-
alizes the explosive increase on the volume of publications in the
past years, in particular recent years. The number of publications
in 2009 almost triples than that of 10 years before [28].

Given the large literature population, however, it is natural that
not all publications contribute equal impact to academia. It is use-
ful to identify influential literature to make better utilization of “gi-
ant shoulders” against unbounded publications. To measure such
literature influence is non-trivial due to the numerous complicated
methodologies from different perspectives, among which citation
count is one of the most simple, standard and objective measure-
ments. Citation count is calculated by how many times a particular
publication is cited by other articles. In this study, we use the cita-
tion count to represent influence of literature for a simple and quick
start, and both terminologies are used interchangeably.

The assumption of “different influence” is verified by showing
the highly skewed citation pattern which follows a power law dis-
tribution: a huge number of research papers attract only a few ci-
tations, and a few research papers accumulate a large number of
citations [28]. In all, there are 2.36% papers with more than 2000
citation counts and 68% papers have less than 5 citations! We also
illustrate the changes of the citation distributions in different years
in Figure 1.(b). The plots indicate more and more citations agglom-
erate to smaller percentage of literature from 2000 to 2010. This
phenomenon coincides with the dotted line shown in Figure 1.(a)
where the ratio of influential papers is decreasing year by year2.

To measure the current influence by citation counts is not dif-
ficult but has been proved to be useful. In several bibliography
search systems, current citation count is listed as one of the ma-
jor factors to rank the candidate articles for the retrieval purpose
[1]. Intuitively, we might consider the large probability of high
future influence will also help select worthy candidates for litera-
ture search or recommendation systems (and indeed is verified by

1http://arnetminer.org.
2Here “influential papers” denotes papers with citations over 100.



our experiments), but no previous system is able to examine the
effect of future impact. Another ambition for future influence pre-
diction is that this technique encourages researchers to pay atten-
tion to and keep up with future influential works at an early stage.
Our statistics shows that more than 20 papers received more than
100 citations merely after 5 years. Many of these influential papers
finally lead to new research sub-fields. Obviously, being aware of
these influential literature would put one in an advanced position in
choosing new research topics and avoiding missing important ref-
erences. One step ahead probably enables better and earlier “stand
on the shoulder of giants”. To answer the question we claimed in
the beginning, identifying potentially influential literature via Fu-
ture Influence Prediction (FIP) provides a possible option.

(a). The growing volume of literatures. (b). Distribution of literature citation.

Figure 1: Statistics of literature data from ArnetMiner.

It is challenging for FIP to identify fundamental factors corre-
lated with future citations and to combine them under a unified
predictive model. For identification of influential literature in the
future, this paper has following contributions:
• The 1st contribution is that we have explored a series of ef-

fective features important to future influence from several aspects,
such as paper content, author expertise, venue impact, and more
especially, temporal dimension, which has never been considered
before. Furthermore, we examine these features based on experi-
mental observations, not merely based on theoretical assumptions
and show interesting discoveries in citation behaviors. We also an-
alyze different roles in the combination of all features.
• The 2nd contribution of our work is to model all relevant fea-

tures to identify the potentially influential papers. Unlike previous
studies, we put more focus on identification of highly cited litera-
ture, instead of treating them equally, i.e., giving emphasis on “gi-
ant shoulders”. Given multiple features relevant to influence, i.e.,
citation counts in this study, we incorporate literature weights into
regression models to estimate future impacts of scientific papers.
• The 3rd contribution is that we integrate the factor of future

influence into real practical application of bibliography recommen-
dation system. The improved system outperforms its rivals and
hence demonstrates the practical utility and benefits of FIP.

2. RELATED WORK
Influence, for evaluating research achievements, has long been

heavily discussed by fundamental research journals (e.g. Science,
Nature and PNAS). Impact Factor by Eugene Garfield is a mea-
surement reflecting articles influence and is still pervasive [25, 10].
Journals with higher impact factors are deemed to be more impor-
tant than those with lower ones [8]. However, impact factor can not
reflect the influence of individual papers [7, 23] and hence needs a
normalization from the audience of citing sides [30]. As to author
aspects, the h-index is a useful index that attempts to measure both
the productivity and impact of the published work of a scientist or
scholar [13, 12]. However, both impact factor and h-index reflect
the macro characteristics but the influence of a specific collection
(all papers from a particular author or venue) may be skewed by
individuals from our observations.

Citations indicate the influence of authors, papers and venues,
and several works have conducted to analyze citation behaviors [1,
22, 26] and have perceived interesting discoveries for impact [21,
27]. In recent years, several researchers have investigated the pre-
diction of citation counts. Their work differs primarily as regards
the features used for prediction.

The 2003 KDD Cup includes a citation prediction task resem-
bling the one we undertake on this paper. The citation prediction
task includes estimating the change in the number of citations of
papers between two different periods of time [11]. Several papers
predict the number of citations using information gathered after
publication. Brody et al. used download data within 6 months af-
ter publication as a predictive feature [4]. However, the aim was
to show the Open Access advantage. Castillo et al. used a linear
regression for the number of citations, the authors’ reputation and
the source of the paper citations (author related information) after
a short period of time as predictive features [5]. Lokker et al. used
features related to the article and journal, like number of authors,
pages, references and so on [16]. These three works used measures
taken after the paper was published to predict its citation count in
the future. The main disadvantage of using this feature is that the
required values are not available until after publication, and such
features are difficult to access.

On the other hand, Fu et al. attempt to forecast citation counts
using features which are are available at the time of publication [9].
Support vector machine regression models are used as the learning
algorithm. Ibáñez et al. take into account several regression meth-
ods and analyze which one provides better predictions for the prob-
lem especially to predict annual time horizons [14]. Predictions in
these works are made for a simple binary response variable that is
defined by a set of citation thresholds to determine if an article is
labeled positively or negatively [6]. Unlike their works, we do not
deal with the response variables as several fixed thresholds, but to
predict the exact citation count for each individual article. We also
exploit the information output by the model, like the identification
of key features that increase the chances of citation. This method
can actually inform publishers about which articles will have larger
influence in the future before they are published.

Unlike previous studies, we formally research into a predictive
task of FIP and we add more relevant features into consideration.
The relevance of features is investigated based on real world ob-
servations. We also integrate future influence into real world ap-
plication of bibliography and obtain prominent improvement. To
the best of our knowledge, we are the first to formally research into
identification of potentially influential literature and to incorporate
FIP into real applications such as literature recommendation.

3. FUTURE INFLUENCE PREDICTION

3.1 Problem Definition
In this section, we first present several necessary definitions and

a formal representation of the influence prediction problem.
Influence. Given the literature corpus D, the Influence (INF (.))

of a literature article d∈ D is defined as the citation count of d:

citing(d) = {d′ ∈ D : d′cites d}
INF (d) = |citing(d)|

(1)

Learning task: Given a set of article features, X⃗ = x1, x2, . . . , xn,
our goal is to learn a predictive function F(.) to predict the influ-
ence of an article d after a give time period ∆t. Formally, we have

INFFIP (d|∆t) = F(d|X⃗,∆t) (2)

Given the literature collection D, the learned influence predictive



function is actually to minimize the following objective cost func-
tion O(D), and the FIP task changes into an optimization problem
for an optimal predictive function F∗(.):

F∗(d) = argmin
F

O(D)

= argmin
F

∑
d∈D

|INFFIP (d)− INF (d)|

= argmin
F

∑
d∈D

|F(d)− INF (d)|

(3)

The cost function O(D) in Equation (3) is to some extent in-
sufficient because it assumes that all papers are equally important.
However, our goal is to identify the highly influential ones. Due
to the influence distribution in Figure 1.(b), we model the skewed
literature weight into cost function O(D), i.e., to increase the cost
for errors on highly influential literature during training, and we
change O(D) into:

O(D) =
∑
d∈D

Ψ(d) · |INFFIP (d)− INF (d)| (4)

where Ψ(d) is the weight of the paper d. The weight can be defined
as a normalization to [0, 1] based on the influence distribution on
data set D. We emphasize the weight for highly influential papers
which are known, and punish the ordinary papers. The weight Ψ(d)
is defined as follows:

Ψ(d) =
log(1 + INF (d))− log(1 + INFMIN )

log(1 + INFMAX)− log(1 + INFMIN )
(5)

where INFMAX/MIN means the maximum and minimum citation
counts which are known to us.

The optimal predictive function F∗(.) becomes:

F∗(d) = argmin
F

∑
d∈D

Ψ(d) · |F(d)− INF (d)| (6)

Before proposing our approach for FIP, we first probe a series
of analysis by focusing on the following aspects of input literature
articles, and then present the interesting citation patterns observed.
Ideally, we ought to consider as many factors as possible. All fea-
tures in consideration (except for temporal information which is
special and is discussed in details) can be grouped into three facets:
(1) paper contents, (2) author expertise, and (3) venue impact. Fi-
nally, it is important to find unified models which are able to con-
sider all the features simultaneously.

3.2 Contents Feature Definition

3.2.1 Novelty
Novelty is a key criterion to evaluate paper quality, and is mea-

sured by similarity between a particular article and the other publi-
cations. An assumption is that a low similarity means a high nov-
elty. We investigate whether higher novelty attracts more citations.

Novelty can be measured by similarity against all other litera-
tures. However, such metric leads to an overestimated novelty be-
cause most papers from different research fields have naturally low
similarity. Therefore, we measure an article’s novelty against all its
references: these papers are generally from the same sub-area and
are supposed to have strong relevance. If the article d is signifi-
cantly different from its references, we presume this phenomenon
secures prominent novelty, which is calculated by Kullback-Leibler
divergence DKL:

Novelty(d) =

∑
d′∈DR

DKL(Θd||Θd′)

|DR|
(7)

where DR = {d′|d′ ∈ referring(d)}, which is the collection of
the reference papers cited by article d, and referring(d) = {d′ ∈
D : d cites d′}. Θd is the word distribution of article d. V is the
vocabulary set and p(w|Θd) =

tf(w,Θd)∑
w′∈V tf(w′,Θd)

where tf denotes
the term frequency for word w.

DKL(Θd||Θd′) =
∑
w∈V

p(w|Θd)log
p(w|Θd)

p(w|Θd′)
(8)

KL-divergence is asymmetric. To measure such novelty, it makes
more sense to use DKL(Θd||Θd′) than DKL(Θd′ ||Θd) because
article d is inspired and motivated by all its references d′ ∈ DR.

Figure 2.(1) is interesting: the plot increases in the beginning,
showing that the citation counts positively correlate with novelty
and then after a certain threshold, the plot decays. This phenomenon
indicates that for articles which are divergent too far away from
mass focus, they are unlikely to attract many citations.

3.2.2 Topic Rank
Topics have long been investigated as a significant feature for

literature contents [15, 18]. We utilize the unsupervised Latent
Dirichlet Allocation [2] to discover topics3. Ideally, topics should
be trained on the set of full contents of all papers. Because no such
data is readily available, here we use the following proxy: we treat
the title and the abstract of an article as the approximation.

We empirically train a 100-topic models and obtain the prob-
ability distribution over topics assigned to a literature article d,
i.e., p(topici|d), the inferred probability of topic i in document d.
To calculate the influence of a particular topic from article d, de-
noted by INF (topici|d), we distribute the influence of the article
INF (d) according to the topic distribution, i.e., INF (topici|d) =
INF (d)×p(topici|d) and we obtain the influence of all topics by:

INF (topici) =
∑
d∈D

INF (topici|d) (9)

where D is the whole literature collection. We rank topics by av-
erage citation counts. From Figure 2.(5), we see different topics
have different expected average citation counts. Popular topics
accumulate more citation counts than unpopular ones: topic
popularity is relevant to literature influence.

3.2.3 Diversity
Diversity indicates the breadth of an article from its topic dis-

tributions. This is important for identifying methodology papers,
which are often cited by a wider topical range of articles. When
an article has a vast range of audience, it is likely to be cited by
authors from various research fields, and hence attract high citation
counts. To measure the topical breadth of an article, we calculate
the entropy of the document’s topic distribution:

Diversity(d) =

|T |=100∑
i=1

−p(topici|d) · log p(topici|d) (10)

We hereby calculate the correlation between paper diversity and
corresponding average citation counts shown in Figure 2.(3), which
is quite interesting because the plot indicates few papers belong a
narrow focused area and in general expected citation counts
increase as diversity enlarges.

3.3 Author Feature Definition
In this section, we will answer the question that how an author’s

expertise correlates with the number of citation and how to measure
3We use Stanford TMT (http://nlp.stanford.edu/
software/tmt/), with default settings for all parameters.



(1) Novelty vs. Citations. (2) Author Rank vs. Citations. (3) Diversity vs. Citations. (4) H-Index vs. Citations.

(5) Topic Rank vs. Citations. (6) Max Influence (Author) vs. Citations. (7) Total Influence (Author) vs. Citations. (8) Productivity vs. Citations.

(9) Number of Co-Authors vs. Citations. (10) Sociality vs. Citations. (11) Authority vs. Citations. (12) Venue Rank vs. Citations.

(13) Venue Centrality vs. Citations. (14) Max Influence (Venue) vs. Citations. (15) Total Influence (Venue) vs. Citations. (16) Recency vs. Citations.

Figure 2: The feature-average citation correlations: x-axis denotes the value of a particular feature (e.g. sociality, authority, etc.),
and there are a group of papers with the same value of the examined feature. We take the average citations of these papers as y-value.

such expertise quantitatively. To be self-contained, we first briefly
review some of the features introduced in [28], together with our
new insights, and then analyze these citation patterns.

3.3.1 Author Rank
Yan et al. assume that the “fame” of an author ensures the

amount of citations [28]. We calculate the average citations for
every author, and then assign an author rank value to him/her ac-
cording to the rank number by his/her expected citation counts. As
shown in Figure 2.(2), the plot of expected citations is highly
skewed, but for most of the authors, their expected citation
counts are nearly the same and are rather small.

3.3.2 H-index
The h-index is useful which attempts to measure both the produc-

tivity and impact of the published work of a scientist [12]. There-
fore, we examine the correlation between h-index and citation counts.
From Figure 2.(4), we observe a highly positive correlation be-

tween h-index and average citation counts: the correlation is almost
linear, which proves h-index an effective indicator of influence.

3.3.3 Past Influence of Authors
Past influence probably indicates future influence. It is reason-

able to assume the previous high influence for an author may result
in the future high influence, which explains how reputation estab-
lishes. There are two ways to measure author past influence: previ-
ous (1) maximum citation counts and (2) total citation counts.

• Maximum Past Influence of Authors (MPIA). In the real world,
one well-known publication helps to recognize academic reputa-
tion. The correlation between average citation counts and maxi-
mum citation counts is shown in Figure 2.(6), indicating expected
citations strongly correlate with MPIA and one widely acknowl-
edged paper indeed benefits author reputation.

An interesting observation is that for authors with more than 500
MPIA, the correlations seems to be a chaos with large variances.
There are two possible reasons for this situation: 1) the distribution
of MPIA per author follows the power law, which means most of



the authors have a relatively small MPIA while few authors have
a large MPIA. Therefore, for few authors with high MPIA, there
is probably lack of average effect and as a result, large variances
emerge. 2) The noise of author statistics for high MPIA ranges.
• Total Past Influence of Authors (TPIA). Another measurement

of past influence is to calculate total citations per author. From
Figure 2.(7) we conclude the weak correlation between expected
citations and TPIA: the fitted curve is almost parallel to the x-axis,
indicating total citation of an author might not be predictive.

3.3.4 Productivity
According to [1], authors have tendencies to cite their own pa-

pers: the more productive an author is, the larger chances for his/her
papers to be cited. Due to such self-citation behavior analysis, we
examine the predictive power of productivity in Figure 2.(8). We
notice that productivity and citation counts have a positive corre-
lation: the more papers an author have published, the higher
average citation counts he/she could expect. Similar to Figure
2.(6), the large variances in the high value range might be due to
noisy data and lack of average effect for these few authors.

3.3.5 Sociality
Researchers tend to cite papers from whom the author(s) have

co-authored [1]. Hence a widely connected author is more likely
to be highly cited by his/her wide variety of co-authors. A straight-
forward social measurement of Number of Co-Authors (NOCA) is
introduced in [28] and we examine the correlation between NOCA
and average citation counts. As shown in Figure 2.(9), the plot im-
plies a prominent positive correlation.

However, sociality measured by the co-author numbers is simple
and reflects insufficient social relationships: authors have different
social weights. Collaboration with the same amount of authors of
high (or low) sociality might lead to different influence but “the
number of co-authors” fails to distinguish such difference. We then
measure sociality based on the real academic social network. We
establish a co-author network graph Gc(V,E) to discover the re-
search communities, where V is the set of vertices and each vertex
vi in V represents an author. E is the set of edges which is a subset
of V × V . Each edge denotes the co-authorship and is associated
with an author affinity weight Aaff (vi, vj) between vertex vi and
vj (i ̸= j). The weights of the edges are calculated by the times
of collaboration, i.e., Aaff (vi, vj) = |Dco| where co-authored pa-
per set Dco = {d|(author(d) ∩ (vi ∪ vj)) ̸= ∅}. The transition
probability between vi and vj is then defined by normalizing the
corresponding affinity weight [28].

We use the row-normalized matrix M = Mi,j|V |×|V | to de-
scribe Gc with entry corresponding to the transition probability,
i.e., Mi,j = p(vi, vj). Based on the matrix M , the sociality of an
author vi (denoted as Sociality(vi)) can be deduced from all other
authors linked with him/her, which can be formulated in a recursive
form as in the PageRank algorithm.

Sociality(vi) = µ
∑
j ̸=i

Sociality(vj) ·Mj,i +
1− µ

|V | (11)

where µ=0.85. We conduct an examination of the correlation be-
tween sociality and average citation counts. The positive effect of
sociality has been confirmed in Figure 2.(10).

3.3.6 Authority
Besides the co-authorship network, another heterogenous social

network for academia is established from the “citing - cited" rela-
tionships among literature articles. A widely cited paper indicates
peer acknowledgements, and hence indicates author authority. We
transmit paper authority to all its authors. We build a graph of

Ga(V,E), where V denotes the paper collection and E denotes
the citing-cited linkage with directions. The out-degrees measure
how many times a paper is cited while in-degrees indicate the ref-
erences of a particular paper. Each paper is represented as a term
vector of semantic words from the vocabulary, and we calculate the
standard cosine similarity between two papers as the weight of the
paper affinity in the graph, i.e., Paff (vi, vj) = simcos(vi, vj).
After a similar PageRank procedure as Equation (11), we obtain
the authority score Authority(d) of each paper d. We define the
authority of an author a as:

Authority(a) =
∑
d∈Da

Authority(d) (12)

where Da = {d|a ⊆ author(d)}. We examine the correlation be-
tween these two variants in Figure 2.(11). The strong correlation
between authority and average citations is hence verified.

3.3.7 Versatility
Like paper contents, a wide topic breadth of an author’s research

implies large amount of audience from various research fields, which
is similar to diversity to identify highly influential papers cited by a
wider topical range of articles. When an author has a vast range of
audience, his/her papers are likely to be highly cited. To measure
the topical breadth of an author a, namely versatility, we calculate
the entropy of the author’s topic distribution:

V ersatility(a) =

T =100∑
i=1

−p(topici|a) · logp(topici|a) (13)

where

p(topici|a) =

∑
d∈Da

p(topici|d)

|Da|
(14)

where Da = {d|a ⊆ author(d)}. We hereby calculate the cor-
relation between author versatility and corresponding average ci-
tation counts. The pattern distribution is quite similar to Figure
2.(3) and due to page limits we omit the near-duplication of Fig-
ure 2.(3). Few authors have a narrow focus and the expected
citation counts increase as versatility enlarges.

3.4 Venue Feature Definition
Like authors, venues also have academic reputations. From our

observations, some venues have larger probability to be highly cited
than others. We hereby investigate the venue impact on citations.

3.4.1 Venue Rank
Prestigious venues attract more focus just as the author rank pat-

tern. As shown in Figure 2.(12), the reputation of a venue ensures
different citations. Compared with Figure 2.(2), although plot in
Figure 2.(12) is not that skewed, the differences of expected cita-
tions for different venues are prominent enough.

3.4.2 Venue Centrality
High citations of a particular conference or journal indicate peer

acknowledgement from other venues, and we aim to find such cen-
tral venues. Venues are connected by paper citing-cited linkage.
We establish a venue connective graph Gv(V,E) where V denotes
the venues and the edges E denote the citing-cited relationships be-
tween venues. Like Ga(V,E), Gv(V,E) also has directions: the
out-degrees measure how many times a venue is cited by papers
from other venues while in-degrees denote citations. The weight
of each edge is calculated by the number of citations between two
venues. Hence, the venue centrality can be calculated via a similar



PageRank algorithm as Equation (11) and we examine the corre-
lations between venue centrality and average citation counts, illus-
trated in Figure 2.(13). To our surprise, the feature of venue
centrality seems to imply little relevance with citations.

3.4.3 Past Influence of Venues
Similar to author expertise, past venue influence might indicate

probable future success. It is natural to assume the previous high
influence for a venue may result in the future high influence. We
still use (1) maximum past influence of venues (MPIV) and (2) total
past influence of venues (TPIV) to measure past venue influence,
showing in Figure 2.(14) and 2.(15). Interestingly, plots of MPIV
and TPIV share similar patterns with Figure 2.(6) and 2.(7).

3.5 Temporal Feature
Temporal dimension has long been proved to be significant in lit-

erature studies [1, 29]. Intuitively the citation counts accumulate as
time passes by, thus a measure of the age of an article is important.
We include as a feature the number of years since the article was
published. We expect a positive correlation on temporal recency -
the longer an article is published, the more citations it may receive.

As indicated in Figure 2.(16), the effect of temporal recency is
highly prominent for the first 10 to 20 years. The average citation
counts sheerly increase for the first decades when the articles get
published. The increase rate slows down for the following years: it
is natural that articles are attractive when they are to some extent
“new” to researchers. Only few classic works accumulate citation
counts steadily for decades. We notice that for literatures published
more than 40 years ago, the citation counts decay and have a larger
variance. This situation may be due to the noise for the aged pub-
lications when online literature libraries were not available. The
decay may also be due to literatures attracts citations from tempo-
ral recent publications, but as shown in Figure 1.(a), the propor-
tion of aged publications (e.g., more than 40 years) is rather small.
Large amount of new articles are not likely to cite aged literatures.
Therefore, aged literatures have low citations in general.

Growing Factor. Nothing can catch people’s eyes more than a
rising phenomenon. For instance, an author with rapid accumula-
tion of citations or publications in recent years might indicate high
influence to the academia. Therefore, it is reasonable to incorpo-
rate growing factor of preference for new scientists, new venues
and newly developed research topics. For the growing effect anal-
ysis, we create another dataset constituted by literature of recent N
years only, namely RData. Now we have two datasets: RData and
the full dataset by literature of all years (FData). We study all fea-
tures and examine different patterns on these two datasets, as well
as the combination of both sets.

Decaying Factor. As the scenario of future influence prediction
requires invisibility of future literature patterns, it is natural that the
influence calculated from current situation decays after a particular
given time period ∆t. For simplicity, we use the traditional decay
function for the temporal dimension, i.e., the decayed influence is
measured as INF (d)× e−γ∆t, where γ ∈ [0,1] is a scaling factor
and ∆t = tf − tp. tp is the publish year and tf is the future year
to predict citations counts.

In all we have 32 features to predict future citation counts (listed
in Table 3), including full-feature and recent-feature. Consider-
ing growing factor by distinguishing FData and RData doubles the
number of available features. All recent-features are calculated
based on the RData. Note that the 100 topics for FData and RData
are the same, and hence we do not introduce a duplicate feature of
recent diversity. Similarly, recent recency is fully covered by re-
cency. Note that there may be multiple authors for a single paper,
and it is inappropriate to use the first author only because all authors
are assumed to have contributions to the influence of the paper. We

create a virtual author whose feature values are averaged based on
all authors of the paper. We experiment different combinations of
these features.

3.6 Predictive Models

3.6.1 Gaussian Process Regression
Given a compact feature representation amenable for learning,

our objective is to estimate an article’s expected citation counts.
Note that predicting the times that an article will get cited is an ex-
tremely hard problem. Due to the complex mechanism of future in-
fluence estimation, it is likely that they are a non-linear function of
all features used to represent the data. Gaussian Processes provide
a Bayesian formulation for non-linear regression, where the prior
information about the regression parameters can be easily encoded.
This property makes them suitable for our problem formulation.

A Gaussian Process is a collection of random variables, any finite
number of which have a joint Gaussian distribution [20]. Given the
feature vector X , the estimated citation INF (d) for d is:

INF (d) = K(X,XT )[K(XT , XT ) + σ2I]−1INF (dT ), (15)

where K is a kernel function returning a kernel matrix, XT is a
matrix of feature vectors for the training papers, σ is a noise pa-
rameter, I the identity matrix and INF (dT ) the vector of citation
counts of the training article dT . Note that we only use the mean
and not the variance estimated by the GP. We use a Gaussian kernel
in our experiments. We notice that the performance of GP has a
weak dependence on σ and set it to 0.5.

3.6.2 CART Model
We then fit a Classification and Regression Tree (CART) model

[3], in which a greedy optimization process recursively partitions
the feature space, resulting in a piecewise-constant function where
the value in each partition is fit to the mean of the corresponding
training data. Folded cross-validation [19] is used to terminate par-
titioning to prevent over-fitting. Our model included 32 features
summarized in the last section as predictors.

Figure 3: An example of regression tree for citation prediction.

Figure 3 shows the regression tree for one of the folds. Con-
ditions at the nodes indicate partitions of the features, where the
left (right) child is followed if the condition is satisfied (violated).
Leaf nodes give the function value for the corresponding partition.
Thus, for example, one of the leaves indicates that papers with h-
index≥1.756 and NOCA<2.247 are predicted to have the influence
of 180 citation counts.

4. EXPERIMENTS AND EVALUATION

4.1 Data Description
We perform influence prediction on the real-world data set4, which

is extracted from academic search and mining platform ArnetMiner.
4Downloaded from http://arnetminer.org/citation.



(1). 5-Year unweighted FIP for Year 2005, regression = GPR.(2). 5-Year weighted FIP for Year 2005, regression = GPR.(3). 10-Year weighted FIP for Year 2000, regression = GPR.

Figure 4: Actual vs. predicted citation counts: the performance for FIP with full features. The dotted line y = x means the best
result of predicted citation counts = actual citation counts. Figure 4.(2)-4.(3) incorporate literature weights while 4.(1) does not.

It covers 1,558,499 papers from major Computer Science publica-
tion venues and has gathered 916,946 researchers for more than 50
years (from 1960 to 2010). Two heterogeneous networks are in-
cluded: one is the co-author collaboration network and the other is
the paper citation network. The full graph of co-author network has
916,946 vertices (authors) and 3,063,257 edges (co-authorship),
and the full graph of citation network has 1,558,499 vertices (lit-
erature papers) and 20,083,947 edges (citations).

To predict the citation counts after one year, we randomly take
10,000 papers from the literature collection from Year 2009 as the
test set, and another random 10,000 papers from the Year 2009 as
the development set. Note that for all training and evaluation, we
only used features calculated over previous years. For example,
when predicting articles published in Year 2009, all the articles up
through Year 2008 are processed, and only the articles from the
Year 2009 are available (as test set). Thus, these time dependent
features would only include papers published in 2008 and earlier.
Structuring the evaluation in this way is more realistic - when pre-
sented with new coming articles, the system can only predict pos-
sible future influence based on the patterns it has previously ob-
served. We take the same procedure to predict citation counts after
5 (and 10) years with 10,000 test papers and 10,000 development
papers from Year 2005 (and Year 2000). For unobserved feature
values, e.g., new authors or new venues, we use the minimum fea-
ture values instead of N/A: anything has a start. We compare pre-
dicted citation counts with actual influence from the test data.

4.2 Algorithms for Comparison
We implement the following citation prediction algorithms as the

baseline systems. All baselines are originally designed for tradi-
tional influence prediction problem rather than identify the influen-
tial ones. For fairness we apply the same biased objective function
and the same pre-processing procedure for all algorithms.
• kNN. k-Nearest Neighbor (kNN) is used to predict citation by

Ibáñez et al [14], which predicts the influence value for the paper
d to be the average of the values of its k-nearest neighbors and
the distance function measuring neighbors is based on a similarity
calculation method such as cosine similarity. The neighbors are
taken from training set for which real citation counts are known.
• LR. Lovaglia et al. propose a Linear Regression model to pre-

dict citation counts [17].
• SVR. Based on Support Vector Machine (SVM) model, Fu

et al. build a Support Vector Regression (SVR) model to predict
citation counts of biomedical publications using only predictive in-
formation available at publication time [9].

• CART. The CART method was used by Yan et al. on a limited
feature space without incorporation of literature weight [28].

• GPR. The GPR method is our newly proposed approach for
FIP problem, using the Gaussian Process for prediction.

4.3 Evaluation Metric
The coefficient of determination R2 [24] is used in the context

of statistical models whose main purpose is the prediction of future
outcomes on the basis of related features. It is the proportion of
variability in a data set that is accounted for by the statistical model,
which provides a measure of how well future outcomes are likely
to be predicted by the model. The definition of R2 is:

R2 =

∑
d∈DT

(INFFIP (d)− INF (DT ))
2

∑
d∈DT

(INF (d)− INF (DT ))2
(16)

where INFFIP (d) is the predicted citations for article d in the test
set DT and INF (DT ) = 1

|DT |
∑

d∈DT
INF (d) is the mean of

the observed citation counts for an article in DT . R2 ∈[0, 1], and
a larger R2 indicates better performance and hence is desired.

4.4 Performance and Strategy Analysis
The performance of FIP for different years is visualized in Fig-

ure 4, and the detailed results are summarized in Table 1. The size
of circles indicates the number of points in each predicted citation
counts. Most circles are gathered within in the range of [0, 50],
indicating most of the papers have relatively low citations. Among
different prediction tasks, 10-year prediction has the most remark-
able performance. Furthermore, we notice a probable trend among
these series of experiments: accuracy increases as ∆t increases.
We will examine the sensibility of ∆t in the next section. The sys-
tem is not quite ideally performed in predicting short term influence
but it is still of great significance because it is likely to estimate the
long term influence for a paper more accurately, but the ultimate
influence determines the achievements of literature.

Comparing FIP with and without literature weights, we notice
that both strategies have merits. When Ψ(d) is not incorporated,
the overall accuracy of FIP is slightly better because it predicts low
citations very well and the lowly cited literature is the most major



Table 1: The performance of various prediction techniques for different feature combinations on the test set.
1-Year FIP (∆t=1) 5-Year FIP (∆t=5) 10-Year FIP (∆t=10)

Methods FData RData Combined FData RData Combined FData RData Combined
kNN 0.515 0.311 0.593 0.681 0.268 0.734 0.649 0.161 0.767
LR 0.625 0.479 0.692 0.798 0.134 0.811 0.885 0.123 0.912

SVR 0.590 0.268 0.644 0.723 0.162 0.771 0.813 0.111 0.861
CART 0.679 0.441 0.713 0.797 0.203 0.834 0.852 0.128 0.905
GPR 0.601 0.349 0.668 0.823 0.153 0.869 0.894 0.130 0.927

Table 2: The performance of various prediction techniques for different feature combinations on the test set. “+” indicates the single
feature group in isolation while “-” indicates the drop of the feature group from the full combination.

1-Year FIP (∆t=1) 5-Year FIP (∆t=5) 10-Year FIP (∆t=10)
Methods kNN LR SVR CART GPR kNN LR SVR CART GPR kNN LR SVR CART GPR
+Content 0.061 0.097 0.101 0.104 0.110 0.065 0.100 0.107 0.105 0.103 0.114 0.152 0.137 0.174 0.168
+Author 0.563 0.586 0.582 0.603 0.589 0.601 0.619 0.611 0.627 0.631 0.616 0.637 0.623 0.652 0.659
+Venue 0.236 0.331 0.333 0.362 0.331 0.315 0.347 0.340 0.369 0.372 0.345 0.380 0.371 0.402 0.417
-Content 0.623 0.711 0.706 0.727 0.719 0.651 0.760 0.735 0.769 0.781 0.684 0.795 0.773 0.820 0.867
-Author 0.267 0.323 0.327 0.412 0.419 0.340 0.409 0.427 0.441 0.432 0.406 0.435 0.412 0.468 0.455
-Venue 0.571 0.583 0.588 0.606 0.597 0.605 0.617 0.609 0.632 0.625 0.621 0.650 0.628 0.667 0.672

Combined 0.593 0.692 0.644 0.713 0.668 0.734 0.811 0.771 0.834 0.869 0.767 0.912 0.861 0.905 0.927

part of the whole collection. When literature weights modeled, FIP
biases to find the highly influential papers. We notice that in Figure
4.(2)-(3), the scattered circles in the high citation range are much
less, and are much closer to the criterion line y = x than those
in Figure 4.(1). Particular, few circles are in the upper triangle
area (i.e., when y > x), which indicates few significant litera-
ture is missed. However, for FIP with literature weights, the pre-
diction effect in the low citation range is compromised. Although
for lowly cited publications, the error of mis-prediction does not
cost as much as those highly cited ones, it remains to be the insuf-
ficiency of FIP and can be further improved.

Different predictive models have different performances on these
three individual tasks in our experiments. In general, non-linear re-
gression achieves better performance. From Table 1, we notice that
kNN has the worst performance. The result is as expected because
kNN merely seeks the most similar neighbors and takes the neigh-
bors’ citation counts as the predictive influence while utilizes little
information from the enormous training data. LR, by linear com-
bination of all features, and CART and GPR by non-linear regres-
sions have comparable performances and proves the generality of
our extracted features. GPR is the best and CART, compared with
GPR, has a little unstable performance. We also examine the grow-
ing factor in Table 1. Generally, the introduction of recent feature
distributions benefit the performance of future influence prediction.
Although the RData alone does not bring with excellent results, the
combination of features from FData and from RData enhance the
performance of what FData is capable of.

We then examine the different aspects of feature groups: paper
content, author expertise and venue impact in Table 2. Author ex-
pertise is proved to be the most influential feature group in influ-
ence prediction, with the highest performance of R2=0.659 in iso-
lation and the lowest performance of R2=0.419 for GPR when left
out from full feature combination. It is understandable that au-
thors are likely to cite papers written by reputable and influential
authors. Venue impact is also influential. Papers from prestigious
venues are likely to be highly cited. Unexpectedly, paper content
is proved to have the least significance, with the average perfor-
mance of R2=0.130 in isolation. We assume (1) authors have bi-
ases to choose their bibliography: they sometimes merely consider
author/venue reputation; (2) it seems that paper quality is repre-
sented by author/venue which create the paper. Influential authors
or venues seem to overwhelm the impact of paper content itself;

Table 3: Feature analysis: R2 result when with the pending
feature (“+Add”), and result in R2 when dropped from the all-
features model (“-Drop”).

FData RData
Feature +Add −Drop +Add −Drop
Novelty 0.059 0.754 0.066 0.751
T.Rank 0.079 0.783 0.135 0.678

Diversity 0.157 0.661
A.Rank 0.593 0.406 0.227 0.626
H-Index 0.244 0.611 0.186 0.663

Productivity 0.198 0.652 0.187 0.684
MPIA 0.585 0.419 0.363 0.596
TPIA 0.048 0.805 0.037 0.811

NOCA 0.056 0.794 0.158 0.643
Sociality 0.249 0.597 0.181 0.632
Authority 0.155 0.668 0.178 0.615
Versatility 0.160 0.649 0.139 0.665
Recency 0.101 0.738
V.Rank 0.337 0.603 0.225 0.648

V.Centrality 0.049 0.793 0.067 0.776
MPIV 0.329 0.616 0.196 0.667
TPIV 0.023 0.815 0.021 0.823

(3) it might also be due to the insufficient feature distilling for con-
tents, e.g. using abstracts as approximation may not be enough for
topic/diversity discovery.

We also conduct to a detailed experiment on all separate features
in Table 3, and the visualization is presented in Figure 5. We mark
the most prominent changes of performance in bold characters in
Table 3. For the FData, the absence of Author Rank, MPIA and So-
ciality lead to unfavorable decrease; for the RData, the absence of
MPIA, Authority and Author Rank results in similar effects. Hence,
the performance is different for the same feature from RData and
FData. For instance, the recent productivity is superior than the
overall productivity according to the experiments. The visual ex-
ample of Figure 5 better illustrates the comparisons between differ-
ent features and their combinations. TPIA and TPIV are the least
powerful prediction factors for both FData and RData, and the re-
sults confirm Figure 2.(7) and Figure 2.(15). Another interesting
discovery is that Novelty and Recent Novelty lead to similar per-



Figure 5: Performance comparison in R2 for feature analysis. “R-” denotes the feature measured on the RData. A.Rank/V.Rank
denotes author/venue rank, and F-All/R-All denotes all features measures on the FData or on the RData.

formances, perhaps due to the temporally recent bibliographies for
reference papers. We also find graph-based sociality is better than
simple NOCA.

4.5 Parameter Tuning
We have two free parameters in the temporal features. N is

to control the size of RData and when N=0, the consideration of
growing factor is off. γ controls the decay of the influence value
after a given period of years. When γ=0, the decaying factor is off.
We have tested several values, summarized in Table 4. The consid-
eration of feature decay brings positive outcomes, but the penaliza-
tion should better not be too much: γ=1 harms the performance.
We choose N=5 in our experiments because a RData where N=1
hardly makes any difference. From our observations and experi-
ments, the larger N is, the similar feature pattern it would be to the
pattern on FData. Based on performance tuning on development
set, we set k-NN as 5-NN empirically.

Table 4: Tuning temporal influence on growing factor/decaying
factors. N = 0 means no growing factor of RData and γ = 0
means no decaying factor for future feature values.

PPPPPPPDecay
Grow Off: N=0 N=1 N=5 N=10

Off: γ=0 0.799 0.812 0.833 0.808
γ=0.01 0.803 0.817 0.836 0.806
γ=0.1 0.747 0.765 0.791 0.752
γ=1 0.718 0.739 0.767 0.720

Strictly, ∆t is not a parameter to tune but we can see a increasing
trend for the performance as ∆t enlarges. A possible explanation
for such a increasing trend along with ∆t is that for papers with
certain features (such as high author rank, high MPIA, etc.) are
predicted to have high influence. However, as Figure 2.(16) shows,
citation accumulation takes time (about 10 to 20 years). The pre-
dicted citation counts will be overestimated for a short period of
years: hence in Figure 4, many circles are below the line y = x.

4.6 Application: Bibliography Recommenda-
tion by Re-Ranking Mechanism

Future influence prediction not only estimates literature quality,
but also can be used as auxiliary information in practical applica-
tions such as literature recommendation. Although our major focus
is on citation estimation, we also implement the prototype of liter-

ature recommendation/search system proposed in [1] to prove the
benefits of FIP. The system calculates the appropriate candidate ref-
erence papers for each article d and hence ranks the reference list
by the ranking score, but it takes no consideration of future influ-
ence. We combine these estimated citation counts with the original
ranking score to obtain the re-ranking score. In particular, the rank-
ing score SFIP for future influence is:

SFIP (d) =
log(1 + INF (d))− log(1 + INFmin)

log(1 + INFmax)− log(1 + INFmin)
(17)

where INFmax/min means the maximum/minimum predicted in-
fluence calculated. The score is scaled to [0, 1] so as to be com-
parable with the original ranking score SO(d) in [1]. Finally we
model the re-ranking score S as the linear combination:

S(d) = λ · SO(d) + (1− λ) · SFIP (d) (18)

Table 5: Result comparison in MAP for original and combined
ranking scores. λ is tuned at 0.3 from development set.

Method Dev MAP Test MAP
Original Score 12.51% 12.38%
Combined Score with FIP 15.66% 15.87%

As to evaluation, we train the model on the development set un-
til it achieves the highest Mean Average Precision (MAP) [1]. The
performance of bibliography recommendation is listed in Table 6,
from where we notice that a 3.49% of improvement. This phe-
nomenon does not necessarily indicate that authors intend to cite
future influential papers, but can be explained by citation patterns:
papers from reputable authors/venues are more likely to be chosen
as bibliography and these papers are predicted to be higher influen-
tial, which is not a coincidence.

5. CONCLUSION AND FUTURE WORK
In this paper we propose a novel solution for the task of Future

Influence Prediction (FIP), which identifies the potentially influen-
tial publications. Given a particular paper and its corresponding
features relevant with citation patterns (such as paper content, au-
thor expertise and venue impact), FIP predicts its possible citation
counts. We formally formulate FIP task as a learning problem uti-
lizing several regression models, and evaluate the prediction per-
formance by coefficient of determination (R2). We also implement



a practical system of bibliography recommendation via re-ranking
mechanism. The system outperform the baseline system, indicat-
ing papers with influential characteristics are likely to attract author
attentions when they choose references.

From our experiments, we find that authors have biases in citing
references. Author expertise and venue impact are the distinguish-
ing factors for the consideration of bibliography, among which, Au-
thor Rank, Maximum Past Influence of Authors make paper influen-
tial. Content features are not predictive perhaps due to (1) citation
bias, (2) paper quality is covered by authors/venues, or (3) insuffi-
cient content modeling. As FData and RData have different feature
patterns, the combination of both result in better performance. In
general, the prediction after a longer period can achieve the best
accuracy (R2=0.927 when ∆t = 10). Currently, we consider a
particular paper itself without considering any of its audience (cit-
ing papers). However, the impact of audience can also be modeled
because once a paper is cited by an influential audience, it is likely
to be influential as well. As considering the audience will result in a
multi-step influence diffusion problem and increase the complexity
in measurement. In this study, we do not consider the audience’s in-
fluence when measuring the influence of the cited literature, while
it can be further studied in the future.
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