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ABSTRACT
Information network contains abundant knowledge about relation-
ships among people or entities. Unfortunately, such kind ofknowl-
edge is often hidden in a network where different kinds of rela-
tionships are not explicitly categorized. For example, in aresearch
publication network, the advisor-advisee relationships among re-
searchers are hidden in the coauthor network. Discovery of those
relationships can benefit many interesting applications such as ex-
pert finding and research community analysis. In this paper,we
take a computer science bibliographic network as an example, to
analyze the roles of authors and to discover the likely advisor-
advisee relationships. In particular, we propose a time-constrained
probabilistic factor graph model (TPFG), which takes a research
publication network as input and models the advisor-advisee rela-
tionship mining problem using a jointly likelihood objective func-
tion. We further design an efficient learning algorithm to opti-
mize the objective function. Based on that our model suggests
and ranks probable advisors for every author. Experimentalresults
show that the proposed approach infer advisor-advisee relation-
ships efficiently and achieves a state-of-the-art accuracy(80-90%)
without any supervised information. We also apply the discovered
advisor-advisee relationships to bole search, a specific expert find-
ing task and empirical study shows that the search performance can
be effectively improved (+4.09% by NDCG@5).

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing

General Terms
Algorithms, Experimentation

Keywords
Relationship mining, Time-constrained probabilistic factor graph,
Coauthor network, Advisor-advisee prediction

1. INTRODUCTION
With the rapid growth of the social web, particularly onlinenet-

working applications such as Facebook, Youtube and Twitter, peo-
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ple are closely connected via different types of relationships. It is
well recognized that different types of social relationships have es-
sentially different influence between people, which forms the com-
plex and subtle force that governs the dynamics of social networks.
For example, in the social network, a graduate’s research topic may
be mainly influenced by his advisor; while his living habits may be
influenced by his family. Awareness of the relationship types can
offer abundantly additional information for many mining applica-
tions such as community discovery and expert finding. For exam-
ple, if we know advisor-advisee relationships between researchers,
we can easily discover how researchers form different communi-
ties, how research topics have been emerging and evolving inthe
past years, and how a researcher influences the academic research
community.

However, in reality, such information (relationship type)is of-
ten hidden in the networks due to different reasons. For example,
advisor-advisee relationships are hidden in the coauthor network
(e.g., on DBLP); family relationships are hidden in the friendship
network (e.g., on Twitter or MSN). Several projects aim to main-
tain the types of relationships, such as LinkedIn and AI Genealogy.
The former requires users to label their professional relationships
(e.g., colleagues or advisor-advisee) with each friend andthe lat-
ter asks human annotators to manually label the advisor informa-
tion for various research fields. However, these methods heavily
rely on manual efforts, which significantly limits its wide use. An
ideal solution is to design a method that automatically uncovers the
hidden relationship types from the networkNevertheless, it is non-
trivial to accurately differentiate social relationships, especially in
a real large network. For example, neither the most frequentcoau-
thor nor most authoritative researcher among one’s collaborators is
assured to be his advisor. For real data it could be difficult even
for human beings to tell who is one’s advisor by the publication
list. Sometimes, in a specific application (e.g., the coauthor net-
work), heuristical rules can be defined to identify the relationship
type according to human intuitive assumptions. However, our pre-
liminary experimental result (cf. Section 5) shows that thetypical
heuristic rules can only achieve an accuracy of 70-80%. Evenfor
multiple rules combined with a supervised learning model trained
using different features, the accuracy is still only 80% on average.
Moveover, it is often difficult to collect supervised information for
training in practice.

In this study, we try to conduct a systematic investigation of
the case of mining advisor-advisee relationships between authors
in a research publication network. Identification of such advisor-
advisee relationships can offer us a chance to better understand the
insight of the research community, as it provides additional seman-
tic information on the links other than the simple, explicitcoau-
thor relationships. For example, we can position each person in
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Figure 1: Example of advising relationship analysis on the co-author network.

a chronological axis in the right order and sketch the whole com-
munity in a clear view. Certain applications of expert finding can
also be benefited from the identified advisor-advisee relationships,
as people looking for experts may not only care about the personal
academic achievements but also are interested in how many “ex-
perts” they can foster.

To clearly illustrate the problem, Figure 1 gives an exampleof
advisor-advisee relationship analysis on a research publication net-
work. The left figure shows the input: an temporal collaboration
network, which consists of authors, papers, and paper-author rela-
tionships. The middle figure shows the output of our analysis: an
author network with solid arrow indicating the advising relation-
ship, and dotted arrow suggesting potential but less probable rela-
tionship. For example, the arrow from Bob to Ada indicates that
Ada is identified as the advisor of Bob. The triple on the edge,i.e.,
(0.8, [1999, 2000]), represents Ada has the probability of 80% to
be the advisor of Bob from 1999 to 2000. Such results can benefit
many potential applications such as research community detection
and evolution analysis. The right figure gives an example of visu-
alized chronological hierarchies. The parent-child relation in the
tree corresponds to the advisor-advisee relationship. We can see
the advising path from root to leaf.

The problem we study is rather different from existing relevant
research (e.g., relation mining). Our work analyzes links rather
than text or labeled annotations which poses a set of challenges.

• Latent relation. The advisor-advisee relationship is hidden in
the network. There is no supervised information indicating
who is one’s advisor among numerous collaborators.

• Time-dependent. Social role like advisor or advisee is highly
time-dependent. One could turn from an advisee to an advi-
sor but there is no clear sign when this transition happens.

• Scalability. To find one’s advisor it is insufficient to apply
simple rules without considering the inherent correlationof
network. When the search space becomes exponential in
size, it is important to develop a method that can scale well
to real large networks.

In this paper, we formulate the problem of advising relationship
mining as a probabilistic ranking problem, and propose a time-
constrained probabilistic factor graph (TPFG) model to model the
dynamic collaboration network. Specifically, the advisor of each
author and the advising period are modeled together as a joint prob-
ability of as many hidden variables as authors. We further design

an efficient algorithm to optimize the joint probability viaa process
of message propagation on the network. By experiments we show
this unsupervised approach can achieve an accuracy of 80-90%,
leading by 5-20% against several baseline methods. We also ap-
ply the identified advisor-advisee relationships to bole search (best
supervisor finding) and demonstrate that the performance ofbole
search can be clearly improved (+4.1%). The proposed framework
is generalizable to other applications. For discovering other type of
relationships, the additional requirement is to redefine the feature
function and the potential constraints.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 formally formulates the problem. Section 4
explains the proposed approach. Section 5 presents experimental
results that validate the computational efficiency and efficacy of our
methodology. Finally, Section 6 concludes the study and discusses
the future work.

2. RELATED WORK
This work is different from the existing study inRelation Min-

ing andRelational Learning. Previous studies in relation mining
mainly employ text mining and language processing technique on
text data and structured data including web pages, user profiles and
corpus of literature. Relational Learning [9] refers to theclassifi-
cation when objects or entities are presented in multiple relations.
Semantic Role Labeling is a broadly employed text mining tech-
nique, as it allows for the addition of structured semantic infor-
mation to plain text [11]. [15] applies Natural Language Process-
ing to extract protein-protein relationships from rich-annotated cor-
pus in biomedical domain. [6] proposes a general framework for
syntax-based relation mining and achieves high accuracy byexper-
imenting with Support Vector Machine as a supervised approach.
[17] applies a clustering-based approach to differentiatelatent so-
cial dimensions from social network, but does not study about the
semantic meaning related to the extracted dimensions. [7] learns
semantic relationship in a supervised way, treating links as features
and requiring labeled pairs as training data. Since it is difficult
to find universal features that are useful in every domain, weem-
ploy a different philosophy that requires commonsense background
knowledge about the correlation between the observed linksand
the latent roles of the nodes but no training data. To the bestof
our knowledge, there is no previous work mining semantic rela-
tions solely according to a network with neither annotationtext nor
labeled relations.
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Figure 2: Example of graph transformation.

By means of link analysis (e.g., using PageRank[3]), one can
compute the importance of a node and the relevance of neighbor-
ing nodes. Studies have also shown links can be explored to clean,
fuse and reveal the knowledge hidden in a network. For example,
Object Distinction [20] distinguishes objects with identical names
by analyzing their heterogeneous linkages. Furthermore, integrated
ranking and clustering can be performed on heterogeneous network
based on the link information [16]. [17] proposes to extractla-
tent social dimensions based on network information, and then uti-
lize them as features for discriminative learning. Recognizing the
power of links, our approach extracts implicit entity semantic rela-
tionships by modeling the network.

To evaluate the discovered advisor-advisee relations we compare
them with graduation records maintained by some online projects.
Such projects include the Mathematics Genealogy Project [5], the
Computer Engineering Academic Genealogy, the AI Genealogy
Project and the Software Engineering Academic Genealogy. [19]
proposes an approach based on classification to classify therela-
tions according to some local features on each pair of coauthors but
the parameters are manually tuned. We develop their method into a
supervised learning process and compare it with our probabilistic-
model-based approach.

3. PROBLEM FORMULATION
In this section, we present the problem formulation and define

notations used throughout the paper.
In general, our study takes as input a time-dependent collab-

oration network{G} = {(V = V p ∪ V a, E)}, whereV p =
{p1, . . . , pnp} is the set of publications, withpi published in time
ti, V a = {a1, . . . , ana} is the set of authors, andE is the set of
edges. Each edgeeij ∈ E associates the paperpi and the author
aj , meaningaj is one author ofpi.

The original heterogeneous network can be transformed intoa
homogeneous network containing only authors. LetG′ = (V ′, E′,
{pyij}eij∈E′ , {pnij}eij∈E′), whereV ′ = {a0, . . . , ana} is the

set of authors (including a virtual nodea0, which will be the root
of an advising tree.). Each edgee′ij = (i, j) ∈ E connects au-
thorsai andaj if and only if they have publication together, and
there are two vectors associated with the edge, Pub_Year_vector
pyij and Pub_Num_vectorpnij . They are of equivalent length,
indicating the year they have publications and the number ofcoau-
thored papers they have at that time. For example,pyij = (1999,

2000, 2001), pnij = (2, 3, 4) indicates that authorai andaj have
coauthored 2, 3 and 4 papers in 1999, 2000, and 2001 respectively.
Similarly, we associate with each author two vectorspyi andpni

to respectively represent the number of papers and the correspond-
ing published year by authorai. The two vectorspyi andpni can
be derived frompyij andpnij.

We denote the authorai’s advisor asayi
, whereyi is an intro-

duced hidden variable. Ifai’s advisor isaj , we use[stij , edij ] to
represent the time interval the advising relation lasts. For brevity
we denotesti = stiyi

andedi = ediyi
. If ai is not advised by

anybody in the database, we letyi = 0 to directai’s advisor to a
virtual nodea0.

In this setting, to find the advisor-advisee relationship, we need
not only to decide the value of the hidden variableyi for each author
ai, but also to estimate the start and the end yearsstiyi

, ediyi
. In

reality, this problem is more complicated: (i) one could have mul-
tiple advisors like master advisors, PhD co-advisors, post-doctorial
advisors; (ii) some mentors from industry behave similarlyas aca-
demic advisors if only judged by the collaboration history;and (iii)
one’s advisor could be missing in the data set. Therefore, instead
of using a boolean model, we adopt a probabilistic model to rank
the likelihood of potential advisor(s) for each author. Formally, we
denoterij as the probability ofaj being the advisor ofai. To re-
duce the number of authors being ranked, it is beneficial to keep
only those potential pairs of advisor-advisee. We construct a sub-
graphH ′ ⊂ G′ by removing some edges fromG′ and make the
remaining edges directed from advisee to potential advisor. Thus
H ′ = (V ′, E′

s) andE′
s ⊂ E′. Later we will show that it is possi-

ble to extract a directed acyclic graph (DAG)H ′ from G′. In H ′,
the index set of potential advisors of a given authorai is denoted
Yi = {j|eij ∈ E′

s}, e.g., Y3 = {0, 1}. Correspondingly, the index
set of potential advisees is denotedY −1

i = {j|eji ∈ E′
s}.

Then the task becomes findingrij , stij , edij for every possi-
ble advising pair(i, j) ∈ E′

s. So the output is the DAGH =
(V ′, E′

s, {(rij , stij , edij)}(i,j)∈E′
s
). The transformation process

is illustrated in Figure 2. After the chronological DAGH is con-
structed, the ranking score can be used to predict whether there
is an advisor-advisee relationship between every pair of coauthors
(ai, aj). A simple way to predict is to fetch topk potential advi-
sors ofai and check whetheraj is one of them whilerij > ri0 or
rij > θ, whereθ is a threshold such as 0.5. We useP@(k, θ) to
denote this method. It is predictable that largek and largeθ leads
to better recall and worse precision. How to choosek andθ could
be a tricky problem. So we allow the input contains some training
data so as to determine the parameters. If no training data ispro-
vided, we can simply use some empirical values, such as the third
quartile of all the ranking scores.

4. APPROACH
In this section, we first make basic assumptions as the prereq-

uisite of our approach, then propose a two-stage framework and
present the approach for each stage. The main idea is to leverage
a time-constrained probabilistic factor graph model to decompose
the joint probability of the unknown advisor of every author. The
time-related information associated to the hidden social role is cap-
tured via factor functions, which form the basic componentsof the



factor graph model. By maximizing the joint probability of the fac-
tor graph we can infer the relationship and compute ranking score
for each relation edge on the candidate graph. One can apply gen-
eral algorithms for inference on factor graph, e.g., sum-product and
JunctionTree. However, these algorithms suffer from the problem
of low efficiency. Thus a new message passing algorithm on the
candidate graph is designed that approximates the computation and
greatly improves the efficiency.

4.1 Assumptions and Framework
Commonsense knowledge is needed for recognizing interesting

semantic relationships. Here we make a few general assumptions
based on the commonsense knowledge about advisor-advisee rela-
tionships.

ASSUMPTION 1. ∀1 ≤ x ≤ na, edyx < stx < edx

This formula reflects the following fact for general consideration of
advising relationship. At each timet during the publication history
of a nodex, x is either being advised or not being advised. Once
x starts to advise another node, it will never be advised again. x

cannot advisey at the yeart1 if x is advised by any nodep at the
yeart1. If x advisesy, the timey is advised byx is a continuous
interval fromt1 to t2, t1 < t2. As a result of Assumption 1, we
need to infer the advisors of all the nodes in the network together,
rather than consider them separately. In Section 4.3, we will use
this assumption in our model.

ASSUMPTION 2. ∀1 ≤ x ≤ na, py1
yx

< py1
x

That means for a given pair of advisor and advisee, the advisor al-
ways has a longer publication history than the advisee.py1

x repre-
sents the first component of vectorpyx. Assumption 2 determines
that all the authors in the network have a strict order definedby
the possible advising relationship. Due to the order, the candidate
graphH ′ is assured to be a DAG. We will use this assumption in
the filtering process in Section 4.2.

Additional assumptions about the correlation between the po-
tential relationship and the publication history will be discussed
in Section 4.2. Now we propose a two-stage framework solution
for the advisor-advisee relationship mining problem. In stage 1,
we preprocess the heterogeneous collaboration network to gener-
ate the candidate graphH ′. This includes the transformation from
G to a homogeneous networkG′, the construction fromG′ to H ′,
and the estimate of the local likelihood on each edge ofH ′. In
stage 2, these potential relations are further modeled witha proba-
bilistic model. Local likelihood and time constraints are combined
in the global joint probability of all the hidden variables.The joint
probability is maximized and the ranking score of all the potential
relations is computed together. The construction ofH is finished
in this stage.

4.2 Stage 1: Preprocessing
The purpose of preprocessing is to generate the candidate graph

H ′ and reduce the search space while keeping the real advisor not
excluded from the candidate pool in most cases. First, we need
to generate according to the collaboration information a homoge-
neous author networkG′ by processing the papers in the network
one by one. For each paperpi ∈ V p, we construct an edge be-
tween every pair of its authors and update the vectorspy andpn.
The complexity of this process isO(

∑

pi∈V p d2
i ), wheredi is the

degree ofpi in G.
Then a filtering process is performed to remove unlikely rela-

tions of advisor-advisee. For each edgeeij on G′, ai andaj has
collaboration. To decide whetheraj is ai’s potential advisor, the

following conditions are checked. First, Assumption 2 is checked.
Only if aj started to publish earlier thanai, the possibility is con-
sidered. Second, some heuristic rules are applied, which are based
on the prior intuitive knowledge about advisor-advisee relations.
Many rules are reasonable but for each there is counter example in
real world. It is unknown how well they work before the results
are tested. Thus we list the rules here and will test them in the
experiment part.

First, we introduce two measures for the coauthored publications
between any pair of collaborators,kulc (i.e., Kulczinski measure
[18] andIR (i.e., imbalance ratio). They are defined as

kulc
t
ij =

∑

pyk
ij

≤t
pnk

ij

2
(

1
∑

pyk
i
≤t pnk

i

+
1

∑

pyk
j
≤t pnk

j

) (1)

IR
t
ij =

∑

pyk
j
≤t

pnk
j −

∑

pyk
i
≤t

pnk
i

∑

pyk
i
≤t

pnk
i +

∑

pyk
j
≤t

pnk
j −

∑

pyk
ij

≤t
pnk

ij

(2)

The Kulczynski measure reflects the correlation of the two authors’
publications. [18] shows that there usually exists high correlation
between the total publications of advisors and advisee. Here we
further incorporate the time factor, to calculate the measure year
by year, and check whether there is an increase in the sequence
{kulct

ij}t. For IR, we calculate the sequences in the same way.
IR [18] is used to measure the imbalance of the occurrence ofaj

givenai and the occurrence ofai givenaj . The intuition is that the
advisor has more publications than the advisee during the advising
time. Then we have the following rule.

Author aj is not considered to beai’s advisor if one of the fol-
lowing conditions holds:

R1: IRt
ij < 0 in the sequence{IRt

ij}t during the collaboration
period ofai andaj ,

R2: there is no increase in the sequence{kulct
ij}t during the

collaboration period,

R3: the collaboration period ofai and aj lasts only for one
year,

R4: py1
j + 2 > py1

ij ,

When the pair of authors passes the test of selected rules from
them, we construct a directed edge fromai to aj in H ′. In addi-
tion, we estimate the starting time and ending time of the advising,
as well as the local likelihood ofaj beingai’s advisorlij . For the
estimation we also have various methods. The starting timestij is
estimated as the time they started to collaborate, while theending
time edij can be estimated as either the time point when the Kul-
czynski measure starts to decrease, or the year making the largest
difference between the Kulczynski measure before and afterit. We
refer to the two methods as YEAR1 and YEAR2. And we refer
to YEAR as taking the earlier time of the two years estimated by
them. After estimatingstij andedij , we calculate the average of
Kulczynski and IR measure during that period, and use 1)Kulczyn-
ski ; 2)IR; 3)the average of the two as three different definitions of
the local likelihood. The last definition is formally

lij =

∑

stij≤t≤edij
(kulct

ij + IRt
ij)

2(edij − stij + 1)
(3)

And the other two are similar. The complexity of processing each
edge isO(T ), if we assume the oldest paper and the newest one dif-
fersT in their publication time. The total complexity to transform
G′ to H ′ is O(MT ), whereM is the number of edges inG′.



4.3 Stage 2: TPFG Model
From the candidate graphH ′ we know the potential advisors

of each author and the likelihood based on local information. By
modeling the network as a whole, we can incorporate both structure
information and temporal constraint and better analyze therelation-
ship among individual links. Now we define the TPFG model.

For each nodeai, there are three variables to decide:yi, sti,
and edi. Suppose we have already had a local feature function
g(yi, sti, edi) defined on the three variables of any given node. To
model the joint probability of all the variables in the network, we
define it as the product of all local feature functions.

P ({yi, sti, edi}ai∈V a) =
1

Z

∏

ai∈V a

g(yi, sti, edi) (4)

with

∀ai ∈ V
a
, edyi

< sti < edi (5)

where 1
Z

is the normalizing factor of the joint probability
Eq. (5) is the constraint according to Assumption 1. To find the

most probable values of all the hidden variables, we need to maxi-
mize the joint probability of all of them. To estimate the approx-
imate size of the entire search space, assume each author hasC

candidates and the advising time can vary in a range ofT , then the
combination of all the variables has exponential size(CT 2)na . It
is intractable to do exhaustive search. We make the first simplifi-
cation as follows. Supposeai and his advisoryi are given. Instead
of lettingsti andedi vary, we fix them by optimizing local function
g(yi, sti, edi), i.e.,

{sti, edi} = arg max
sti<edi

g(yi, sti, edi) (6)

In this way, sti and edi are tied to the value ofyi. Onceyi is
decided, they are derived correspondingly. We can pre-compute
the best advising time asstij andedij for eachyi = j. Now only
{yi} are variables to optimize). If we embed the constraint Eq. (5)
into the feature function, the objective function becomes

P (y1, . . . , yna) =
1

Z

na
∏

i=1

fi(yi|{yx|x ∈ Y
−1
i }) (7)

with

fi(yi = j|{yx|x ∈ Y
−1

i }) = g(yi, stij , edij)
∏

x∈Y
−1

i

I(yx 6= i∨edij < stxi)

(8)

where

I(yx 6= i ∨ edij < stxi) =

{

1 yx 6= i ∨ edij < stxi

0 yx = i ∧ edij >= stxi
(9)

is the identity function. If any authorax is advised byai and their
advising time conflict, the function takes 0; otherwise it takes 1.
In this way the time constraints Eq. (5) for all hidden variables are
decomposed to many local identity function. Now we only need
to optimize Eq. (7). Furthermore, to obtain the rank score ofeach
advising relationship,e.g., aj adviseai (shortlyaj → ai), we can
compute the conditional maximal probability

rij = max P (y1, . . . , yna |yi = j) (10)

This simplification assures that for each configuration of{yi}, the
solution achieves either 0 or the conditional optimum giventhat
configuration. The search space size now becomesCna , reduced
but still exponential. Since we have decomposed the dependency
of the variables, we can use a factor graph model to accomplish
efficient computation.
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Figure 3: Graphical representation of a time-constrained prob-
abilistic factor graph, where {y0, . . . , y5} are hidden variables
defined on all nodes;fi(.) represents a factor function defined
on a hidden variable and its potential advisee sets as neighbors.

Figure 3 shows a simple TPFG corresponding to the example we
have been using so far. The graph is composed of two kinds of
nodes: variable nodes and function nodes. Variable nodes map to
the hidden variables{yi}

na
i=0. Each variable node corresponds to a

function nodefi(yi|{yx|x ∈ Y −1
i }). All of the edges are of one

kind, connecting a variable node with a function node. Thereis
an edge between one variable nodeyx and a function nodefi(.) if
and only iffi(.) depends onyx. In our case, it is equivalent with
x = i or x ∈ Y −1

i (a.k.a. i ∈ Yx). The factor graph reflects the
dependency of the variables. A set of variables are correlated if
they are neighbors of the same function node,e.g., y1, y2, y3 with
f1(y1, y2, y3). We can see that two hidden variables are correlated
iff their corresponding author nodes are linked by an edge onthe
candidate graphH ′, which means there is a potential advising re-
lationship between them. And once a variableyi changes its value,
it will affect the value of all the functions corresponding to the po-
tential advisor and advisee setsYi ∪ Y −1

i .
There is additional information stored in each variable node, as

shown in the tables in Figure 3.yi can take different values fromYi,
and the correspondingsti, edi andg(yi, sti, edi) are pre-computed
in stage 1. Here we takelij asg(yi, stij , edij) whenyi = j.

Theoretically, one can incorporate any types of features into the
TPFG model. For different kind of relationships, the constraint can
vary according to primary assumptions.

4.4 Model Learning
To maximize the objective function and compute the ranking

score along with each edge in the candidate graphH ′, we need
to infer the marginal maximal joint probability on TPFG, accord-
ing to Eq. (10). We first introduce the algorithm for general factor
graph, discuss its deficiency, and then propose our algorithm.
Sum-product + junction tree. There is a general algorithm called
sum-product [12] to compute marginal function on a factor graph
based on message passing. It performs exact inference on a factor
graph without cycles. In the sum-product algorithm, the marginal
functions of a single variable, a.k.a., messages, are passed between
neighboring variable node and function node. To compute the
marginal maximal probability, we need to change sum-product to
max-sum with a logarithmic transformation of the function value.



If TPFG is tree-structured factor graph, the message passing rule
will be:

myi→fj()(yi) =
∑

j′∈Yi∪{i},j′ 6=j

mf
j′

()→yi
(yi) (11)

mfj()→yi
(yi) = max

∼{yi}
(log fj(yi, {yi′}) +

+
∑

i′∈Y
−1

j
∪{j},i′ 6=i

my
i′
→fj()(yi′ )) (12)

wherej′ ∈ Yi ∪ {i}, j′ 6= j representsfj′() is a neighbor node
of variableyi on the factor graph except factorfj(), ∼ {yi} repre-
sents all variables inY = {y1, . . . , yna} exceptyi.

Unfortunately, TPFG contains cycles. This algorithm cannot be
applied directly. One solution to generalize it is a procedure known
asjunction tree algorithm [2] for exact inference. The junction tree
is a tree-structured undirected graph generated from arbitrary tri-
angulated dependency graph, and can be solved by sum-product.
Nevertheless, the computational cost of the algorithm is determined
by the number of variables in the largest clique and will growex-
ponentially with this number in the case of discrete variables. The
process to construct a junction tree alone consumes a lot in both
time and space. In practice we found it fails to finish for 6000vari-
ables, not to mention our TPFG has the scale of more than 600,000
variables.

To reduce the computational cost, we can do approximate in-
ference instead of exact inference. A general methodloopy belief
propagation (LBP) [8] simply applies the sum-product algorithm
in a cycle-containing graph. It passes message iterativelywith
flooding schedule. To avoid repetitive information flow for mul-
tiple times through the graph, we design a special message passing
schedule and the following algorithm according to the special prop-
erty of TPFG.

New TPFG Inference Algorithm. The original sum-product or
max-sum algorithm meet with difficulty since it requires that each
node needs to wait for all-but-one message to arrive. Thus inTPFG
some nodes will be waiting forever due to the existence of cycles.
To overcome this problem, we arrange the message passing in a
mode based on the strict order determined byH ′. Each nodeai

has a descendant setY −1
i and an ascendant setYi.

The message is passed in a two-phase schema. In the first phase,
messages are passed from advisees to possible advisors, andin the
second, messages are passed back from advisors to possible ad-
visees. Formally, there are two kinds of messages in the firstphase:
mfi()→yi

, myi→fj() wherej ∈ Yi. The message fromfi() to yi

is generated and sent only when all the messages from its descen-
dants have arrived. Andyi immediately send it to all its ascendants
fj(), j ∈ Yi. In phase two, there are also two kinds of messages:
myi→fi(), mfj()→yi

, j ∈ Yi, each of which are along the reverse
direction on the edge as in phase 1. The messages are calculated as
follows, derived from Eqs. (12) and (11).

mfi()→yi
(x) = max

stki>edix,∀yk=i
(log lix +

+
∑

k′∈Y
−1

i

myk′→fi()
(yk′)) (13)

myi→fj()(x) = mfi()→yi
(x) (14)

myi→fi()
(x) =

∑

j∈Yi

mfj()→yi
(x) (15)

mfj ()→yi
(x) = max

stkj>edjyj
,∀yk=j

(log ljyj

+myj→fj()(yj) +
∑

k′∈Y
−1

j
,k′ 6=i

myk′→fj()(yk′ )) (16)
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Figure 4: The 2-phase message passing schema.

After the two phases of message propagation, we can collect the
two messages on any edge and obtain the marginal function.

rij = max P (y1, . . . , yna |yi = j)

= exp
(

mfi()→yi
(j) + myi→fi()(j)

)

(17)

This algorithm still has redundant storage and computation. The
messages sent between function nodes and variables nodes are func-
tion values, which need to be stored as vectors. Some messages are
never used during the final merge, and some messages are simply
transmitted from one variable node to its corresponding function
node. We further simplify the message propagation by eliminating
the function nodes and the internal messages between a function
node and a variable node, and we find it equivalent to a message
passing problem on the homogeneous graphH ′. Messages can be
seen as being propagated between authors, and the messages can be
stored with each author in two vectors: one sent and one received.
The order of messages passed is illustrated by the number on each
edge in Figure 4. In this way both time and space are saved.

The improved message propagation is still separated into two
phases. In the first phase, the messagessenti which passed from
one to their ascendants are generated in a similar order as before.
In the second, messages returned from ascendantsrecvi are stored
in each node. After the two phases, each node collects the two
vectors to generate the final ranking score. The derived rules are as
follows.

sentij = log lij +
∑

k∈Y
−1

i

max
stkx>edij or x 6=i

sentkx (18)

recvij = max
j′∈Yj,edjj′ <stij

(recvjj′ + log ljj′ +

+
∑

k∈Y
−1

j
,k 6=i

max
x∈Yk,stkx>ed

jj′
or x 6=j

sentkx)

+
∑

x∈Yi,x 6=j

max
j′∈Yx

(recvxj′ +

+
∑

k∈Y
−1
x ,k 6=i

max
x′∈Yk,stkx′>edxj′ or x′ 6=x

sentkx′ )(19)

rij = exp(sentij + recvij) (20)

In the new algorithm, the message propagation can be done by us-
ing a stack-queue. In phase 1, each node will enter the queue once
and the vectorsenti for them is computed one by one. In phase 2,
we scan the queue from the tail back to the head,i.e., treat it as a
stack, and computerecvi. Then we can normalize the results and
collect them to get the ranking score. By usingO(|E′

s|) space, the
running time of the algorithm can be reduced toO(

∑na

i=1 did
′
i),



Input : H′ = (V ′, E′
s, {stij , edij , lij}(i,j)∈E′

s
)

Output : H = (V ′, E′
s, {(rij , stij , edij)}(i,j)∈E′

s
)

Calculate the logarithm of local feature functionlij ;
Initialize all sentij aslog lij ;
Initialize a counter for each nodecounti ← |Y

−1
i |;

Initialize a stack-queueQ, enqueue all the nodesx s.t. countx = ∅;
repeat

i← the head ofQ;
Increment the head pointer ofQ by 1;
foreach edge (i, j), j ∈ Yi do

Updatesentij according to Eq. (18);
countj– –;
if countj == 0 then

enqueuej;
end

end
until the head of Q is 0;
TreatQ as a stack, lettop points to the tail;repeat

Pop the top element ofQ to j; if j == 0 then
recvj0 ← 0

end
else

foreach j′ ∈ Yj do
Collectrecvjj′ andsentjj′ to computerjj′

according to Eq. (19) and prepare to computerecvij ;
end

end
foreach i ∈ Y −1

(
j) do

Computerecvij according to Eq. (19);
end

until Q is not empty;
GenerateH = (V ′, E′

s, {(rij , stij , edij)}(i,j)∈E′
s
)

Algorithm 1 : The improved TPFG inference algorithm.

wheredi andd′
i are the in-degree and out-degree of each nodeai

on graphH ′, respectively. As long as ifH ′ is sufficiently sparse,
the maximal degree of the node can be seen as constantC and the
complexity is further reduced toO(na).

5. EXPERIMENTAL RESULTS
In this section, we present various experiments that evaluate the

efficiency and effectiveness of the proposed approach.

5.1 Experiment Setup
Data Sets. We use the DBLP Computer Science Bibliography
Database maintained by Michael Ley as the dynamic collabora-
tion data setG to infer the advisor-advisee. It consists of 654,628
authors and 1,076,946 publications with time provided (from 1970
to 2008). To test the accuracy of the discovered advisor-advisee
relationships, we adopt three data sets: One is manually labeled
by looking into the home page of the advisors, and the other two
are crawled from the Mathematics Genealogy project1 and AI Ge-
nealogy project2. We refer to them as MAN, MathGP and AIGP
respectively. They only paretically cover the authors in DBLP.
We further separate MAN into three sub data sets: Teacher, PhD
and Colleague. Teacher contains all kinds of advisor-advisee pairs,
while PhD only contains graduated PhDs pairing with their advi-
sors. Colleague contains colleague pairs which are negative sam-
ples for advisor-advisee relationship. And we use these data to
generate random data sets for test. See Table 1 for details.
Method. We compare the proposed TPFG with the following base-
line methods:
1http://www.genealogy.math.ndsu.nodak.edu/
2http://aigp.eecs.umich.edu/

• Sum-Product+Junction Tree (JuncT). It computes the exact
joint probability as the ranking score.

• Loopy Belief Propagation (LBP). It employs an approximate
algorithm for inference.

• Independent Maxima (IndMAX). It computes the maximal
local likelihood for each variable independently.

• SVM. It is a supervised approach and requires labeled pairs,
both positive and negative, as training data.

• RULE. For each author, from all the collaborators that satisfy
Assumption 2, choose the one with most coauthored papers.

Evaluation Aspects. To quantitatively evaluate our method, we
consider two performance measurements: accuracy and scalability.
For accuracy, ROC curve is used to evaluate the overall ranking
of each prediction, to see whether real advisor-advisee pairs rank
higher than non advisor-advisee pairs; andP@k, θ is used to evalu-
ate the prediction for each individual’s advisor, to see whether real
advisor ranks on top among all collaborators. We also list a few
examples to demonstrate how discovered advisor-advisee relation-
ships can benefit other applications.

The preprocess is implemented with MATLAB 2009a and all
experiments are performed on a Desktop running Windows XP
with two Dual-Core Intel Pentium 4 processors (3.0 GHz) and 1GB
memory. The JuncT algorithm is implemented using the package
MALLET [13]. We implement TPFG with Visual C++ 2008. And
we use LIBSVM [4] to perform SVM training and prediction.

5.2 Accuracy
We conduct a series of experiments to explore the capabilityof

TPFG algorithm in mining advisor-advisee relationships. First, as
we mentioned in Section 4.1 and Section 4.2, different assumptions
about advising relationships are tested to find the best combination
that reflects the reality. Second, we extract small fractions of the
whole DBLP network and feed them to TPFG, to prove that the
power of network boosts the estimation of joint probability. Fi-
nally, we compare our unsupervised approach with a supervised
approach. We also tested whether TPFG can be further improved
by utilizing training data.

5.2.1 Effect of rules in TPFG
We try different rules one by one to construct the corresponding

candidate graphH , compute the ranking score with our algorithm,
and compare the accuracy on some labeled data.

The accuracy is compared through ROC curves. For each pair in
the tested data, we retrieve the ranking score from the output. Then
we sort these ranking score in a descendant order, and plot the ROC
curve.

From Figure 5(a) we can see that R2/R3 has the highest suit-
ability on the tested data. R1 and R4 both lead to a slightly worse
curve and their curves overlap. In this way we can further refine
other rules, including the definition of local likelihood, as shown in
Figure 5(b), and estimation of the graduation year, which wefound
does not affect the ROC curve. In general, by applying a small
set of rules our method can extract meaningful knowledge, while
which rules to select is flexible depending on the problem specifi-
cation. It is also observed that TPFG is not sensitive to those rules.
For example, if we choose R2, or even R1/R4 other than R3, the
worst AOC value 0.88 is not degraded drastically from the opti-
mal choice 0.91. It indicates that our network modeling approach
is robust in handling inaccurate local features. From now onwe
use R3 as filtering rules, use the combination of Kulczynski and
IR as local likelihood evaluation measure and use YEAR2 as the
graduation year estimation method if not mentioned specifically.
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Figure 5: ROC curves for advisor-advisee prediction

5.2.2 Effect of network structure
Using DFS with a bounded maximal depthd from the given set

of nodes, denoted as DFS-d, we can obtain closures with controlled
depth for a given set of authors to test. Whend increases, the sub-
network grows larger until it is already the complete closure, i.e.,
the maximal connected subgraph ofH containing the given set. We
run TPFG on these closures and plot the ROC curves.

From Figure 5(c) we see that for closures with different depths,
TPFG achieves better accuracy when the depth increases, andthey
all outperform the IndMAX method by more than 5% in AOC. And
on the complete closure TPFG reaches the same accuracy as on the
whole network since disconnected components will not affect each
other.

On these various scaled subnetworks, TPFG achieves different
level of approximations to the optimal global joint probability on
the whole network. To compare it with the exact maximal joint
probability and other approximate algorithm, we show the result
on a small graph due to limitations of JuncT and LBP (see Sec-
tion 4.4). The small graph is constructed by extracting the nodes
in PhD and their advisors, and then building1-closure of it. It con-
sists of 1310 nodes. From Figure 5(d) we find that in the small
graph TPFG approximates well to the exact inference algorithm
JuncT(AOC difference < 0.01), and outperforms LBP by 16.9%.

Table 1: Accuracy of prediction by P@(2,θ): T
T+F

data set RULE SVM IndMAX TPFG

TEST1 69.9% 73.4% 75.2% 78.9% 80.2% 84.4%
TEST2 69.8% 74.6% 74.6% 79.0% 81.5% 84.3%
TEST3 80.6% 86.7% 83.1% 90.9% 88.8% 91.3%

TRAIN1=Colleague(491)+PHD(100)
TEST1=Teacher(257)+MathGP(1909)+Colleague(2166)

TRAIN2=TRAIN3=Teacher(257)+Colleague(2166)
TEST2=PHD(100)+MathGP(1909)+Colleague(4351)

TEST3=AIGP(666)+Colleague(459)
IndMAX,TPFG: left -θ = 3rd quartile of{rij}; right - trained

5.2.3 Effect of training data
Support Vector Machines(SVMs) are accurate supervised learn-

ing approaches and shown to be successful in syntax-based rela-
tion mining[6]. If we treat advisor-advisee pairs as positive exam-
ples and non advisor-advisee pairs as negative examples, wecan
reduce advisor mining to a classification problem on the ordered
pairs (ai, aj). In this setting it requires to define some features
for each pair of coauthors, and train the classifier by feeding both
positive and negative samples. For fair comparison with ourprob-
abilistic model, we combined Kulczynski and IR measures with
what were used in [19] as features.

Direct application of SVM only shows whether a given pair is an
advisor-advisee pair, and it is often the case an author is predicted to
have multiple advisors, 1001 out of 2657 for TEST1, for example.
Thus we examine the probabilistic scores in the test data, and rank
them to draw the ROC curve. TPFG is4.2% and2.4% higher in
AOC than SVM in TEST1 and TEST2 respectively.

Although in this work we define our model as an unsupervised
learning approach, it can also work with supervised learning. We
have utilized labeled data to select rules in Section 5.2.1.We can
also optimize the parameterθ in the P@k, θ as we mentioned in
Section 3 according to certain criteria such as achieving best infor-
mation gain on the training data. Then we use the trained parame-
ters to do predictions on test data. Table 1 shows the improvement
by utilizing the training data. After training, TPFG can reach an
accuracy of84% to 91%.

SVM actually makes a supervised combination of all the as-
sumptions and rules used in TPFG. The difference lies in thatit
does not explore the constraint and dependency replying on the
whole network structure. It does a fairly good job, but still5-
10% worse than optimized TPFG. In conclusion, TPFG can achieve
comparable or even better accuracy compared with a supervised
method. When parameters are adjusted with training data, its accu-
racy can be further improved by around3%.

5.2.4 Case study
With case study, we find that TPFG can discover some interest-

ing relations beyond the “ground truth” from single source.Table 2
shows some examples. Our ranking results provided with advising
time facilitate finding such kind of advising relations, which cannot
be easily discovered by referring to Genealogy projects. The mean
of deviation of estimated graduation time to the labeled time on the
test data sets is1.76 ∼ 1.78.

We find that at least 40% of the error is contributed by name
ambiguity. For example, if we try to find the advisor for “Joseph
Hellerstein”, our algorithm returns wrong results. If we distinguish
“Joseph M. Hellerstein” and his publications properly, ouralgo-
rithm is able to find the "half" right answer Michael Stonebraker
ranked top 1. The answer is half right because there is a co-advisor



Table 2: Examples of mined relations. Time - the estimated
advising time; Note - the factual relation and graduation year

Advisee Top Ranked Advi-
sor Time Note

David
M. Blei

1. Michael I. Jordan 2001-2003 PhD advisor, 2004
2. John D. Lafferty 2005-2006 Postdoc, 2006

Hong
Cheng

1. Qiang Yang 2002-2003 MS advisor, 2003
2. Jiawei Han 2004-2008 PhD advsior, 2008

Sergey
Brin 1. Rajeev Motwani 1997-1998 "Unofficial advisor"3

3 cited from a blog of Sergey Brin, who left Stanford to found
Google around 1998.
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Figure 6: Scalability results in log-log scale. JuncT and LBP
fail at 10K and 200K respectively due to memory limitation.

Jeffrey F. Naughton, who is also ranked high in top 15%. Duplica-
tion are even more common among Chinese names. Therefore, if
the name DISTINCTION problem [20] is solved well, the accuracy
of our algorithm can be further improved. Other reasons for false
negatives include that one researcher collaborated with multiple ad-
visors or that one coauthored fewer papers with the advisor.The
latter case happens more often for older researchers, for whom the
publication data are not as complete as nowadays. More examples
are provided in Section 5.4. In those situations, it is almost impos-
sible to find credible advisor-advisee relationships merely based on
their publication records. Our study can find typical cases but will
miss such atypical cases.

5.3 Scalability Performance
Figure 6 depicts the running time required for different algo-

rithms to infer the probabilistic rank. The same preprocessing is
done for IndMAX, JuncT and TPFG, taking 48 minutes. IndMAX
and RULE do not perform further learning after preprocessing.

TPFG is shown to be scalable in Figure 6. With regard to the
learning time, TPFG costs only 13 seconds on the whole DBLP
dataset. As a classification approach, SVM’s scalability isrelated
to the size of training data. As an example, the feature computation
takes one hour and a half, and the model learning takes 31 seconds
for Train1 and 6min26s for Train2.

5.4 Applications
The discovered advisor-advisee relationships can benefit many

applications, such as online query of advisors, visualization of ge-
nealogy, and expert finding,etc.. Here we show two examples.
Visualization of genealogyThe visualized hierarchies of research
community based on the relationship can help us gain a betterin-
sight of the community. With visualization technique from [10] we
can draw the advising tree on hierarchical circles. For example, in
Figure 7 we show a subtree of the Mathematics Genealogy. To vi-
sualize our results on it, we draw edges with different colors. We
have visualized results from both the baseline algorithm RULE and
TPFG. The figure is better to be viewed in color mode. We see that

(a) RULE (b) TPFG

Figure 7: visualization of advising relationship on genealogy
tree, green solid=true positive, red dotted=false negative

RULE tends to give a ratio close to 1:1 of true positives to false neg-
atives, while TPFG raises this ratio by twice. Zooming into alocal
region, we see clearly that TPFG is able to identify Prof. David
Peleg’s students and advisor correctly while RULE could not.

The visualization also leads to some interesting finding. Partic-
ularly, in TPFG result, we found the red dotted edges were closer
to the root than the green edges. This observation infers that TPFG
tends to make mistakes for researchers who graduated earlier. With
further statistical analysis, we found that for researchers involved in
true positive relations, the average graduate time is 1994 while for
false negative results, the average is 1983. We can also analyze col-
laboration patterns for different research topics and affiliations by
looking at those mistakes. For example, the advising tree ofsome
theoretical computer scientists
centered in Prof. Manuel Blum
has a lot of outliers when de-
tecting their relationship. This
implies they have some unusual
collaboration patterns. We then
found that Diane Hernek and
Russell Impagliazzo have no
publication coauthored with their advisor, while Peter Gemmell
and Luis von Ahn only have 1/8 of their papers with Manuel Blum
in DBLP.
Expert finding and Bole search Here we illustrate one appli-
cation on bole search [19], a specific expert finding task, aiming
to identify best supervisors (according to their nurture ability [14])
in a specific research field. The task requires advisor-advisee re-
lationships as input which are usually unavailable. To quantita-
tively evaluate how the advisor-advisee relationships canhelp bole
search, we compare a retrieval method with and without thosere-
lationships on a data set used in [19]. Specifically, the dataset
consists 9 queries (e.g., data mining and machine learning), and for
each query, 50 top ranked researchers by ArnetMiner.org aretaken
as candidates. We sent an email to each of the 50 researchers and
another 50 young researchers who start publishing papers only in
recent years (>2003) for feedbacks (“yes”, or “no”, or “not sure”).
Finally a list of best supervisors are organized for each query by
simply counting the number of “yes”(+1) and “no”(-1) from the
100 received feedbacks. Details can be referred to [19]. Foreasy
comparison, we did not use the learning-to-rank approach (as re-
ported in [19]). Instead, we use the language model (LM), which
does not consider the advisor-advisee relationships, and aheuristic-
based method which simply combines the language model with
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Figure 8: Application: from Expert Finding to Bole Search

the advisor-advisee relationships identified by the baseline method
(LM+RULE) or identified our proposed approach (LM+TPFG) by

si = αri + (1− α)
1

|Ai|

∑

aj∈Ai

raj
(21)

whereri is the relevance score obtained by the language model;Ai

is a set of advisees of researcherai identified by RULE or TPFG;α
is a parameter to trade off the balance between researcher’sexper-
tise and his advisees’ expertise score. We empirically setα = 0.7.

Figure 8 (b) shows the results (Precision@2, Precision@5, mean
average precision (MAP), and NDCG@5 [1]) of bole search by
the three methods. We see that by considering the advisor-advisee
relationships (obtained by either RULE or TPFG), the performance
of bole search can be significantly improved. We can also see that
with a higher accuracy, our method TPFG clearly achieves a better
improvements, particularly for the top two retrieved results (71.4%
by TPFG vs. 64.3% by RULE in terms of P@2).

6. CONCLUSIONS
We have studied the mining of advisor-advisee relationships from

a research publication network as an attempt to discover hidden
semantic knowledge in information networks. We propose a two-
stage framework to transform a collaboration network step by step
until constructing the advising hierarchy with ranking. Wepropose
a Time-constraint Probabilistic Factor Graph (TPFG) modelto in-
tegrate local intuitive features in the network. Finally, we design an
efficient learning algorithm to infer the TPFG model. Experimental
results on the DBLP data sets demonstrate the effectivenessof the
proposed approach.

Interesting problems related to the approach include how toex-
tend the approach to general relationship mining, to incorporate
prior information to enable semi-supervised learning, andto cope
with multi-typed nodes and links. Another interesting problem is
to correlate the discovered latent relationship with social influence
analysis. Clearly, much more can be exploited with an information
network by exploring inherent knowledge from it.
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