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ACTPred: Activity Prediction in Mobile Social Networks
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Abstract: A current trend for online social networks is to turn mobile. Mobile social networks directly reflect our real

social life, and therefore are an important source to analyze and understand the underlying dynamics of human

behaviors (activities). In this paper, we study the problem of activity prediction in mobile social networks. We

present a series of observations in two real mobile social networks and then propose a method, ACTPred, based

on a dynamic factor-graph model for modeling and predicting users’ activities. An approximate algorithm based on

mean fields is presented to efficiently learn the proposed method. We deploy a real system to collect users’ mobility

behaviors and validate the proposed method on two collected mobile datasets. Experimental results show that the

proposed ACTPred model can achieve better performance than baseline methods.
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1 Introduction

Mobile social networks offer the unique advantage of
allowing users to find and connect at real time via
mobile phones. A current trend for Internet social
networks such as Facebook and Twitter is to turn
mobile. In parallel, native mobile social networks such
as Foursquare and Gowalla have also been created. The
natural characteristics of the mobile social networks
make it very different from traditional web-based
social networks. First, all users in the mobile social
networks use their real names. Second, in the mobile
social networks, the relationships between users are the
same as they are in the reality. Third, mobile users’
behaviors (e.g., SMS, calling log, location, etc.) are
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all related to real-world behaviors. This provides an
unprecedented opportunity for us to understand the
underlying dynamics of users’ behaviors in the physical
social network.

It is well-recognized that users’ activities in a mobile
social networks are influenced by various complex
and subtle factors[1, 2]. In this work, we aim to
answer an interesting question: i.e., can we predict a
user’s activities based on his/her historic behavior log
and mobile social network information, and how to
distinguish the effects of different social factors that
determine the users’ activities?

Recently, considerable related studies have been
conducted, for example, activity recognition[3-8],
dynamic emotion analysis[9-13], dynamic social network
analysis[14-18], and social influence analysis[19-23].
Emotion analysis is to study how an individual’s
emotional state (e.g., happiness and loneliness)
propagates through social relationships[9-11]. Dynamic
social network analysis is to model how friendships
drift over time using a dynamic model[17] or to
investigate how different pre-processing decisions
and different network forces such as selection
and influence affect the modeling of dynamic
networks[18]. Social influence analysis either aims
to verify the existence of social influence[19, 24],
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quantify the influence strength[21], or model the
influence diffusion process[20]. In the social activity
prediction problem we are going to address, we try
to model the various factors that may influence users’
dynamic activities into a unified model and to predict
users’ future activities. The social activity prediction
problem addressed in this paper is very different
from those addressed in these works. Most existing
research on activity recognition focuses on classifying
the users activity based on his attributes (such as
location). However, few works consider the activity
prediction problem in (mobile) social networks.

To clearly demonstrate this problem, we give an
example in Fig. 1. The left part shows the social network
of John and his friends. Each user is associated with
his/her historic behavior log at time t . Our goal is to
predict each user’s activity at time t C 1, for example,
what will John do tomorrow? In the prediction, we
need to not only consider the user’s personal attributes
(e.g., location, call, SMS message, emotion, etc.),
but also consider the user’s friends’ activities (social
influence) and the user’s activities at previous time
(temporal dependence). Another technical challenge
here is that, as shown in Fig. 1, the change of each user’s
behavior (or attribute) may happen on a continuous time
scale. Existing methods that partition the dynamic data
into different timestamps would not work well.

In this paper, we formally formulate the problem
of activity prediction in mobile social networks and
perform a series of observations in two mobile social
networks. Based on the observations, we propose
a dynamic factor-graph model named ACTPred for
predicting users’ mobility activities. ACTPred learns
a discriminative model for predicting users’ activities
at time t C 1 by incorporating different types of

Social inuence

Social correlation

Temporal dependence

What will John do tomorrow?

Time t

Time (t+1)

Fig. 1 Problem illustration of social activity prediction.

information (personal attributes, social influence, and
temporal dependence) before time t into a unified
model. We develop an approximate algorithm using
mean fields to efficiently learn the proposed method.

To evaluate the proposed method, we deployed
a real system to collect users’ mobility behavior
records, including location, calling logs, and SMS text
messages. We also asked the user to annotate their daily
emotional status and activities. We collected two mobile
datasets. Our experimental results on the two datasets
show that the proposed ACTPred model can achieve
better performance (10%-30% in terms of F1-measure,
with p-test � 0:01) for social activity prediction than
several alternative models.

2 Problem Formulation

In this section, we first give several preliminary
definitions and then present a formal definition of the
problem.

A static mobile social network can be represented
as G D .V;E/, where V is the set of jV j D N users
and E � V � V is the set of undirected links between
users. Each user has various activities in the mobile
social network.

Definition 1 Activity A user vi ’s activity status
at time t is represented as yti 2 Y , where Y is the space
of the activity status. We denote the historic log of all
users’ activity status up to time t as Y D fyti gi;t .

In general, the activity status can be defined as a set
of events. For example, in our mobile social networks,
we define eight different events: shopping, work, play,
study, sleep, walk, eat, and meeting. In addition, each
user vi can be associated with a number of attributes
xi (e.g., SMS message and emotion). All the attributes
would change over time; hence we associate the value
of the j -th attribute xij of user vi with the time t ;
i.e., xtij (please note that t is defined on a continuous
scale). Given this, we can define the input of our
problem as a dynamic continuous network.

Definition 2 t-Dynamic continuous network
The dynamic continuous network (from time 0 to time
t ) is denoted as Gt D .V;Et ; X t ; Y t /, where V is the
set of users, etij 2 E

t is the edge between users vi and
vj up to time t , and X t is the continuous time-evolving
attributes of all users in the network, and Y t represents
the set of activities of all users in the social network.

We use the superscript t to denote that the dynamic
continuous information in the network Gt is up to time
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t ; that is, all edges E, attribute changes X , and activity
status changes Y are recorded until time t . Based on
these concepts, we can define the tasks of activity
prediction in mobile social networks.

Problem 1 Social activity prediction Given a
dynamic continuous network Gt , the goal is to learn
a predictive function f to predict the users’ activities
Y .tC1/ at a future time .t C 1/. Formally, we have

f .X .tC1/; V; E.tC1/jGt /! Y .tC1/:

Our formulation of the social-activity prediction
problem addressed in this paper is very different
from those in existing works. Most existing works
on activity recognition do not consider the problem
in the mobile social networks. A few works[9, 10, 25]

studied how an individual’s emotional state (e.g.,
happiness and loneliness) influences friends in their
social network. However, emotion is very different
from activity. The underlying influence patterns are
quite different and, more importantly, besides social
influence, what are the other fundamental factors that
affect users’ activities?

3 Data and Observations

Before proposing our method, we first engage in some
investigation of the degree to which a user’s activity
correlates with other social patterns, since a major
motivation of our work is to discover the underlying
factors that influence the activity dynamics.

3.1 Data sets

We deployed a system in the author’s university
to collect the personal mobility data. Specifically,
sponsored by a large mobile company, we developed
software and installed it on mobile phones, under
an agreement with the mobile user. The software
automatically collected and uploaded the user’s
behavior data onto a server. For each user, we collected
his calling log, SMS text messages, location, etc. Also
we invite all users to annotate their activities and
emotional status. This data collection resulted in two
datasets: One is from May 13th to July 30th, 2010
(Dataset1), and the other is from November 1st to
December 31st, 2010 (Dataset2). The two mobile
social networks data sets represent more than 79 200
hours of continuous data on human activities and
emotional status. In total, there are about 25 114 human
annotations of the activity status. The two data sets are
from two different groups of users (about 130 users in
total). All the users are students in a university. The first

group has 30 users, who have 163 friend relationships
with each other (5.5 on average), and in total we
have 9756 activity annotations. The second group is
comprised of 100 users and 280 social relationships (9.2
on average); in total, these users made 61 324 activity
annotations. Statistics of the two data sets are shown in
Table 1.

3.2 Correlation pattern analysis

We conducted a series of analyses on the two mobile
social networks. In the analyses, we focused on the
following aspects: (1) attributes correlation: how a
user’s attributes correlate with his activity status; (2)
temporal correlation: how a user’s current activity
correlates with his activity in the recent past; (3)
social correlation: how a user’s activity correlates with
activities of his friends.

3.2.1 Attributes correlation
Each user in the social networks has her/his own
characteristics, which may partly determine his activity
at a specific time. In our mobile social networks, the
main attributes include location, different time (hour) of
a day, emotional status (e.g., “happy” or “sad;), calling
log, SMS text, etc. We first analyze the correlation
between each attribute and the user’s activity.

Figure 2a shows the correlation between user’s
emotion and his activity. It can be easily seen that when
the emotion of a user stays at “Positive” (“good” and
“wonderful”), she is inclined to go shopping or playing,
and vice versa.

On the other hand, “meeting” seems to have a
very negative effect: When a user’s emotion stays
at “bad” and “terrible”, he/she is very likely to
be in a meeting. Users’ activities are also highly
time-dependent. Some activities have a clear
periodicity. Figure 2b shows the likelihood of
each activity being performed at different times of
day. Generally speaking, the users are more active
in the afternoon. Comparing with “work”, “study”
mainly happens in the morning and night. “Location” is
another important factor to influence users’ activities.
Figure 2c shows the correlation of user’s location with
her/his current activity. We see that the users’ activities

Table 1 Statistics of the two MSN data sets.

Number of
users

Number of
links

Number of
avg. links

Number of
label

Dataset1 30 164 10.8 9756
Dataset2 100 4632 9.2 61 324
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Fig. 2 Correlation analysis. (a) The user’s activities correlate with his/her emotion status. (b) The user’s likelihood of
performing an activity at different times (hour) of a day. (c) Location correlation. The user’s locations correlate with his/her
current activity. Different icons represent “shopping”, “work”, “study”, “sleep”, “walk”, “eat”, and “meeting”.

imply some places for “eat”, some places for “study”,
etc.

3.2.2 Temporal correlation
The user’s activity is highly correlated to her/his
behavior in the recent past. Figure 3 confirms this
temporal correlation of users’ activities in mobile social
networks. To most of the activities, a user’s activity
status has a higher probability to remain the same,
except with some activities, such as “eat” and “walk”.

3.2.3 Social correlation
In this analysis, we try to find whether and how
friends’ activities influence each other. To gain a fine-
grained understanding influence patterns, we categorize
the relationship between users into four classes:
“stranger”, “know each other”, “friend”, and “good
friend”. Figure 4 shows how the user’s activity status
is influenced by her/his friends’ activities. We see that,
on average, the user has a higher likelihood to do the
same as her/his friends than strangers. We also find an
interesting phenomenon that “study” and “shopping”
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Fig. 3 Temporal correlation. The user’s previous activity’s
influence on his current activity. Average is the likelihood of
a user with activity y and Dependent is the likelihood given
that the user does the same at previous time.
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Fig. 4 Social correlation. The influence of friends’ activities
on one’s current activity. It represents the likelihood of a user
doing a activity when his/her good friends, friends, people
he/she know, strangers do the same.

seem to be more infectious in the network. When a
user starts to “study” or “shopping”, the possibility that
her/his good friends are also studying and shopping is
twice as high as strangers. Some other activities such
as “play”, “eat”, and “walk” seem only have influence
effects between good friends.

4 Our Approach

To summarize, for modeling and predicting users’
activities, we have the following intuitions:

(1) Attribute correlation: Personal attributes have a
strong influence on users’ activities.

(2) Temporal correlation: One’s activity is highly
time-dependent.

(3) Social correlation: One’s activity is influenced by
her/his friends’ activities.

By leveraging these intuitions, we formulate the
problem of activity prediction in a dynamic continuous
factor-graph model and propose a method, ACTPred,
for predicting users’ activity. The basic idea in this



Jibing Gong et al.: ACTPred: Activity Prediction in Mobile Social Networks 269

method is to define the above intuitions using factor
functions and then combine all the factor functions in a
probabilistic model. An objective function is defined by
the joint probability of the factor functions, and training
the model is to find a parameter configuration that
maximizes the joint probability. For model-parameter
estimation, we present a Mean-Field-based algorithm.
Prediction of the user’s activity is to find an activity
status configuration that can maximize the probability
according to the training parameters.

4.1 The proposed model

In particular, we define three kinds of factor functions:
� Attribute correlation factor function
ff .xt

ik
; yti /gk . It denotes the attribute value

associated with each user vi at time t .
� Friend influence factor function g.yti ; y

t 0

j /; t
0 <

t , represents the influence of user vj ’s activity at
time t 0 on user vi ’s activity at time t . This function
only appears when user i and user j are friends,
and we define the function as gij .y

t
i ; y

t 0

j / D

ˇij .t � t
0/g.yti ; y

t 0

j /.
� Temporal correlation factor function h.yt 0i ; y

t
i /;

t 0 < t , represents the dependency of one activity
status at time t on his activity at the recent
past time. Specifically, we define function h as
hi .y

t
i ; y

t 0

i / D �ij .t � t
0/h.yt

0

i ; y
t
i /.

We define the factor functions f .xt
ik
; yti /, g.y

t
i ; y

t 0

j /,
and h.yt

0

i ; y
t
i / as binary functions, i.e., if xt

ik
and yti fit

the data, the function value is 1, otherwise 0. The three
factors can be instantiated in different ways, reflecting
our prior knowledge for different applications. Here,
we use the mobile social networks as the example to
explain how we define the factor functions. Based on
the mobile social networks data observation, we define
the following attribute-factor functions:

Location This feature represents the location of the
user. In mobile social networks, we use GSM data to
locate the user. The location is usually denoted as the
longitude and the latitude values. To reduce noise in the
data, we group the location points by area code (one
attribute of the GSM data).

Emotion This feature represents the user’s
emotional status. In our dataset, all users are required
to annotate their emotional status when they perform
the activities.

Time (hour) of a day This feature represents the
time when the user performed an activity. For example,
if Nancy went shopping at 10 o’clock in the morning,

then the value of this feature is 10.
Finally, by combining all the factor functions

together, we can define the following objective
function:

p.Y jGt / D
1

Z
expf

X
vi2V

X
xt

ik
2X

˛kfk.x
t
ik; y

t
i /C

X
vj2NB.vi /

X
.yt

i
;yt0

j
/2Y t

ǰ i .t � t
0/g.yti ; y

t 0

j /C

X
vi2V

X
.yt

i
;yt0

i
/2Y t

�i .t � t
0/h.yt

0

i ; y
t
i /g (1)

where Z is a normalization factor; NB.vi / denotes the
set of vi ’s neighbors in the network; .yti ; y

t 0

j / indicates
a pair of activities between vi at time t and vj at a recent
past time t 0.

4.2 Model learning

Training the factor graph model is to estimate a
parameter configuration � D .f˛kg; f ǰ ig; f�ig/

from a given historic attribute-value log X t , which
maximizes the log-likelihood objective function
L.�/ D logp� .Y jGt /, i.e.,

�? D arg max
�

log p.Y D yjx; �/ (2)

It is usually intractable to do exact inference in
such a graphical probabilistic model. The intrinsic
difficulty is to calculate the normalization factor Z,
which sums up all possible configurations of Y that
is exponentially proportional to the number of nodes
in the graph. In this paper, we employ a Mean-
Field algorithm[26] to make an approximate inference
on the graphical model. Details of the learning
algorithm are summarized in Algorithm 1, where
bi .y/ is the marginal distribution of user i doing
activity y. The general process is to first calculate the
marginal probability using mean field and then use
the gradient learning to update each parameter � D
.f˛kg; f ǰ ig; f�ig/.

4.3 Activity prediction

Based on the learned parameter � , we can predict
the users’ future activities. Instead of constructing a
graph model again and applying the learned parameter
to make an inference on the graph, in this paper,
for simplicity, we utilize an ICA[27] for predicting
users’ activities. This algorithm can be also viewed
as a “hard” version of the Mean-Field algorithm. In
particular, it performs a preliminary prediction using
only local attributes, and then propagates the prediction
probability in the social network to update the
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Algorithm 1: Model learning.

Input: number of iterations, parameters ��� D .f˛kg; f ǰ i g;

f�i g/, and graph G, learning rate �;
Output: learned parameters��� D .f˛kg; f ǰ i g; f�i g/;
Initialize parameters;
repeat

for doeach Yi 2
EY

bi .y/ 1

end
repeat

for doeach Yi 2
EY

bi .y/ ˛�i .x
t ; yt / �

expf
P

.Yi ;Yj /2E

P
y0 ˇijg.yi

t ; y0
j
/bj .y

0
j
/g

where ˛ is a normalizer.
end

until ;
for doeach �i 2���

Calculate���i ;
�new

i
D �old

i
C ����old

i
;

end
until ;convergence

all bi .y/ stop changing

prediction results. The update scheme is similar
to PageRank. Such a strategy has a theoretical
convergence property, and was also used in Ref. [28].

5 Experimental Results

In this section, we present the experimental results
of the proposed ACTPred, and then evaluate its
effectiveness and efficiency.

We use the datasets introduced in Section 3 in our
evaluation. We consider two alternative methods for
social activity prediction.
� SVM-Simple. The method only uses users’

attributes (i.e., user attribute factor functions)
as features to train a classification model, and
then use the trained model to predict the activity
of users. For SVM, we use LIBSVM (http://
www.csie.ntu.edu.tw/ cjlin/libsvm).
� SVM-Net. Besides using users’ attributes, the

method also includes the network information
(i.e., social correlation) as features.

We evaluate the performance of activity prediction
by different methods in terms of Precision, Recall,
F1-Measure, and average Accuracy. The learning
algorithm for ACTPred is implemented in C++ and all
experiments are conducted on the server with Windows
Server 2003, Intel Xeon(TM) CPU 3.20 GHz, and 4 GB
memory.

5.1 Prediction performance

On both datasets, we use the historical data (from time
0 to t � 1) of the users as the training data. Then
we predict a user’s activity status at time t given the
attributes of the user at time t . In particular, we choose
the data in the last 10 days as the test data and the rest
(about 50 days’ worth) as the training data. Table 2 lists
the two approaches’ average prediction performance
on the two data sets. Table 3 further provides the
detailed performance of different approaches on each
activity. From the results, we have the following
observations.

First, these results show that our method significantly
outperforms the comparison methods on both data
sets, with an average of 6% (by F1-Measure)
improvement compared with the SVM-Simple and
SVM-Net methods.

Second, for some activities, such as shopping, the
precision and recall of SVM-Simple and SVM-Net are
both 0.0, which means the two methods do not predict
any “shopping” activity in the test data. By comparison,
our method, by taking advantage of the social influence
and temporal correlation, reaches a performance of
12.05% (by F1-Measure).

Third, from Tables 2 and 3, we can also
see that simply combining all the features (social
correlation, temporal correlations) together (as in
SVM-Net) will yield an improvement (2.7% by F1)
over SVM-Simple. However, the performance is still
unsatisfactory. Our method, by leveraging of social
influence information and the temporal correlation
information, achieves a further improvement over
SVM-Net.

5.2 Analysis and discussion

We conduct the following analysis on the results.

5.2.1 Effect of the number of sampling iterations
We design an experiment to see how the number
of the iterations in our learning algorithm affects

Table 2 Average accuracy and F1-score of activity
prediction in the two mobile social networks with different
approaches. (%)

Method
Dataset1 Dataset2

Accuracy F1 Accuracy F1
ACTPred 73.65 30.52 73.26 30.43

SVM-Simple 49.61 23.61 51.63 24.19
SVM-Net 51.77 23.59 54.13 26.83



Jibing Gong et al.: ACTPred: Activity Prediction in Mobile Social Networks 271

Table 3 Performance of activity prediction in the two mobile social networks with different approaches. (%)

Activity Method
MSN Dataset1 MSN Dataset2

Precision Recall F1-Measure Precision Recall F1-Measure

Working
ACTPred 4.56 39.09 42.09 44.31 42.22 43.24

SVM-Simple 30.31 83.35 44.45 25.52 13.46 17.62
SVM-Net 30.66 84.74 45.03 29.48 56.98 38.86

Studying
ACTPred 42.71 41.38 42.03 45.33 39.55 42.24

SVM-Simple 50.61 18.08 26.65 33.33 4.93 8.60
SVM-Net 51.15 13.80 21.74 33.14 7.31 11.98

Playing
ACTPred 38.41 42.82 40.50 29.89 36.29 32.78

SVM-Simple 50.61 18.08 26.65 33.33 4.93 8.60
SVM-Net 51.15 13.80 21.74 33.14 7.31 11.98

Eating
ACTPred 8.91 28.18 13.54 12.70 34.83 18.62

SVM-Simple 39.90 27.73 32.72 27.57 50.86 35.75
SVM-Net 40.28 28.63 33.47 32.28 36.69 34.34

Shopping
ACTPred 6.85 50.0 12.05 19.57 26.47 22.50

SVM-Simple 0.0 0.0 0.0 0.0 0.0 0.0
SVM-Net 0.0 0.0 0.0 0.0 0.0 0.0

Walking
ACTPred 10.32 37.14 16.15 6.47 30.56 10.68

SVM-Simple 76.47 1.03 2.03 0.0 0.0 0.0
SVM-Net 93.73 1.17 2.30 10.00 0.08 0.15

the prediction performance. We used the average
F1-Measure of all classifiers to measure the overall
performance. Since the results on Dataset1 and Dataset2
look almost the same, we only display the experimental
result on Dataset2 in Fig. 5. As it illustrates,
the ACTPred algorithm using mean field learning
converges in less than 20 iterations on both data sets,
suggesting a good convergence property.

5.2.2 Factor contribution analysis
In ACTPred, we consider three types of factor
functions: social influence (F), temporal-correlation
(T), and user attributes. We remove these factors
one-by-one to show their impacts on the prediction
performance. In particular, we first remove friend
influence factor function, denoted by ACTPred-F, then
we remove the time-dependent factor function, denoted
by ACTPred-FT.
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Fig. 5 The influence of sampling iterations (Dataset 2).

Figure 6 shows the average F1-Measure scores of
the different versions of ACTPred. We observe a clear
drop on the performance when ignoring some of the
factors, which indicates our method works well by
combining the different factor functions. From Fig. 6,
we can see that the temporal correlation is a very
important factor. There is a drop from “ACTPred-F”
to “ACTPred-FT”; performances decrease from 29.1%
to 21.6% in Dataset1, and from 30.0% to 24.5% in
Dataset2, when the temporal factor was removed. We
also study how users’ most recent activities could
influence users’ current activities. Figure 7 shows three
prediction results: (1) without considering temporal
correlation (denoted as �T), (2) only considering the
most recent previous activity (denoted as +T1), and (3)
considering two recent previous activities (denoted as
+T2).
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Fig. 6 Contribution of different factor functions. ACTPred-
F excludes friend influence factor. ACTPred-FT excludes
both the friend and temporal-correlation factors.
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Fig. 7 Prediction performance of ACTPred using different
temporal factors. “–T”, “+T1”, and “+T2” respectively
stand for the prediction results without considering temporal
correlation, with considering the most recent previous
activity, and considering two recent previous activities.

5.2.3 Error analysis
We conducted an error analysis on the results of our
approach. We observe two major sources of errors.
� Missing data. Some mobile context data is

missing. For example, “Yin” did not turn on his
phone for a half day, thus his mobile context data
was lost. The location and the temporal correlation
information is very important for building a
successful predictive model.
� Unexpected labeling. Sometimes, the users

may change their activities “unpredictably”. For
example, “Wei” continuously worked in the
laboratory for two days during June 15th and
16th. We finally found that this is because of
an approaching deadline. However, such deadline
information is not collected in our model.

6 Related Work

6.1 Activity recognition

Some previous papers have investigated the problem
of activity recognition. In Ref. [4], a probabilistic
approach referred to as Segmentation-based Activity
Recognition (SAR) for activity recognition is
proposed. In this approach, instead of the precise
location information, a rough idea of the general
trends of a user’s movements is sufficient for activity
recognition. Reference [29] studied the problem
of activity prediction from videos, and Ref. [30]
further studied collective activity prediction from
videos. However, all these works do not consider
the social perspective in the prediction. One of the
key features of real-world human activities is that
multiple goals are often mixed together in sophisticated
way. Reference [5] analyzed the MIT PlaceLab House

data and presented a two-level probabilistic framework
from observed sensor-reading sequences using a
Conditional Random Fields (CRF) model. In Ref. [31],
a hybrid approach by combining ontology and statistical
inference is proposed. However, none of these takes
social influence into consideration. Comparing with
these works, in our paper we study the problem of
activity prediction in mobile social networks, and
propose a continuous dynamic factor graph to solve the
problem.

6.2 Dynamic behavior analysis

Quite a few works have been conducted for social
dynamic behavior analysis. Shi et al.[32] studied the
patterns of participation behavior, and the features
that influence such behavior on different real world
data sets. Tang and Liu[33] proposed relational
learning to address the interdependency among data
instances. Backstrom et al.[34] proposed a partitioning
on the data that selects for active communities of
engaged individuals. Eagle et al.[35] presented a new
method for measuring human social behavior based
on mobile phone data. Tang et al.[21] built a topical
factor graph model to measure the influential strength
in the social network. And Tan et al.[36] proposed a
noise tolerant model for predicting user’s actions in
online social networks. Also, some works are conducted
in terms of social science, trying to identify the
principles underneath human beings’ behaviors in a
social network. The works of Rosenquist et al.[37] and
Fowler and Christaki[38] are among the representative
researches in this field.

6.3 Social network analysis

Considerable research has been done for dynamic social
network analysis and social influence. Kossinets and
Watts[39] provided statistical analysis on a empirical
data set, revealing interesting patterns about how
nodes’ interaction affects the network structure. Onnela
et al.[40] studied the correlation between interaction
strength and network structure. Ahmed and Xing[41]

proposed a random field based model to infer the
interaction between nodes with the samples of users’
status at different time slots. Crandall et al.[24] further
investigated the correlation between social similarity
and influence. More recently, La Fond and Neville[42]

examined the effects of social influence on people’s
opinion. Gomez-Rodriguez et al.[43] proposed an
effective model to track the flow of information and
influence in an online social network. Some other
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works also study this problem from the perspective of
heteroengeous information network[44].

7 Conclusions

In this paper, we study a novel problem of activity
prediction in mobile social networks. We propose a
method, called ACTPred, for modeling and predicting
users’ activities in the social network. We present a
series of observation analyses and propose a factor
graph model to formalize the discovered intuitions
in a unified model. For model learning, we employ
a Mean Field algorithm to obtain an approximate
solution. Experimental results on two real social
networks demonstrate that the proposed approach can
accurately predict users’ activities and obtains a clear
improvement (10%-20% by F1) over the comparison
methods.
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