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ABSTRACT

Users’ behaviors (actions) in a social network are infludrimevar-
ious factors such as personal interests, social influemecegkbal
trends. However, few publications systematically study lsocial
actions evolve in a dynamic social network and to what exdént
ferent factors affect the user actions.

In this paper, we propose a Noise Tolerant Time-varying dfact
Graph Model (NTT-FGM) for modeling and predicting sociat ac
tions. NTT-FGM simultaneously models social network stiue,
user attributes and user action history for better preafictif the
users’ future actions. More specifically, a user’s actiotirae ¢
is generated by her latent statetatvhich is influenced by her at-
tributes, her own latent state at time- 1 and her neighbors’ states
at timet andt¢ — 1. Based on this intuition, we formalize the social
action tracking problem using the NTT-FGM model; then pnése
an efficient algorithm to learn the model, by combining theaisl
from both continuous linear system and Markov random field.

Finally, we present a case study of our model on predicting fu
ture social actions. We validate the model on three diffetgres
of real-world data sets. Qualitatively, our model can digcanter-
esting patterns of the social dynamics. Quantitativelpeginental
results show that the proposed method outperforms sevasalibe
methods for social action prediction.
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1. INTRODUCTION

With the success of many large-scale online social networks
such as Facebook, MySpace, Ning, and Twitter, social nétwor
analysis has become a popular research topic, attractngetr-
dous interests from mathematics, biology, physics, coepstti-
ence, and sociology. Considerable research has focuseddn fi
ing the macro-level mechanisms of the social influence sisch a
degree distributions, diameter, clustering coefficieammunities,
and small world effect [1, 8, 21, 28]. However, these methurds
vide us with limited insights into the micro-level dynamiakthe
social network such as how an individual user changes hiaweh
iors (actions) and how a user’s action influences his friends

It is well recognized that users’ actions in a social netwain
influenced by various complex and subtle factors [11, 17]thia
work, we address the social action tracking problem: i.ew o
simultaneously model the social network structure, ugeibates
and user actions over time?

Recently, quite a few related studies have been conduated, f
example, dynamic social network analysis [12, 16, 19, 2}, 25
cial influence analysis [2, 6, 7, 15, 23, 29, 20], and groupabih
analysis [3, 13, 26, 31]. The social action tracking probkeda
dressed in this paper is very different from these works. dbyic
social network analysis is to model how friendships drifeotime
using a dynamic model [24] or to investigate how differerg-pr
processing decisions and different network forces sucklastion
and influence affect the modeling of dynamic networks [25)- S
cial influence analysis either aims to verify the existentcsozial
influence [2, 6, 7, 15, 23] or tries to quantify the strengththef
influence [10, 29]. Group behavior analysis intends to stilngy
patterns of user joining different communities [26], or ¢ain the
classification patterns based on the network structure antkot
information [31], or to study the statistics of user groupk [n the
social action tracking problem, we try to model the varicastdrs
that may influence users’ dynamic behaviors (actions) intoited
model.

Motivating Examples To clearly motivate this work, we con-
duct the following analysis on three real social networksvitT
tert, Flickr?, and Arnetminet. On Twitter, we define the action as
whether a user discusses the topic “Haiti Earthquake” onmtiis
croblogs (tweets). On Flickr, we define the action as whegher
user adds a photo to his favorite list. On Arnetminer, théoact

is defined as whether a researcher publishes a paper on &cspeci
conference (or journal). The analysis includes three daspét)
social influence; (2) time-dependency of users’ actionsa¢gion

*http://www.twitter.com, a microblogging system.
2http://www.flickr.com, a photo sharing system.
Shttp://arnetminer.org, an academic search system.
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Figure 1: Social influence. The x-axis stands for the percentage of
one’s friends who perform an action att — 1 and the y-axis represents
the likelihood that the user also performs the action att.
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Figure 2: Time-dependency of users’ actionsThe x-axis stands
for different timestamps. “dependent” denotes the likelitbod that a
user performs an action which was previously performed by heself;
“average” represents the likelihood that a user performs tre action.

correlation between users. Figure 1 shows the effect oabkindiu-
ence. We see that with the percentage of one’s friends peirigr
an action increasing, the likelihood that the user alsoqoer$ the
action is increased. For example, when the percentage & one
friends discussing “Haiti Earthquake” on their tweets @ases the
likelihood that the user posts tweets about “Haiti Earthgids
also increased significantly. Figure 2 illustrates how a’ssetion

is dependent on his historic behaviors. It can be seen thavags
time-dependency exists for users’ actions. For instanaelvat-
ter, averagely users who posted tweets about “Haiti Eaatkeju
will have a much higher probability (+20-40%) to post tweets
this topic than those who never discussed this topic on thegs.
Figure 3 shows the correlation between users’ actions atdhee
timestamp. An interesting phenomenon is that friends may pe
form an action at the same time. E.g., on Twitter, two frichdge

a higher probability (+19.6%) to discuss “Haiti Earthquakean
two users randomly chosen from the network.

Thus, the problem becomes how to effectively and efficiently
track the dynamic users’ actions. This problem is non4fiand
poses a set of unique challenges.

First, the social network data (e.g., network structure sod
cial actions) are very noisy. Users performing the sameoacti
may not have the same preference towards that action. Lskewi
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Figure 3: Action correlation. The x-axis stands for different time
windows. “friend” denotes the likelihood that two friends perform an
action together; “random” represents the likelihood that two random
users perform the action together.

velop a distributed implementation based on MPI (Message-
Passing Interface) to scale up to real large networks.

e \We present a case study on social action prediction using the
learned NTT-FGM model.

e \We conduct experiments on three different data sets: Titte
Flickr, and Arnetminer. Experimental results show that the
proposed NTT-FGM model can achieve a better performance
for the action prediction than several alternative models.

The rest of the paper is organized as follows: Section 2 fdyma
formulates the problem; Section 3 explains the proposedeiod
Section 4 presents the algorithm for learning the modelti@e&
gives experimental results that validate the effectiverssd the
computational efficiency of our methodology. Finally, Sewt6
discusses related work and Section 7 concludes.

2. PROBLEM DEFINITION

In this section, we first give several necessary definitiamd a
then present a formal definition of the problem.

A static social network can be representedias (V, E), where
V is the set offV/| = N users andE C V x V is the set of
directed/undirected links between users. Given this, wededine
the user’s action as follows.

Definition 1. Action: An actiony performed by usev; at time
t can be represented as a triglg v;, t) (or shortlyy?!). Let Y* be
the set of actions of all users at timeFurther we denote all users’
actions as the action histoly = {(y, vs, t) }4,¢.

Without loss of generality, we first consider the binary aati
that isy! € {0, 1}, wherey! = 1 indicates that user; performed
an action at time, andy! = 0 indicates that the user did not per-

users who did not perform the action do not mean they have no form the action. Such an action log can be available from many

interests towards the action. Second, user behaviors gtayhi
time-dependent. For example, the influence of a user on anoth
(strongly) depends on their historic interactions. Thirglers’ ac-
tions are usually correlated. In addition, as real socibhogks are
getting larger with thousands or millions of users. It is ortant to
develop the model that can scale well to real large data sets.

Contributions In this paper, we try to systematically investigate
the problem of social action tracking with the following ¢obu-
tions:

o We formally formulate the problem of social action tracking
and propose a unified model: Noise Tolerant Time-varying
Factor Graph Model (NTT-FGM).

e We present an efficient algorithm for model learning and de-

online systems. For example, on Twitter, the actibrcan be de-
fined as whether uses; posts a tweet (microblog) about a specific
topic (e.g., “Haiti Earthquake”) at time Further, we assume that
each user is associated with a number of attributes and thues h
the following definition.

Definition 2. Time-varying attribute matrix : Let X* be an
N x d attribute matrix at time in which every rowx; corresponds
to a user, each column an attribute, and an elemgnis the ;*"
attribute value of usew;.

The attribute matrix describes user-specific charactesisand
can be defined in different ways. For example, on Twitterheac
attribute can be defined as a keyword and the value of anwtrib
can be defined as the frequency of a keyword occurring on &user



posted tweets. Thus, we can define the input of our problerat a s
of attribute augmented networks.

Definition 3. Attribute augmented network: The attribute
augmented network is denoted @ = (V*, E*, X', Y*"), where
V' is the set of users anfl’ is the set of links between users at time
t, andX"* represents the attribute matrix of all users in the network
at timet, andY* represents the set of actions of all users at time

Based on the above concepts, we can define the problem of so-

cial action tracking. Given a series ®ftime-dependent attribute
augmented networks, the goal is to learn a model that carfibest
the relationships between the various factors and the wsiena.
More precisely,

Problem 1.Social action tracking. Given a series of
T time-dependent attribute augmented networké&”
(V' E", X", Y")}, wheret € {1,---,T}, the goal of social ac-
tion tracking is to learn a mapping function

fr(G, .. ¢TI VT ET XT) — v T

Note that in this general formulation, we allow the graplustr
ture to evolve over time and also arbitrary dependency froen t
past. To have a tractable problem to work with, we model the
time-dependency by introducing a latent state for each hdere
specifically, their actions are generated by their lateatest which
are dependent on their neighbors’ states at tirmedt — 1.

Our formulation of social action tracking and predictiomiste
different from existing work on dynamic social network arsis.
Scripps et al. [25] investigate how different pre-procegsileci-
sions and different network forces such as selection andeinfle
affect the modeling of dynamic networks. Sarkar and Moodg [2
propose a dynamic model that accounts for friendshipsmyitiver
time. Both papers consider using user similarity and saatraic-
ture to predict links between social users. Tang et al. sthdy
topic-level social influence and Goyal et al. [10] investigaow to
learn the influence probabilities from the history of usarions.
Both learned model can be used for action prediction. Howéve
methods do not consider user’s own attributes and histotiorss.
One’s action should be determined by his intrinsic prefeeeto
some extent. As for social influence analysis, there are guibt
of publications focusing on measuring the existence of énfte
qualitatively [2, 27], but most of these methods do not cdeisi
modeling and predicting user actions.

3. NOISE TOLERANT TIME-VARYING
FACTOR GRAPH MODEL (NTT-FGM)

To summarize, for modeling and tracking social actions, axeh
the following intuitions:

1. Users’ actions at timeare influenced by their friends’ his-
toric actions (time< t).

2. Users’ actions at timeare usually dependent on their previ-
ous actions.

3. Users’ actions at a same tirhbave a (strong) correlation.

Moreover, the discrete variablg only models the user’s action
at a coarse level, but cannot describes the intention dexrée
user to perform an action. Directly modeling the social@awiy”
would inevitably introduce noise to the model. Hence, aionious
variable for modeling thection biasis favorable.

With the intuitions discussed above, we propose a nhoise-tole
ant time-varying factor graph model (NTT-FGM) for sociatian

Figure 4: Graphical representation of the NTT-FGM model.
Each circle stands for a user's latent action statez! at time ¢ in the

network, which is used to characterize the intention degreef the user
to perform the action; the latent state is associated with tk actiony?,

a vector of attributes x¢, and depends on friends’ historic actions ..

and correlates with friends’ actions iwi attime ¢; g(.) denotes a factor
function to represent the friends’ influence on a user’s actin; h;(.) rep-

resents a factor defined on usep;’s attributes; and h;;(.) represents a
factor to capture the correlation between users’ actions.

tracking. Before explaining the model in detail, we firstauuce
the definition of latent action state.

Definition 4. Latent action state For each user’s actiogt, we
define a (continuous) latent state € [0, 1], which corresponds to
a combination of the observed actignand a possible bias, to de-
scribe the actual intention degree of the user to perfornattien.

Figure 4 shows the graphical structure of the NTT-FGM model.
An action of usew; at timet, i.e.,y! is modeled by using a (con-
tinuous) latent action state, which is dependent on friends’ his-
toric actionszt;vﬁ (where~ v; represents friends of user in
the network), users’ action correlatiahl,i, and users’ attributes
xt. Specifically, in the NTT-FGM model, each discrete action is
mapped into the latent state space and the action bias isledode
using a factor function. For example, fgf = 1, a small value
of its corresponding:! suggests that a user has a low intention
to perform the action, thus a large action bjgs— z¢|. Next, in-
fluence between users is modeled using the latent stated base
the same assumption as in HMM [9] and Kalman Filters [14]: la-
tent states of users’ actions at tirhare conditionally independent
of all the previous states given the latent states at timel. Fi-
nally, actions’ correlation is also modeled in the lateatespace.

A Markov random field is defined to model the dependency (cor-
relation) among the continuous latent states. Differeomfithe
traditional Markov random field model (e.g., CRF [18], HMM[9
Kalman Filters [14]), the NTT-MRF model uses a continuous-va
able to describe the latent state, and utilizes a combmationul-
tivariate Gaussian function and Markov random field to ipcoate
both time-inter and time-intra dependency between usetigrzs.

Now, we explain the proposed NTT-FGM model in detail.
Given a series of attribute augmented netwotks= {G?
Vvt ELXE YD)t € {1,---,T}andV = VIUV2U...U
VT |V| = N, we can define the joint distribution over the actions
Y givenG as

T N
p(Y16) = [ [[ f@il=DfHZ Gz, X (@)
t=1i=1
where notation~ v; represents neighbors of in the social net-
work. The joint probability has three types of factor fuoais, cor-
responding to the intuitions we have discussed. Specifjcall



e Action bias factor: f(y¢|z7) represents the posterior prob-
ability of userv;’s actiony; at timet given the continuous
latent state:!;

e Influence factor: f(z{|zX,}) reflects friends’ influence on
userv;’s action at time;

e Correlation factorf( fl1zh,,, X
tween users’ action at time

x!) denotes the correlation be-

The three factors can be instantiated in different waysectfig
our prior knowledge for different applications. In this papwe
will give a general definition for the three factors. For thetien
bias factorf (yf|z!), we define it using a Gaussian function:

-y
202
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Flytlt) = \/;7 exp{ } @)

whereZ = (2n02) "3 71 Z».

Learning NTT-FGM is to estimate a parameter configuration
0 = ({z:}, {awn}, {Bi;}, {\i; }) from a given historic action log
Y, that maximizes the log-likelihood objective functidh(§) =
logps(Y|G), i.e

0* = arg max O(0) (6)

4. MODEL LEARNING

There are two challenges to solve the objective functiomstFi
as the network structure in the social network can be ari{raay
contain cycles), traditional methods such as Junction [B2eand
Belief Propagation [34] cannot result in an exact soluti®acond,
to calculate the normalization factdf, it is necessary to guaran-
tee that the denominator of Eq. (5), i.e., the exponentiattion

whereo is a variance to control the bias and its value can be learned exp{.}, is integrable. Based on these considerations, we inatanti

using an EM-style algorithm or predefined empirically. Nttat
if we only consider the binary action, the bias factor can kse a
defined based on a Bernoulli distribution.

For influence factoyf (2{|z,} ), we first define an binaryy x N
matrix M*~! to describe the social network at time- 1, where
the elemenmf;1 = 1 represents that use; andv; have a re-
lationship in the social network (i.ee;; € FE), andmﬁj1 =0
indicates there is no relationship betwegrandv;. Given this, we
can formally define the influence factor as:

N
_ 1 _ _
W= el A ench AT @

Jj=1

f(zf1ZE

whereg;i(z{, z; ") is a function defined on the latent states of two
userszf andz{"'; \;; (whenm!; ' = 1) represents the influence
degree ofv; onwv;. For example, given a higher influenge;, the
action of user; is more likely to induce user; to behave in a
similar way. Z; is a normalization factor. Whep = i, we refer
to the influence as self-influence, which actually charazgsrthe
dependency of the user’s action on his own previous state.

The correlation factor can be naturally modeled in a Markovr
dom field. Therefore, by the fundamental theorem of randolasfje
we can define the correlation factor as:

1
> eXp{(Z ﬁljmmhlj (sz j)

e )

+ Z arhy(zf, zi))} 4)

k=1

where h;;(zf, 2%) is a feature function to capture the correlation
between usev; andv; at timet; hy (2!, z};) is a feature function
defined on usep; and thek-th attributex;; d is the number of
attributes;3;; anday, are respectively weights of the two functions;
and Z; is again a normalization factor.

Finally, by integrating Eqgs. (2)-(4) into Eq. (1), we can aibt
the following joint probability

p(Y|G) =

1 y — 2 Seh o t—1 t—1
EeXp ZZ +ZZZ>‘L]m g(Zi,Zj7 )
i=1j—
T N d
’U(zz’ 3 +Zzzakhk Z’L7‘rzk

t=1i=1;=1 t=1i=1k=1
®)

the factor functiong(.) andh(.) as follows

9ji(zf, 27 = =Gt = 270)? )
hij(zf,2h) = —(af = 20)? ©)
hie(zf,aly) = —(zf —ip)? )

We see that all of the factor functions are defined by quadrati
functions. This is because quadratic equation satisfiealbge
two requirements: it is integrable and it offers the podisibto
design an exact solution. Moreover, by defining in this whag,ih-
fluence factor and the correlation factor can be elegantijeéxed
with the information diffusion theory, by which the actioofsusers
spread in the social network along the relationships [4, 12]

Finally, the objective functio®(#) can be rewritten as

T _ )2 N
O(G):—logZ—{ZZ ( 20221) +ZZZ>‘J‘sz (= — 2t 1)2
t=1i=1 t=1i=1j=1
T N N T N d
+Zzzﬁljmzj(zz _Z;)2+Zzzak(zf_x:k)2}
t=1i=1;=1 t=1i=1k=1
(10)
where

whereC = (2r0?)" % is a constant.

4.1 The Learning Algorithm

The task of model learning is to estimate the parametets
({zi},{ax}, {Bs;},{Ni;}) by solving the objective function Eq.
(10). For this purpose, we need to first solve the integratfof.

As y is discrete, we can easily integrate out the first term in the
exp{.} function of Eq. (11). Further to guarantee ttats inte-
grable, we must haver, > 0, 8;; > 0, A;; > 0. It is still difficult

to solve the integration. To deal with this, our basic ideta isans-
form the exponential functioaxp{.} into a multivariate Gaussian
distribution, and calculate the integration as followse(®ation is
given in Appendix 10.1.)

Z = Const - \A|7%oxp{bTA71b —c} (12)



Input: number of iterationd and learning rate;

Output: learned parametets= ({z;}, {ar}, {Bi;}, {\ij });

Initialize z = y;

Initialize «, 3, A;

repeat

E Step: % fix z, learna, 3, );

fori =1tol do
Compute gradienViog o, ; Vieg Bij» Viog Aij
Updatelog a = logag +1 X Vigga, s
Updatelog BLJ = log BLJ +n X v]og Bij )
Updatelog A;; = log Aij + 1 X Vigg Aij

end

M Step: % fix o, 3, A learnz;

Solve the following linear equation:

(A+Dz=y+ X«

until convergence
Algorithm 1 : Expectation maximization.

wheree = ST SN S apat,; Const is a constantA is
a NT x NT block tridiagonal matrix; and = X« is a NT-
dimension vector anX = {X': X2 :...: XT}is NT x d matrix
by concatenating all time-varying attribute matrices thge

Given this, we can design an EM-style algorithm to maximize
O(0), as summarized in Algorithm 1: (Details including gradgent
of the parameters are given in Appendix 10.2.)

e E-step: fix z and update alky, 5, and \, using a gradient
descent method;

e M-step: fix a, 3, and ) to update alk, by solving a linear
system.

4.2 Social Action Prediction

Based on the learned parametérswe can predict the users’
future actions. Specifically, for predicting a user’s aetig ™" at
time T + 1, we first compute the latent stat¢ *'; and then use
the latent state to infer the actigid ™*. To compute the latent state
2XT! we have the following formula:

i 1

d ; N \..nT,T
LTH1 D=1 OkTik + 251y Ajimy, 25

T Tl e+ X i

However, the above equation calculates the latent stagperd

dently and ignore the correlation between actions. By &rrtton-

sidering the action correlation factor, that is to computezao-
gether, we can solve the following linear system:

(13)

d N
Vi, Z ag (z%.TjL1 —zik) + Z )\jimﬁ-(ziTJrl — z]T)
k=1

= (14)

N
T T T
T 3 BT - 2T =0
j=1

N
+> Bz -
j=1

Then, we can predict the users’ actignaccording to their cor-
responding latent statesby:

_Jo
11
wherez; andz_ are respectively the average state values of the

corresponding actiong = 1 andy = 0 in the training data, and
are computed by:

if \ziT+1 —Z4| <=z

otherwise.

T+1 AR A

Y; (15)

3:1 Zf\;l ZfI(yE =0)
N
23:1 >zt I(y;? =0)
_ 23:1 Zf\;l ZfI(yE =1)
3:1 Zf\;l I(y;? =1)

wherel is the indicator function.

4.3 Distributed NTT-FGM Learning

As a social network may contain millions of users and hunslired
of millions of social ties between users, it is impractiaaldéarn a
NTT-FGM from a huge data using a single machine. Specifically
there are two major problems in our NTT-FGM model, namely,
memory space and computing time. We use a sparse représentat
to solve the first problem. To speed up the computing, we geplo
the learning task on a distributed system based on the MP${Me
sage Passing Interface).

MPI is a message-passing library interface specificatiarthé
message-passing parallel programming model, data is nfowed
the address space of one process to that of another procesgtih
cooperative operations on each process. Based on the raessag
passing scheme, we employ timaster-slavenodel. That is, mas-
ter can assign tasks to the slaves (computers), and conttgne-t
sults in the master machine.

Specifically, in our learning algorithm, the time-consugstep
lies in the calculation of the gradientSiog o, Viog Bij0 Viogayjs
which requires computing the inverse of the maitixNote A is a
NT x NT matrix, which is too large to be held in memory when
deal with a large data. Thus, we compute each columrd of
respectively by solving the following linear equation

(16)

Z4 17

wherez; represents thécolumn of A~! andb; represents &/ 7-
dimension vector, with théth elementl, the other elements.
Thus in each iteration, the master broadcasts the paraseteach
slave and assigns the tasks to solve Equation (18) to thesskaw
eragely. All the salve computers calculate and send the results
back to the master. The master reduces all the distributdtse
and broadcasts the updated parameters to the slaves agéie fo
next iteration.

5. EXPERIMENTAL RESULTS

The proposed approach for social action prediction is very-g
eral and can be applied to analyze different kinds of soa#l n
works. In this section, we present various experiments atuete
the effectiveness and efficiency of the proposed approattilate
sets and codes are publicly available.

5.1 Experimental Setup

Data Sets We perform our experiments on three different gen-
res of real-world data sets: Twitter (a microblogging data s
crawled from twitter.com), Flickr (a data set of photo shgrirom
flickr.com), and Arnetminer (a publication data set arnaemirg).

e Twitter. The data set is crawled from Twitter by startingifro
the user “Carel Pedre (carelpedrd)gne of Haitian most
popular radio DJs, who used Twitter to inform the world
about the earthquake which ravaged his country. We extract
all followers (> 11, 704) of “carelpedre” and the users he is

“http://arnetminer.org/stnt/
Shttp://www.carelpedre.com/



following, and continue the process for each extracted-Twit
ter user. We further crawl all tweets posted by the users as
attributes. Finally, a data set used for action predictiom-c
sists of 7,521 users, 304,275 time varying following and fol
lowed relationships, and 730,568 tweets (blogs) posted by
the users. A larger data set consisting of millions of users i
also publicly availablé.

Flickr. The data set is collected by [5], which contains 8,72
users, 485,253 friendships between users, and 2,504,849 fa
vorite photos .

Arnetminer. It is collected from ArnetMiner [30] and con-
sists of 640,134 researchers, 1,554,643 coauthor relation
ship, and 2,329,760 publication papers by the researchers.

The action in Twitter is defined as the topic (e.g., “Haiti thar
quake”) discussed by the user. More specifically, we seleste-
eral very relevant keywords, e.g., “Haiti", “earthquakahd “res-
cue”. If a user posts a tweet containing the topic (keywowg,
say that the user performs the action. We crawled the data fro
January 12nd, when the Haiti Earthquake struck, to Janiétty. 2
In the twitter data, we view one day as a time stamp. For exam-
ple, a user called for donation for Haiti, his friends mayp@sd by
re-tweeting it, or posting a supporting message.

While the action of the Flickr data is defined as whether a user
adds a photo to his favorite list. For example, if a user adaled
photo to his favorite list, his friends may also add the phiato
their favorite. We extract the historic action log from 11/2006 to
03/20/2007 in the data set, dividing into 14 time stamps, dysd
stamp.

The action of the Arnetminer data is defined as whether a re-
searcher publishes a paper at a specific venue. For exarhple, i
researcher published a paper at KDD, which may influencedhis ¢
laborators to publish papers at KDD as well. The data is syfit
10 time stamps, one for each year.

On all the three data sets, the attribuféss defined as the con-
tents of tweets, information of photos, or related pubiaavenues
of the researcher. The content of each tweet is preprocéysE)
removing stop-words and numbers; (b) removing words tha¢ap
less than three times in the corpus; and (c) lowercasingttered
words. Then for each user, we combine all words in the remgini
words in the tweets posted by the user and create the agétnieat
tor by taking words as features.

Comparison Methods We compare the following methods for so-
cial action tracking:

SVM: It uses users’ associated attributes as well as their neigh-
bors’ states to train a classification model and then emplbgs
classification model to predict users’ actions. For SVM, we e
ploy SVM-light8

WVRN: It employs a weighted-vote relational neighbor classifier
[20] to train a classification model by making use of netwarfloi-
mation. In prediction, the relational classifier estimatesaction
state of a user by the weighted mean of his neighbors.

NTT-FGM: it uses the proposed NTT-FGM model to train the
action tracking model and further uses the learned modgbrier
diction.

According to our preliminary experiments, then the Gaussian
distribution does not significantly influence the perform@anThus,
for simplicity, we empirically set- = 1.

Evaluation Measures To evaluate our method, we consider the
following three angles :

Shttp://svmlight.joachims.org/

Table 1: Performance of action prediction with different ap-
proaches (%).

Data set Method | Recall | Precision| F1-Measure
SVM 10.41 16.71 13.85
. WVRN 0.45 7.89 0.86

Twitter
NTT-FGM | 26.40 21.14 23.47
SVM 34.48 45.05 39.06
Flickr WVRN 60.02 48.81 53.84
NTT-FGM | 56.18 45.80 50.47
SVM 10.19 21.62 13.85
. WVRN 14.83 16.39 15.57
ArnetMiner

NTT-FGM | 31.14 44.28 36.57

e Prediction. We evaluate the proposed model in terms of Pre-
cision, Recall, and F1-Measure, and compare with the base-
line methods to validate the effectiveness of the proposed
model.

e CPU time. It is the execution elapsed time of the model
learning. This shows the speedup of the parallel implemen-
tation.

e Case study.We use several case studies as the anecdotal evi-
dence to further demonstrate the effectiveness of our rdetho

The basic learning algorithm is implemented using C++ ahd al
experiments are performed on a server running Ubuntu 8.t0awi
AMD Phenom(tm) 9650 Quad-Core Processor (2.3GHz) and 8GB
memory. The distributed learning algorithm is implemenieder
the MPI parallel programming modelWe perform the distributed
training on 5 computer nodes (20 CPU cores) with AMD proces-
sors (2.3GHz) and 40GB memory in total. We set the maximum
number of iterations as 250 and the threshold for the chahge o
G,and\ to 1le — 3.

5.2 Prediction Performance

On all the three data sets, we use the historic users’ actions
train the action tracking model and use the learned modektigt
the users’ actions in the last time stamp.

Table 1 lists the prediction performance of the different ap
proaches on the three data sets with the following obserstti

Performance comparison Our method NTT-FGM consistently
achieves better performance comparing to the baselineaa®th
In terms of F1-Measure, NTT-FGM can achieve-#0% improve-
ment compared with the (SVM). At the same time, NTT-FGM gives
robust results, while the performance of wvRN is very sérestb

the data characteristics, with the highest F1-Measure @i lilckr
data and extremely low value in the Twitter data. This is beea
on Flickr the user’s action of adding favorite photos is mainflu-
enced by her friends’ actions and wvRN can be viewed as a simpl
influence model, which makes wvRN mostly predicts “1” on Kiljc
but the Twitter network (about “Haiti earthquake™) in ourpexi-
ment is relatively sparse, as a result wwRN outputs all “0O'hil/
our approach shows robust and consistent performance oeall
data sets, which is important for the extendability of thehuods.

Factor contribution analysis NTT-FGM captures three factors: 1)
influence, 2) correlation and 3) personal interests/aitiein. Next

"http://www.mcs.anl.gov/research/projects/mpich2/
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Figure 6: Example latent action states.

we perform an analysis to evaluate the contribution of cffé fac-
tors defined in our model. In particular, we remove thoseofact
one by one (firstinfluence factor function, followed by thereta-
tion factor function), and then train and evaluate the mténh per-
formance of NTT-FGM. Figure 5 shows the F1-Measure scoeg aft
ignoring the factor functions. We can observe clear drofherpte-
diction performance, which indicates that our method wavikdl
by integrating the different factors for action trackingegiction)
and each defined factor in our method contributes improvéinen
the performance. Also, we find that the decrease varies er-dif
ent data sets. On twitter there is a very low correlation ketw
users’ actions because users mainly post tweets on Twisgd
on their previous experience or friends’ tweets, and nedftiact
independently at a same time

Latent action states The learned latent action states essentially
play a role as smoothing. Figure 6 illustrates several eXasnpf
the learned latent action states. It can be easily seerhinégarned
latent states (denoted as the red curve) is much more smgothi
than the original discrete actions (denoted as the blagklste),
which indicates that latent action states can model thebizigary
actions. This is desirable for most prediction/classifaratasks

Table 2: Efficiency performance on the three data sets (5 com-
puter nodes, each 4 cores)

Data Set | Basic NTT-FGM| Distributed NTT-FGM
Twitter 77.7hr 7.0hr
Flickr 9.14hr 0.68hr
Arnetminer 100min 6.2min

a speedup 17x, and on Flickr, the distributed learning algorithm
results in a speedup 13x.

We also evaluate the speedup of the distributed learningr alg
rithm using different numbers of computer nodes (5, 10, 15, 2
cores) to evaluate the cost of message passing. The speesiup,
shown in Figure 7 (a), is close to the perfect line in the beigig.
Although it decreases inevitably as the number of coreeaszs,
it scales very well with> 10x speedup using 15 threads.

We further analyze how the network structure affects the effi
ciency of the learning algorithm. We generate a synthetta da
set for this experiments by varying the density of the nekwor
(log %). It can be seen from Figure 7 (b) and (c) that as the density
(x-axis) increases, both basic learning and the distriblegarning
algorithm need more CPU time to train the NTT-FGM model, but
the speedup of the distributed algorithm is consistenti lfabout
14 — 15x using 20 threads).

5.4 Qualitative Case Study

Now we present three case studies to demonstrate the effecti
ness of the proposed model.

“Haiti Earthquake” The Haiti Earthquake is a devastating earth-
quake, leaving the country in shambles. We use our resulis-to
alyze people’s actions related to the catastrophe on Twiliable

3 lists several example tweets about “Haiti Earthquake”. ke
that these tweets are about a call-for-donation by the fartennis
player “Serena Williams (serenajwilliams) ”. The call-foessage
was soon retweeted by “actsofFaithblog” and “madamealitheir
own microblogs, and a bit later the Haitian radio host “gaeel
dre” added a comment on Serena Williams’s Twitter. Thesét@wi
users are one of the most influential users and their actiofidaiti
Earthquake” quickly spread on Twitter with retweet and yefie-
cause of this, Carel Pedre received a special “humanitaaiaard

at the second annual “Shorty Awards” in New York.) With the-pr
posed model, we can identify the most influential users, wiags
tions can induce a large cascade followings, and track fioenta-
tion flows (via social ties with a high influence score or ctatien
score). In this way, we can understand how the influence dprea
among people.

“Publication at KDD” We can also use the NTT-FGM model to
track and predict who will publish (or submit) papers to KD@LD.
We train the NTT-FGM model using the Arnetminer data before

and further confirms us the advantage of the proposed NTT-FGM 2009 and use the learned model to predict the latent actite sf

model.

5.3 Efficiency Performance

We now evaluate the efficiency of our approach by comparing
the distributed learning algorithm with the basic one onttiree
data sets.

Table 2 lists the CPU time required for learning the NTT-FGM
model on a single machine (Basic NTT-FGM) and by the dis-
tributed learning algorithm using 5 computer nodes (eacbrds).
The distributed learning algorithm typically achieves gn#ficant
reduction of the CPU time. For example, on Arnetminer, weaivbt

each researcher, and finally obtain a list of researchekedaby

the latent state. Table 4 lists a few representative exasglected
from the top 100 ranked researchers. We see that our approach
can not only find some famous researchers but also discowez so
“newcomers” to the KDD community. The first row lists several
well-established researchers who have published a lot db.Rbe
second row shows several “new” researchers who have no f@aper
only few papers) published at KDD.

“Correlation between Researchers” Based on the learned NTT-
FGM model, we can generate a correlation/influence map foebe
user analysis. Figure 8 shows an example correlation mayebet
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Table 3: Action tracking on Twitter for “Haiti Earthquake”.

Date/User

Tweet

6:03 PM Jaj
16th by extratv

h Tennis pro Roger Federer is joining forces with
Rafael Nadal & @serenajwilliams to raise money
for Haiti. http://su.pr/IE3MDU

5:23 AM Ja
17th by seren
jwilliams

n Hey. Please, check out my foundation website:
a-www.theswf.org to help those in Haiti!

6:48 AM
Jan 17th b
madameali

RT @SIXTWELVEMAG: RT @serenajwilliams:
y Hey. Please, check out my foundation website:
www.theswf.org to help those in Haiti!

7:34 AM Ja
17th by actso
Faithblog

h RT @serenajwilliams: Hey. Please, check out my
- foundation website: www.theswf.org to help those
in Haiti!

250 PM J4
17th by carelpg

h @serenajwiliams Through Her 92k Mission has
2-set a goal to contribute donations to the victims in

dre

#haiti. Visit www.theswf.org and donate

Table 4: Prediction on who will publish on (or submit to) KDD
2010. The examples are selected from the top 100 researchers
predicted by the NTT-FGM model.

Jiawei Han Christos Faloutsos Philip S. Yu
Pedro Domingos Lise Getoor Jon M. Kleinberg

Frequent Hang Li ChengXiang Zhai Wei-Ying Ma
Lise Getoor Jure Leskovec Qiaozhu Mei
Bing Liu Jian Pei Ravi Kumar
Huijia Zhu Dimitrios Kotsakos Zi Yang

New | Noman Mohammed Caimei Lu Quanquan Gu

Zhili Guo

researchers. The strength of the link between two researafe
dicates the correlation score. We see some researchersthaweg
correlation because they coauthored quite a few papersJagei
Han and Philip Yu. While our approach also finds some resegsch
have strong correlation, e.g., Ravi Kumar and Christos (ka&s,
although they only coauthored one or two paper(s). The disco
ered correlation can potentially benefit many applicatismsh as
link prediction. More correlation/influence analysis ksw@an be
found at http://arnetminer.org/stnt/.

6. RELATED WORK

Dynamic Social Network Analysis A number of models have
been proposed to analyze dynamic social network with mode an
more dynamic information available in online social netkgor
Sarkar et al. [24] develop a generalized model associating en-

1E]
v

Lise Getoor Ravi Kumar

ChengXiang Zhai

Jiawei Han

hristos Faloutsos

@ | 2—@

Jon M. Kleinberg

2 3

Bing Liu

Mohammed Javeed Zaki Philip S. Yu

Charu C. Aggarwal

Figure 8: Example correlation analysis between researcher
The strength represents the correlation score between twoer
searchers.

tity in Euclidean latent space and use kernel functionsifoilarity
in latent space to model friendship drifting over time. $ps et al.
[25] present a model to investigate how different pre-psstgy de-
cisions and different network forces such as selection afhaeince
affect the modeling of dynamic networks. They also demaunstr
the effects of attribute drifting and the importance of indual at-
tributes in forming links over time. Yang et al. [33] propose
dynamic stochastic block model for finding communities amelrt
evolutions in a dynamic social network. Zheleva et al. [3&]-p
pose a generative model which captures the statisticabpiiep of
these complex networks and the co-evolution of social afilibaf
tion networks. Existing work on dynamic social network i
mainly focuses on finding macro-level mechanisms of sogral d
namics, while our work tries to gain more insights into them
level dynamics of the social network.

Social Influence Analysis Social influence analysis is an impor-
tant research topic in social network analysis. One brafisb@al
influence analysis is to verify the existence of social infee[2,
6, 7, 15, 23]. Anagnostopoulos et al. [2] focus on identifyand
understanding social influence. They apply a statisticalyasis
method to identify and measure whether social influencedsiece
of correlation between the actions of individuals with sbdies.
Crandall et al. [6] have developed techniques for idemiyand
modeling the interactions between social influence andccsete
using data form online communities. Domingos and Richardso
[7] investigate social influence in the customer networkeyrpro-
pose a model to identify customer’s influence between edudr ot
in the customer network. They build a probabilistic modeinioe



the spread of influence for viral marketing [23]. A similarnkas
to maximize the spread of influence through a social netwbsk [
The basic idea is to find and convince a small number of inflakent
users to adopt a product, and the goal is to trigger a largeadas
for further adoptions through the effect of “word of mouthii
fluence) in the social network. Another trend in social infice
analysis is to quantitatively estimate the strength of tiiluénce.
Tang et al. [29] study the difference of the social influennedid-
ferent topics and propose Topical Affinity Propagation (JA®
model the topic-level social influence in social networksl ae-
velop a parallel model learning algorithm based on the negjoice
programming model. Goyal et al. [10] aims to learn the infagen
probabilities from historic users’ actions. Compared wfitbse so-
cial influence analysis works, we simultaneously model theead
network structure, user attributes, and user actions iniaifed
model.

Group Behavior Analysis Group analysis is based on the view
that deep lasting change can occur within a carefully forgredip
whose combined membership reflects the wider norms of societ
There is an interest, in group analysis, on the relationsbtpreen
the individual group member and the rest of the group resyit

a strengthening of both, and a better integration of theviddal
with his or her community, family and social network. Shi &t a
[26] study the pattern of user participation behavior, amel fea-
ture factors that influence such behavior on different foata
sets. Tang et al. [31] employ relational learning to addtess
interdependency among data instances. Backstrom et alpr{3]
pose a partitioning on the data that selects for active caonities

of engaged individuals.

7. CONCLUSION

In this paper, we study a novel problem of social action track
ing. We propose a noise tolerant time-varying factor grapldeh
(NTT-FGM) to formalize this problem in a unified model. Three
factor functions are defined to capture the intuitions disced in
our observation and an efficient algorithm is presentedamliéhe
tracking model. A distributed learning algorithm has bemple-
mented under the message-passing parallel programminglmod
We experiment on three different genres of data sets antefurt
present a case study on social action prediction using Hrede
NTT-FGM model. Experimental results on three differentetyp
of data sets demonstrate that the proposed approach cativeffe
model the social actions and clearly outperforms sevetairadtive
methods for action prediction. The distributed learningpathm
also has a good scalability performance.

The general problem of social action tracking representsva n
and interesting research direction in social network ngnifihere
are many potential future directions of this work. A diredap-
tation is to apply the NTT-FGM model for link prediction, vahi
is important problem in social network. To add a user as adrie
(e.g., follow somebody on Twitter) may be also influenceddmia
network structure, one’s interests, and friends cormtatAnother
interesting issue is to extend the NTT-FGM model so that it ca
handle actions of multiple values. Another issue is to desig
approach for (semi-)supervised learning. Sometimes, ytiveaif-
ficult to collect sufficient labeled training data for an aati How
to make use of the unlabeled data to help improve the predicti
performance is an interesting problem.
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10. APPENDIX
10.1 Integration of z

In this subsection, we introduce how we obtain the integrati
of Z. Equation 11 can be rewritten in the form of a multivariate
Gaussian distribution. The standard formation of the irztégn of

Multivariate Gaussian Distribution is as follows:

1
(2m) % |M]|

whereu andy is am-dimension vector) is am x m matrix.
The idea here is to transform the exponential functiop{.} in
Eqg. (11) into a formation of multivariate Gaussian disttibn.
1
exp{.} = exp{—_ (2= w)" M~ (z =) —c}

wherec is a value independent af With further derivation, we

can arrive

[ epi-g—p™ M - widu =1 9)

Z = Const |A|~Zexp{bT A~ 1b — ¢} 1)

whereb = Xa; e =1 SN S apaty; AisaNT x NT
block tridiagonal matrix, andl4| is determinant of matrix. The
elements of4 is defined as follows: (we ugé to denotei + (¢ —
1) = N for simplicity.)

d N N N N
At gt = Z ag + Z ﬁi,jmfj + Z ﬁjim;i + Z )\jim;‘;l + Z )\ijmfjl
k=1 i=1 i=1 j=1 j=1
Aityjt = Ajtyit = _ﬁijmzj - B]wm;1
Ait,j'*1 = Ajtﬂ;t—l = _kjim;iil - kijmzjil
This construction matches our intuitioA,;: ,+ represents the coef-
ficient of (zf)Q, while A;: ;+ represents the correlation factor, and
A -1 describes the influence factor.

10.2 Model Learning Algorithm

The algorithm for model learning primarily consists of tweyss.
To summarize, in the first step, we fband updatev, 3, A accord-
ing to their gradients. We need to guarantee thats;;, Ai; > 0.
Thus, conventional gradient descent cannot be directljiexbfo
the constrained problem. We employ a technique similarabith
[22]. Specifically we first maximiz& () with respect to théog
function. As a result, we get:

X Olog Z
vlog;a;C = _O‘k(z Z(zzt - x:k)2 + P) )
t=1i=1 A
d Odlog Z
Viog Bij — _52'1'(2 (zf - Z§)2 + ) ) (22)
t=1 Bij
s dlog Z
— L. t—1,/_t t—14\2
legM‘j = _AL](; My (2 — Z; )+ ohi )
where
dlog Z 1 9|lA]  9bTA-S ET: i\f: . 2
day, 2|A| day, day, — ik
= _%(A*T) I+ X3A T -bTAT AT
T N )
+ BTAilX’k — Z Z "Egk
t=11i=1
dlogz 1 0|A]  0bTA1b (23)
0Bij 2|A| 085 0B
= —l(A*T) 7 OA L gra1 94 4
2 0B 0Bij
dlogZ 1 9|A| , 9bTA'b
MNij  2lA] Oy ONij
= Lyerym 94 gry 94 4
2 ONij ANij

where the notatiod/ : with a colon denotes the long column vec-
tor formed by concatenating the columns of mafrix
In the second step, we fix, 8, \ to updatez, by solving a linear

system:
(A+D)Z =g+ Xd (24)



