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ABSTRACT

Information network contains abundant knowledge abouattica-
ships among people or entities. Unfortunately, such kinkhofvl-
edge is often hidden in a network where different kinds oa-+el
tionships are not explicitly categorized. For example, research
publication network, the advisor-advisee relationshipsag re-
searchers are hidden in the coauthor network. Discoverkasfet
relationships can benefit many interesting application s ex-
pert finding and research community analysis. In this paper,
take a computer science bibliographic network as an exartple
analyze the roles of authors and to discover the likely aivis
advisee relationships. In particular, we propose a tinrestrained
probabilistic factor graph model (TPFG), which takes a aese
publication network as input and models the advisor-agvista-
tionship mining problem using a jointly likelihood objeati func-
tion. We further design an efficient learning algorithm taiop
mize the objective function.
and ranks probable advisors for every author. Experimeesailts
show that the proposed approach infer advisor-advise¢iaela
ships efficiently and achieves a state-of-the-art accuf@@y90%)
without any supervised information. We also apply the disced
advisor-advisee relationships to bole search, a specifierefind-
ing task and empirical study shows that the search perfareean
be effectively improved (+4.09% by NDCG@?5).

Categories and Subject Descriptors

H.2.8 [Database Managemerjt Database Applications-Bata Min-
ing

General Terms

Algorithms, Experimentation
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1. INTRODUCTION

With the rapid growth of the social web, particularly onlinet-
working applications such as Facebook, Youtube and Twjttss-
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Based on that our model suggest

ple are closely connected via different types of relatigmshlt is
well recognized that different types of social relatiopshinave es-
sentially different influence between people, which forhes¢om-
plex and subtle force that governs the dynamics of socialoris.
For example, in the social network, a graduate’s reseapib toay
be mainly influenced by his advisor; while his living habitayrbe
influenced by his family. Awareness of the relationship t/pan
offer abundantly additional information for many miningpéipa-
tions such as community discovery and expert finding. Fomexa
ple, if we know advisor-advisee relationships betweenaeseers,
we can easily discover how researchers form different coniimu
ties, how research topics have been emerging and evolvitigein
past years, and how a researcher influences the academnacctese
community.

However, in reality, such information (relationship typs)of-
ten hidden in the networks due to different reasons. For plam
advisor-advisee relationships are hidden in the coauthbwark
(e.g, on DBLP); family relationships are hidden in the friengshi
network (e.g, on Twitter or MSN). Several projects aim to main-
tain the types of relationships, such as LinkedIn and Al Gérgy.
The former requires users to label their professional imxahips
(e.g., colleagues or advisor-advisee) with each friendthadat-
ter asks human annotators to manually label the advisorm#e
tion for various research fields. However, these methodsilgea
rely on manual efforts, which significantly limits its wideer An
ideal solution is to design a method that automatically uacethe
hidden relationship types from the networkNevertheldss,non-
trivial to accurately differentiate social relationshigspecially in
a real large network. For example, neither the most freqoes-
thor nor most authoritative researcher among one’s calidbrs is
assured to be his advisor. For real data it could be difficténe
for human beings to tell who is one’s advisor by the publaati
list. Sometimes, in a specific application (e.g., the coawuttet-
work), heuristical rules can be defined to identify the iielahip
type according to human intuitive assumptions. However poe-
liminary experimental result (cf. Section 5) shows thattijygcal
heuristic rules can only achieve an accuracy of 70-80%. Ewen
multiple rules combined with a supervised learning modahtrd
using different features, the accuracy is still only 80% werage.
Moveover, it is often difficult to collect supervised infoation for
training in practice.

In this study, we try to conduct a systematic investigatibn o
the case of mining advisor-advisee relationships betwenoes
in a research publication network. ldentification of suckisat-
advisee relationships can offer us a chance to better uaderthe
insight of the research community, as it provides addiiseanan-
tic information on the links other than the simple, explicitau-
thor relationships. For example, we can position each peirso
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Figure 1: Example of advising relationship analysis on the @-author network.

a chronological axis in the right order and sketch the whola-c
munity in a clear view. Certain applications of expert firglcan
also be benefited from the identified advisor-advisee miatiips,

as people looking for experts may not only care about theopats
academic achievements but also are interested in how many “e
perts” they can foster.

To clearly illustrate the problem, Figure 1 gives an exangile
advisor-advisee relationship analysis on a researchgaildn net-
work. The left figure shows the input: an temporal collabiorat
network, which consists of authors, papers, and papecautta-
tionships. The middle figure shows the output of our analysis
author network with solid arrow indicating the advisingatén-
ship, and dotted arrow suggesting potential but less pitelrata-
tionship. For example, the arrow from Bob to Ada indicatest th
Ada is identified as the advisor of Bob. The triple on the edlge,
(0.8, [1999, 2000]), represents Ada has the probability of 80% to
be the advisor of Bob from 1999 to 2000. Such results can henefi
many potential applications such as research communigctieh
and evolution analysis. The right figure gives an exampleisf-v
alized chronological hierarchies. The parent-child fetain the
tree corresponds to the advisor-advisee relationship. akesee
the advising path from root to leaf.

The problem we study is rather different from existing ralgv
research €.g, relation mining). Our work analyzes links rather
than text or labeled annotations which poses a set of clygten

e Latentrelation. The advisor-advisee relationship is hidden in
the network. There is no supervised information indicating
who is one’s advisor among numerous collaborators.

e Time-dependent. Social role like advisor or advisee is highly

an efficient algorithm to optimize the joint probability \agprocess

of message propagation on the network. By experiments w& sho
this unsupervised approach can achieve an accuracy of B0-90
leading by 5-20% against several baseline methods. We also a
ply the identified advisor-advisee relationships to bokrale (best
supervisor finding) and demonstrate that the performand®ief
search can be clearly improved (+4.1%). The proposed framew
is generalizable to other applications. For discoveritgotype of
relationships, the additional requirement is to redefireféature
function and the potential constraints.

The rest of the paper is organized as follows. Section 2 diggs)
related work. Section 3 formally formulates the problenctiom 4
explains the proposed approach. Section 5 presents ex@edm
results that validate the computational efficiency and &ffyof our
methodology. Finally, Section 6 concludes the study andudises
the future work.

2. RELATED WORK

This work is different from the existing study Relation Min-
ing and Relational Learning. Previous studies in relation mining
mainly employ text mining and language processing teclenimu
text data and structured data including web pages, usetgzafid
corpus of literature. Relational Learning [9] refers to thassifi-
cation when objects or entities are presented in multigkions.
Semantic Role Labeling is a broadly employed text minindntec
nique, as it allows for the addition of structured semantior-
mation to plain text [11]. [15] applies Natural Language ¢&iss-
ing to extract protein-protein relationships from richaatated cor-
pus in biomedical domain. [6] proposes a general framework f

time-dependent. One could turn from an advisee to an advi- Syntax-based relation mining and achieves high accuraexpgr-

sor but there is no clear sign when this transition happens.

e Scalability. To find one’s advisor it is insufficient to apply
simple rules without considering the inherent correlatibn

network. When the search space becomes exponential in

size, it is important to develop a method that can scale well
to real large networks.

In this paper, we formulate the problem of advising relatlip
mining as a probabilistic ranking problem, and propose a&+tim
constrained probabilistic factor graph (TPFG) model to aldde
dynamic collaboration network. Specifically, the advisbreach
author and the advising period are modeled together astgjahb-
ability of as many hidden variables as authors. We furtheige

imenting with Support Vector Machine as a supervised amproa
[17] applies a clustering-based approach to differentetent so-
cial dimensions from social network, but does not study abize
semantic meaning related to the extracted dimensions.effhé
semantic relationship in a supervised way, treating lirkieatures
and requiring labeled pairs as training data. Since it ifcdit
to find universal features that are useful in every domaineme
ploy a different philosophy that requires commonsense dracind
knowledge about the correlation between the observed Bmics
the latent roles of the nodes but no training data. To the dkest
our knowledge, there is no previous work mining semantia-rel
tions solely according to a network with neither annotatixi nor
labeled relations.
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Figure 2: Example of graph transformation.

By means of link analysise(g, using PageRank[3]), one can
compute the importance of a node and the relevance of naighbo
ing nodes. Studies have also shown links can be explore@m cl
fuse and reveal the knowledge hidden in a network. For exampl
Object Distinction [20] distinguishes objects with identical names
by analyzing their heterogeneous linkages. Furthermotegiated
ranking and clustering can be performed on heterogenedwsrie
based on the link information [16]. [17] proposes to extriact
tent social dimensions based on network information, aed thi-
lize them as features for discriminative learning. Recpigigi the
power of links, our approach extracts implicit entity setmarela-
tionships by modeling the network.

To evaluate the discovered advisor-advisee relations wpace
them with graduation records maintained by some onlinesptsj
Such projects include the Mathematics Genealogy Projéctt&

Computer Engineering Academic Genealogy, the Al Genealogy

Project and the Software Engineering Academic Genealdd§j [
proposes an approach based on classification to classifielite
tions according to some local features on each pair of coasitiut
the parameters are manually tuned. We develop their mettoci
supervised learning process and compare it with our prbtdi
model-based approach.

3. PROBLEM FORMULATION

In this section, we present the problem formulation and defin
notations used throughout the paper.

In general, our study takes as input a time-dependent eollab
oration network{G} = {(V = VP U V% E)}, whereV? =
{p1,...,pn, } is the set of publications, with; published in time
ti, V¢ = {a1,...,an, } is the set of authors, anfl is the set of
edges. Each edgg; € FE associates the papgr and the author
aj, meaninga; is one author op;.

The original heterogeneous network can be transformedanto
homogeneous network containing only authors.@et= (V' E’,

{pyijte,em s {pny;te, em), whereV’ = {ao, ..., an,} is the

set of authors (including a virtual nodg, which will be the root
of an advising tree.). Each edgé = (i,j) € E connects au-
thorsa; anda; if and only if they have publication together, and
there are two vectors associated with the edge, Pub_VYeztorve
py,;; and Pub_Num_vectopn,;. They are of equivalent length,
indicating the year they have publications and the numbeoai-
thored papers they have at that time. For examplg, = (1999,
2000, 2001), pn,; = (2, 3, 4) indicates that authar; anda; have
coauthored 2, 3 and 4 papers in 1999, 2000, and 2001 resglgctiv
Similarly, we associate with each author two vectpys andpn;

to respectively represent the number of papers and thespame-
ing published year by authat;. The two vectorpy; andpn; can
be derived fronpy;; andpn;;.

We denote the authar;’s advisor asa,,, wherey; is an intro-
duced hidden variable. H;'s advisor isa;, we use[st;;, ed;;] to
represent the time interval the advising relation lasts: lfevity
we denotest; = stiy, anded; = ed;y,;. If a; is not advised by
anybody in the database, we lgt= 0 to directa;’s advisor to a
virtual nodeay.

In this setting, to find the advisor-advisee relationship, veed
not only to decide the value of the hidden varialéor each author
ai, but also to estimate the start and the end ys&fs, ed;y,. In
reality, this problem is more complicated: (i) one could dawul-
tiple advisors like master advisors, PhD co-advisors,-gostorial
advisors; (ii) some mentors from industry behave similadyaca-
demic advisors if only judged by the collaboration histagd (iii)
one’s advisor could be missing in the data set. Therefosteau
of using a boolean model, we adopt a probabilistic model & ra
the likelihood of potential advisor(s) for each author. Rally, we
denoter;; as the probability ofi; being the advisor ofi;. To re-
duce the number of authors being ranked, it is beneficial &pke
only those potential pairs of advisor-advisee. We consiagub-
graphH’ C G’ by removing some edges frot’ and make the
remaining edges directed from advisee to potential advisbhus
H' = (V',E.)andE, C E'. Later we will show that it is possi-
ble to extract a directed acyclic graph (DAG) from G'. In H’,
the index set of potential advisors of a given authpis denoted
Y; = {jlei; € EL}, e.g, Ys = {0, 1}. Correspondingly, the index
set of potential advisees is denotéd ' = {jle;; € E.}.

Then the task becomes finding;, st.;, ed;; for every possi-
ble advising pair(i,j) € E;. So the output is the DAGT =
(V' B, {(rij, stij, edij) }ijyer, ). The transformation process
is illustrated in Figure 2. After the chronological DAB is con-
structed, the ranking score can be used to predict whetleee th
is an advisor-advisee relationship between every pair afitwrs
(asyaj). A simple way to predict is to fetch top potential advi-
sors ofa; and check whethet; is one of them while;; > r; or
ri; > 0, whereé is a threshold such as 0.5. We uB&(k, 6) to
denote this method. It is predictable that lafgand larged leads
to better recall and worse precision. How to chobsendé could
be a tricky problem. So we allow the input contains some itngin
data so as to determine the parameters. If no training dauais
vided, we can simply use some empirical values, such as tfie th
quartile of all the ranking scores.

4. APPROACH

In this section, we first make basic assumptions as the prereq
uisite of our approach, then propose a two-stage framewodk a
present the approach for each stage. The main idea is taggver
a time-constrained probabilistic factor graph model toodegose
the joint probability of the unknown advisor of every authdhe
time-related information associated to the hidden sooialis cap-
tured via factor functions, which form the basic componaifthe



factor graph model. By maximizing the joint probability bitfac- following conditions are checked. First, Assumption 2 isaed.
tor graph we can infer the relationship and compute rankaoges Only if a; started to publish earlier than, the possibility is con-
for each relation edge on the candidate graph. One can apply g sidered. Second, some heuristic rules are applied, whechased
eral algorithms for inference on factor graph, e.g., suodpct and on the prior intuitive knowledge about advisor-adviseeatiehs.

JunctionTree. However, these algorithms suffer from tlabiem Many rules are reasonable but for each there is counter dgamp
of low efficiency. Thus a new message passing algorithm on the real world. It is unknown how well they work before the result
candidate graph is designed that approximates the congrutatd are tested. Thus we list the rules here and will test themén th
greatly improves the efficiency. experiment part.

. First, we introduce two measures for the coauthored puisits
4.1 Assumptlons and Framework between any pair of collaboratorBulc (i.e., Kulczinski measure

Commonsense knowledge is needed for recognizing intagesti  [18] andI R (i.e., imbalance ratio). They are defined as
semantic relationships. Here we make a few general assumspti X
based on the commonsense knowledge about advisor-adeisee r Zpy,’fjét P 1 1

- - kulct; = + ) Q)
tionships. Y 2 Zpyf’ <Py Zpyé‘ <Py

ASSUMPTION 1. V1 <z < ng,edy, < sty < edy

This formula reflects the following fact for general consat®n of
advising relationship. At each timeduring the publication history
of a nodez, x is either being advised or not being advised. Once
x starts to advise another node, it will never be advised again The Kulczynski measure reflects the correlation of the twbans’
cannot advise at the yeat; if = is advised by any nodg at the publications. [18] shows that there usually exists higirelation
yeart:. If z advisesy, the timey is advised byx is a continuous between the total publications of advisors and advisee.e er
interval fromt; to ¢z, t1 < t2. As aresult of Assumption 1, we  further incorporate the time factor, to calculate the meagear
need to infer the advisors of all the nodes in the networkttegre by year, and check whether there is an increase in the seguenc
rather than consider them separately. In Section 4.3, weusd {kulc};}e. For IR, we calculate the sequences in the same way.
this assumption in our model. IR [18] is used to measure the imbalance of the occurreneg of
givena,; and the occurrence af, givena;. The intuition is that the
advisor has more publications than the advisee during thisiad

That means for a given pair of advisor and advisee, the adalso ~ time. Then we have the following rule.

ways has a longer publication history than the advigeg. repre- Author a; is not considered to be;’s advisor if one of the fol-
sents the first component of vectpy,. Assumption 2 determines  lowing conditions holds:

that all the authors in the network have a strict order defimed
the possible advising relationship. Due to the order, tinelickate
graph H' is assured to be a DAG. We will use this assumption in

k k
Zpyf <t Py — Zpy,’f <t P

t
J k k _ k
Zpyé"gt pny + Zpy?gt pny Zpy?jgt png;

@)

ASSUMPTION 2. V1 < & < 1, py,, < pys

R1: IR}; < 0inthe sequencél R, }: during the collaboration
period ofa,; anda;,

the filtering process in Section 4.2. R2: there is no increase in the sequerdéelc;; }; during the
Additional assumptions about the correlation between the p collaboration period,

tential relationship and the publication history will besclissed R3: the collaboration period of; and a; lasts only for one

in Section 4.2. Now we propose a two-stage framework saiutio year,

for the advisor-advisee relationship mining problem. lagst 1, o L

we preprocess the heterogeneous collaboration networkrterg R4 py; +2 > py;;,

ate the candidate gragh’. This includes the transformation from
G to a homogeneous netwoX, the construction frond’ to H’,
and the estimate of the local likelihood on each edgél6f In
stage 2, these potential relations are further modeledavittoba-
bilistic model. Local likelihood and time constraints amrdined
in the global joint probability of all the hidden variableBhe joint
probability is maximized and the ranking score of all thegmtigal
relations is computed together. The constructiorHofs finished
in this stage.

When the pair of authors passes the test of selected rules fro
them, we construct a directed edge framto a; in H'. In addi-
tion, we estimate the starting time and ending time of theésaaty,
as well as the local likelihood af; beinga;’s advisorl;;. For the
estimation we also have various methods. The starting $imes
estimated as the time they started to collaborate, whiletiting
time ed;; can be estimated as either the time point when the Kul-
czynski measure starts to decrease, or the year makingrtiesta
difference between the Kulczynski measure before and iaftéfe
4.2 Stage 1: Preprocessing refer to the two methods as YI_EARl and YEAR2. And_ we refer

to YEAR as taking the earlier time of the two years estimatgd b
them. After estimatingt;; anded;;, we calculate the average of
Kulczynski and IR measure during that period, and use 1)uie
ski ; 2)IR; 3)the average of the two as three different de€ing of
the local likelihood. The last definition is formally

The purpose of preprocessing is to generate the candidapé gr
H' and reduce the search space while keeping the real advisor no
excluded from the candidate pool in most cases. First, we nee
to generate according to the collaboration information mdge-
neous author network’ by processing the papers in the network

one by one. For each papgr € VP, we construct an edge be- > et <i<eq, . (kulch; + IRL;)

tween every pair of its authors and update the vegtgrandpn. lij = ”2’( ) —— — (3)

The complexity of this process 8(3-, cy» d?), whered; is the dig — Stij

degree op; in G. ' And the other two are similar. The complexity of processiagre
Then a filtering process is performed to remove unlikely-rela edge isO(T), if we assume the oldest paper and the newest one dif-

tions of advisor-advisee. For each edgeon G’, a; anda; has fersT in their publication time. The total complexity to transfor

collaboration. To decide whethey; is a;’s potential advisor, the G’ to H' isO(MT), whereM is the number of edges i@ .



4.3 Stage 2: TPFG Model

From the candidate grapH’ we know the potential advisors
of each author and the likelihood based on local informatiBg
modeling the network as a whole, we can incorporate botletsirel
information and temporal constraint and better analyzedlation-
ship among individual links. Now we define the TPFG model.

For each nodeu;, there are three variables to decidg;, st;,
and ed;. Suppose we have already had a local feature function
9(yi, sti, ed;) defined on the three variables of any given node. To
model the joint probability of all the variables in the netkowe
define it as the product of all local feature functions.

1
P({yi, sti,edi}a,eve) = - I 9 stied) (4
a;eEVa
with
Va; € V9 edy, < sti < ed; (5)

Where% is the normalizing factor of the joint probability

Eq. (5) is the constraint according to Assumption 1. To firel th
most probable values of all the hidden variables, we needata-m
mize the joint probability of all of them. To estimate the epp
imate size of the entire search space, assume each auth6r has
candidates and the advising time can vary in a randg, ¢fien the
combination of all the variables has exponential gigg™?)™. It
is intractable to do exhaustive search. We make the firstlgimp
cation as follows. Supposg and his advisoy; are given. Instead
of letting st; anded; vary, we fix them by optimizing local function
9(yi, sti, ed;), i.e,

(6)

In this way, st; anded; are tied to the value of;. Oncey; is
decided, they are derived correspondingly. We can pre-atenp
the best advising time as;; anded;; for eachy; = j. Now only
{y:} are variables to optimize). If we embed the constraint Eg. (5
into the feature function, the objective function becomes

ti,ed;} = iy Sti, ed;
{sti,edi} = arg max g(y, sti, ed:)

Py svon) = 5 [ fllsale € ¥ @
i=1

with
filyi = il{yale € Y '}) = g(ui, stij edis) [[  I(ua # iVedis < stas)
J:GYi71
(8)
where

1 ye 7é 7 \/edij < Styq
0 yz=1Aedy; >= sta;

I(yx #iVed; < Stm') = 9)

{

is the identity function. If any authat,, is advised by:; and their
advising time conflict, the function takes 0; otherwise kes 1.

In this way the time constraints Eq. (5) for all hidden vakésbare
decomposed to many local identity function. Now we only need
to optimize Eq. (7). Furthermore, to obtain the rank scoreawth
advising relationshipe.g, a; advisea; (shortlya; — a;), we can
compute the conditional maximal probability

rig = max P(y1, ..., Yn,[yi = J) (10)

This simplification assures that for each configuratioqwf, the
solution achieves either 0 or the conditional optimum gitlesit
configuration. The search space size now becofifes reduced
but still exponential. Since we have decomposed the depegde
of the variables, we can use a factor graph model to accomplis
efficient computation.
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Figure 3: Graphical representation of a time-constrained pob-
abilistic factor graph, where {yo, ..., ys} are hidden variables
defined on all nodes;f;(.) represents a factor function defined
on a hidden variable and its potential advisee sets as neights.

Figure 3 shows a simple TPFG corresponding to the example we
have been using so far. The graph is composed of two kinds of
nodes: variable nodes and function nodes. Variable nodestona
the hidden variablegy; }¢,. Each variable node corresponds to a
function nodef; (v:|{y=|z € Y;"'}). All of the edges are of one
kind, connecting a variable node with a function node. Thsre
an edge between one variable ngdeand a function nodg;(.) if
and only if f;(.) depends ony,. In our case, it is equivalent with
z=iorx € Y7 ! (aka.i € Y;). The factor graph reflects the
dependency of the variables. A set of variables are coemldt
they are neighbors of the same function noelg, y1, y2, ys with
f1(y1,y2,y3). We can see that two hidden variables are correlated
iff their corresponding author nodes are linked by an edgéhen
candidate graptil’, which means there is a potential advising re-
lationship between them. And once a variabl&€hanges its value,
it will affect the value of all the functions correspondir@the po-
tential advisor and advisee séfsU Y, .

There is additional information stored in each variableeyabs
shown in the tables in Figure 3; can take different values frohyj,
and the corresponding;, ed; andg(y;, st;, ed;) are pre-computed
in stage 1. Here we tale; asg(y, stij, ed;;) wheny; = j.

Theoretically, one can incorporate any types of featurstire
TPFG model. For different kind of relationships, the comisircan
vary according to primary assumptions.

4.4 Model Learning

To maximize the objective function and compute the ranking
score along with each edge in the candidate grAphwe need
to infer the marginal maximal joint probability on TPFG, aot-
ing to Eq. (10). We first introduce the algorithm for geneeadtér
graph, discuss its deficiency, and then propose our algarith
Sum-product + junction tree. There is a general algorithm called
sum-product [12] to compute marginal function on a factor graph
based on message passing. It performs exact inference ctoa fa
graph without cycles. In the sum-product algorithm, the girea
functions of a single variable, a.k.a., messages, are pasteeen
neighboring variable node and function node. To compute the
marginal maximal probability, we need to change sum-prbttuc
max-sum with a logarithmic transformation of the functialue.



If TPFG is tree-structured factor graph, the message pasaie
will be:

myiﬂfj()(yi) = Z mfj'()"yi(yi) (11)
J'eY;U{i}, i’ #5
M-y W) = max (log £y {yir}) +
+ > my,—p0W))  (12)

i ey UG} A

wherej’ € Y; U {i},j’ # j represents;/() is a neighbor node
of variabley; on the factor graph except factéy(), ~ {y.} repre-
sents all variables it = {y1, ..., yn. } €XCEPLY;.

Unfortunately, TPFG contains cycles. This algorithm carbe
applied directly. One solution to generalize itis a progedunown
asjunction tree algorithm [2] for exact inference. The junction tree
is a tree-structured undirected graph generated fromrarpitri-
angulated dependency graph, and can be solved by sum-produc
Nevertheless, the computational cost of the algorithmtisrdened
by the number of variables in the largest cligue and will gew
ponentially with this number in the case of discrete vagablThe
process to construct a junction tree alone consumes a laitin b
time and space. In practice we found it fails to finish for 6086-
ables, not to mention our TPFG has the scale of more than®00,0
variables.

To reduce the computational cost, we can do approximate in-
ference instead of exact inference. A general metloogy belief
propagation (LBP) [8] simply applies the sum-product algorithm
in a cycle-containing graph. It passes message iteratiwitly
flooding schedule. To avoid repetitive information flow foulm
tiple times through the graph, we design a special messapinga
schedule and the following algorithm according to the spqmiop-
erty of TPFG.

New TPFG Inference Algorithm. The original sum-product or
max-sum algorithm meet with difficulty since it requiresttkach
node needs to wait for all-but-one message to arrive. ThUEFG
some nodes will be waiting forever due to the existence olfesyc

[ [0
[sent | 1 | [sent | 1 |

s ‘@« mm-n 7]
i B .’x. sent | usg | uzg

., [reev [ vip [vi) |

2 ‘
i é 3

Phase 2

| 013
| [Csent | usy [ u
| [recv [ vsp [ vss

recv | van [ vas |

Figure 4: The 2-phase message passing schema.

After the two phases of message propagation, we can coliect t
two messages on any edge and obtain the marginal function.

I yna |yl - -7)
exp (M, )y, (7) + My, — 5,0 (7))

= max P(yi1,...

Tij

7

This algorithm still has redundant storage and computafitie
messages sent between function nodes and variables nedaaar
tion values, which need to be stored as vectors. Some measaage
never used during the final merge, and some messages arg simpl
transmitted from one variable node to its correspondingtion
node. We further simplify the message propagation by ekutitig
the function nodes and the internal messages between adiunct
node and a variable node, and we find it equivalent to a message
passing problem on the homogeneous graffhMessages can be
seen as being propagated between authors, and the meszages ¢
stored with each author in two vectors: one sent and onevettei
The order of messages passed is illustrated by the numbexobn e
edge in Figure 4. In this way both time and space are saved.

The improved message propagation is still separated into tw
phases. In the first phase, the messageg,; which passed from

To overcome this problem, we arrange the message passing in &ype to their ascendants are generated in a similar orderfasbe

mode based on the strict order determinedfby Each nodeu;
has a descendant S6t ' and an ascendant St

In the second, messages returned from ascendaats are stored
in each node. After the two phases, each node collects the two

The message is passed in a two-phase schema. In the first phasgectors to generate the final ranking score. The derived are as

messages are passed from advisees to possible advisois,thad
second, messages are passed back from advisors to poskible a
visees. Formally, there are two kinds of messages in thepfieste:

My, ()—y; My, -y, Wherej € Y;. The message froryi () to ys

is generated and sent only when all the messages from itemlesc
dants have arrived. Angi immediately send it to all its ascendants
;0,7 € Yi. In phase two, there are also two kinds of messages:
My, —£,0,Mf;,0—y;»J € Yi, €ach of which are along the reverse
direction on the edge as in phase 1. The messages are cadcat
follows, derived from Egs. (12) and (11).

O s log ;
M ()—y; (T) stki>§“¢i§vgk:i( og liz +

> my—p0Wk) (13)
K ey,
myi_’fj()(x) = My ()—y; (@) 14
My —g,0@) = Dm0y (@) (15)
JE€Y;
mfj()ﬁy%(x) = max (logljy;
stkj>edjyj,Vyk:]
+my 0w + > myp0k)  (16)

key; k! #i

follows.
sent;; = logl;; + max sent 18
ij g bij Z | stha>edyy OF arti ka (18)
kGYi7
recv;; = max (recv s +logl,;r +
* 31 €Y ed i <stg; I 79
+ Z max senty)
" TE€Yy, sty >ed; 1 Or x#j
kEYJf Jk#i
+ max (recvg; +
L jEY:
z€Y;,xF]
+ Z max senty,)(19)
7 ' €Y, sty 0 >edwj/ Or z/#x
keYy 1 ki
ri;j = exp(sent;; +recvy;) (20)

In the new algorithm, the message propagation can be dons-by u
ing a stack-queue. In phase 1, each node will enter the queaee o
and the vectosent; for them is computed one by one. In phase 2,
we scan the queue from the tail back to the hea, treat it as a
stack, and computeecv;. Then we can normalize the results and
collect them to get the ranking score. By usiig|E%|) space, the
running time of the algorithm can be reduced@¢) ", d:d;),



Input: H = (V/7 Eé, {Sti]', edij, lij}(i,j)eEé)
Output: H = (V', By, {(rij, stij, edij)} i, 5)eEr)

Calculate the logarithm of local feature functityy;
Initialize all sent;; aslogl;;;
Initialize a counter for each nodeunt; «— |Yf1|;
Initialize a stack-queu€), enqueue all the nodess.t. county = (;
repeat
1 «— the head of);
Increment the head pointer ¢f by 1;
foreach edge (7, j),j € Y; do
Updatesent;; according to Eq. (18);
countj——;
if count; == 0 then
| enqueug;
end
end
ntil the head of Q isO;
reatQ as a stack, letop points to the tailyepeat
Pop the top element @ to j; if j == 0then
| recvjg <0
end
else
foreach j' € Y; do
Collectrecv ;s andsent ;;, to computer; ;s
according to Eq. (19) and prepare to comptgev;;
end
end
foreachi € Y, 7' ) do
| Computerecv;; according to Eq. (19);
end
until Q isnot empty;
Generated = (V/, E;, {(rij, Stij, edij)}(i,j)eEg)

Algorithm 1: The improved TPFG inference algorithm.

—c

whered; andd; are the in-degree and out-degree of each node
on graphH’, respectively. As long as iff’ is sufficiently sparse,
the maximal degree of the node can be seen as corGtantl the
complexity is further reduced t0(n,).

5. EXPERIMENTAL RESULTS

In this section, we present various experiments that etk
efficiency and effectiveness of the proposed approach.

5.1 Experiment Setup

Data Sets. We use the DBLP Computer Science Bibliography
Database maintained by Michael Ley as the dynamic collabora
tion data set5 to infer the advisor-advisee. It consists of 654,628
authors and 1,076,946 publications with time providedn(frt®70

to 2008). To test the accuracy of the discovered advisoisadv
relationships, we adopt three data sets: One is manualgiddb
by looking into the home page of the advisors, and the other tw
are crawled from the Mathematics Genealogy projecd Al Ge-
nealogy projeé We refer to them as MAN, MathGP and AIGP
respectively. They only paretically cover the authors inLIPB
We further separate MAN into three sub data sets: Teach&, Ph
and Colleague. Teacher contains all kinds of advisor-agvimirs,
while PhD only contains graduated PhDs pairing with theiriad
sors. Colleague contains colleague pairs which are negasm-
ples for advisor-advisee relationship. And we use these tat
generate random data sets for test. See Table 1 for details.
Method. We compare the proposed TPFG with the following base-
line methods:

'htt p: / / ww. geneal ogy. mat h. ndsu. nodak. edu/
2http://ai gp. eecs. um ch. edu/

e Sum-Product+Junction Tree (JuncT). It computes the exact
joint probability as the ranking score.

e Loopy Belief Propagation (LBP). It employs an approximate
algorithm for inference.

Independent Maxima (IndMAX). It computes the maximal
local likelihood for each variable independently.

SVM. ltis a supervised approach and requires labeled pairs,
both positive and negative, as training data.

RULE. For each author, from all the collaborators that atis
Assumption 2, choose the one with most coauthored papers.

Evaluation Aspects. To quantitatively evaluate our method, we
consider two performance measurements: accuracy and#itgla
For accuracy, ROC curve is used to evaluate the overall mgnki
of each prediction, to see whether real advisor-advisers pank
higher than non advisor-advisee pairs; @&1dk, 6 is used to evalu-
ate the prediction for each individual's advisor, to see thbereal
advisor ranks on top among all collaborators. We also ligva f
examples to demonstrate how discovered advisor-adviss@ore
ships can benefit other applications.

The preprocess is implemented with MATLAB 2009a and all
experiments are performed on a Desktop running Windows XP
with two Dual-Core Intel Pentium 4 processors (3.0 GHz) a@&é 1
memory. The JuncT algorithm is implemented using the pazkag
MALLET [13]. We implement TPFG with Visual C++ 2008. And
we use LIBSVM [4] to perform SVM training and prediction.

5.2 Accuracy

We conduct a series of experiments to explore the capability
TPFG algorithm in mining advisor-advisee relationshipsst-as
we mentioned in Section 4.1 and Section 4.2, different aptionms
about advising relationships are tested to find the best cwtibn
that reflects the reality. Second, we extract small frastiohthe
whole DBLP network and feed them to TPFG, to prove that the
power of network boosts the estimation of joint probabilityi-
nally, we compare our unsupervised approach with a sumatvis
approach. We also tested whether TPFG can be further imgprove
by utilizing training data.

5.2.1 Effect of rulesin TPFG

We try different rules one by one to construct the correspand
candidate grapli/, compute the ranking score with our algorithm,
and compare the accuracy on some labeled data.

The accuracy is compared through ROC curves. For each pair in
the tested data, we retrieve the ranking score from the aufnen
we sort these ranking score in a descendant order, and plRQIC
curve.

From Figure 5(a) we can see that R2/R3 has the highest suit-
ability on the tested data. R1 and R4 both lead to a slightlgseo
curve and their curves overlap. In this way we can furtheneefi
other rules, including the definition of local likelihoods shown in
Figure 5(b), and estimation of the graduation year, whicliouad
does not affect the ROC curve. In general, by applying a small
set of rules our method can extract meaningful knowledgelewh
which rules to select is flexible depending on the problentifipe
cation. Itis also observed that TPFG is not sensitive toefakes.

For example, if we choose R2, or even R1/R4 other than R3, the
worst AOC value 0.88 is not degraded drastically from tha-opt
mal choice 0.91. It indicates that our network modeling apph

is robust in handling inaccurate local features. From novwen
use R3 as filtering rules, use the combination of Kulczynskl a
IR as local likelihood evaluation measure and use YEAR2 as th
graduation year estimation method if not mentioned spediic



0.6

0.4 0.4

m—— TPFG with KULC+IR
= = TPFG with IR
= = = TPFG with KULC
' RULE

TPFG of R3
TPFG of R2

= = = TPFG of R1/R4
RULE

0.2 0.2

0 0
0.8 1 0

0 0.2 0.4 0.6 0.2 0.4 0.6 0.8 1
(a) TPFG with different rules (b) TPFG with different defini-
tion for{
« 1 \
o -7
= e
08 -
0.8 "'’
\'\ "
.
o6t ¢ 06 RPN
4 L\ . ‘
s 7 )
4 &
0.4 = TPFG on 16-closure/whole graph 0.4 4 ,'
= = TPFG on 1-closure " 4w JUncT/TPFG on 1-closure
0.2 = = = [ndMAX 02} » ,' = = | BP on 1-closure
" RULE v’ = = = IndMax
0 o ' RULE

0 0.2 0.4 0.6 0.8 FPR 1 O0 0.2 0.4 0.6 0.8 1

(c) TPFG on different closures ¢d) JuncT, LBP and TPFG on
smaller graphs

a subnetwork

1

0.8

0.6

TPFG

v TPFG

‘‘‘‘‘ IndMAX = = IndMAX
== = SVM = = = SVM
02 RULE RULE
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(e) IndMAX, TPFG and SVM orff) IndMAX, TPFG and SVM on
TEST1 TEST2

Figure 5: ROC curves for advisor-advisee prediction

5.2.2 Effect of network structure

Using DFS with a bounded maximal depttfrom the given set
of nodes, denoted as DR we can obtain closures with controlled
depth for a given set of authors to test. Whkimcreases, the sub-
network grows larger until it is already the complete clesue.,
the maximal connected subgraphféfcontaining the given set. We
run TPFG on these closures and plot the ROC curves.

From Figure 5(c) we see that for closures with different tept
TPFG achieves better accuracy when the depth increasetand
all outperform the IndMAX method by more than 5% in AOC. And
on the complete closure TPFG reaches the same accuracylzs on t
whole network since disconnected components will not affach
other.

On these various scaled subnetworks, TPFG achieves differe
level of approximations to the optimal global joint prodapion
the whole network. To compare it with the exact maximal joint
probability and other approximate algorithm, we show theulte
on a small graph due to limitations of JuncT and LBP (see Sec-
tion 4.4). The small graph is constructed by extracting thees
in PhD and their advisors, and then buildihglosure of it. It con-
sists of 1310 nodes. From Figure 5(d) we find that in the small
graph TPFG approximates well to the exact inference alyorit
JuncT(AOC difference < 0.01), and outperforms LBP by 16.9%.

Table 1: Accuracy of prediction by P@(20): 744

dataseff RULE [ SVM | IndMAX |  TPFG

TESTL | 69.9% 73.4%[ 75.2% | 78.9% | 80.2% | 84.4%
TEST2 | 69.8% | 74.6% | 74.6% | 79.0% | 81.5% | 84.3%
TEST3 | 80.6% | 86.7% | 83.1% | 90.9% | 88.8% | 91.3%

TRAIN1=Colleague(491)+PHD(100)
TEST1=Teacher(257)+MathGP(1909)+Colleague(2166)
TRAIN2=TRAIN3=Teacher(257)+Colleague(2166)
TEST2=PHD(100)+MathGP(1909)+Colleague(4351)
TEST3=AIGP(666)+Colleague(459)
INdMAX, TPFG: left -6 = 3rd quartile of{r;;}; right - trained

5.2.3 Effect of training data

Support Vector Machines(SVMs) are accurate supervised-lea
ing approaches and shown to be successful in syntax-baked re
tion mining[6]. If we treat advisor-advisee pairs as pesittxam-
ples and non advisor-advisee pairs as negative examplesamve
reduce advisor mining to a classification problem on the redie
pairs (a;,a;). In this setting it requires to define some features
for each pair of coauthors, and train the classifier by fegedioth
positive and negative samples. For fair comparison withpoab-
abilistic model, we combined Kulczynski and IR measurehwit
what were used in [19] as features.

Direct application of SVM only shows whether a given pairris a
advisor-advisee pair, and it is often the case an authoedigied to
have multiple advisors, 1001 out of 2657 for TEST1, for exmp
Thus we examine the probabilistic scores in the test dathramk
them to draw the ROC curve. TPFG422% and2.4% higher in
AOC than SVM in TEST1 and TEST2 respectively.

Although in this work we define our model as an unsupervised
learning approach, it can also work with supervised learnive
have utilized labeled data to select rules in Section 5.13/&.can
also optimize the parametérin the PQFk, 6 as we mentioned in
Section 3 according to certain criteria such as achievirsg inéor-
mation gain on the training data. Then we use the trainedpara
ters to do predictions on test data. Table 1 shows the imprexé
by utilizing the training data. After training, TPFG can chaan
accuracy oB4% to0 91%.

SVM actually makes a supervised combination of all the as-
sumptions and rules used in TPFG. The difference lies inithat
does not explore the constraint and dependency replyindhen t
whole network structure. It does a fairly good job, but S5l
10% worse than optimized TPFG. In conclusion, TPFG can aehie
comparable or even better accuracy compared with a supdrvis
method. When parameters are adjusted with training datacdu-
racy can be further improved by arousgh.

5.2.4 Casestudy

With case study, we find that TPFG can discover some interest-
ing relations beyond the “ground truth” from single sourtable 2
shows some examples. Our ranking results provided withsadyi
time facilitate finding such kind of advising relations, whicannot
be easily discovered by referring to Genealogy project® mkan
of deviation of estimated graduation time to the labelectton the
test data sets i5.76 ~ 1.78.

We find that at least 40% of the error is contributed by name
ambiguity. For example, if we try to find the advisor for “Jpke
Hellerstein”, our algorithm returns wrong results. If watitiguish
“Joseph M. Hellerstein” and his publications properly, algo-
rithm is able to find the "half' right answer Michael Stonetea
ranked top 1. The answer is half right because there is a vigead



Table 2: Examples of mined relations. Time - the estimated
advising time; Note - the factual relation and graduation yer

Adviseg ;‘)’f Ranked AdVI-[ 1o Note

David [ 1. Michaell. Jordan] 2001-2003] PhD advisor, 2004
M. Blei [ 2. John D. Lafferty | 2005-2006 | Postdoc, 2006
Hong | 1. Qiang Yang 2002-2003| MS advisor, 2003
Cheng | 2. Jiawei Han 2004-2008| PhD advsior, 2008
Eﬁ;gey 1. Rajeev Motwani | 1997-1998| "Unofficial advisor®
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3 cited from a blog of Sergey Brin, who left Stanford to found
Google around 1998.
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Figure 6: Scalability results in log-log scale. JuncT and LB
fail at 10K and 200K respectively due to memory limitation.

Jeffrey F. Naughton, who is also ranked high in top 15%. Dnapli

o\ Viare (22
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(a) RULE (b) TPFG

Figure 7: visualization of advising relationship on genealgy
tree, green solid=true positive, red dotted=false negates

RULE tends to give aratio close to 1:1 of true positives tedaleg-
atives, while TPFG raises this ratio by twice. Zooming intocal
region, we see clearly that TPFG is able to identify Prof. iDav
Peleg’s students and advisor correctly while RULE could not
The visualization also leads to some interesting findingti&a
ularly, in TPFG result, we found the red dotted edges wersgetlo
to the root than the green edges. This observation infetStaG
tends to make mistakes for researchers who graduatedre®ith

tion are even more common among Chinese names. Therefore, iffurther statistical analysis, we found that for researsimrolved in

the name DISTINCTION problem [20] is solved well, the acayra
of our algorithm can be further improved. Other reasons ditsef
negatives include that one researcher collaborated wittipteuad-
visors or that one coauthored fewer papers with the advitbe
latter case happens more often for older researchers, fomvthe
publication data are not as complete as nhowadays. More dgamp
are provided in Section 5.4. In those situations, it is alnmgos-
sible to find credible advisor-advisee relationships nydoaked on
their publication records. Our study can find typical caagsill
miss such atypical cases.

5.3 Scalability Performance

Figure 6 depicts the running time required for differentoalg
rithms to infer the probabilistic rank. The same preprocesss
done for IndMAX, JuncT and TPFG, taking 48 minutes. IndMAX
and RULE do not perform further learning after preprocegsin

TPFG is shown to be scalable in Figure 6. With regard to the
learning time, TPFG costs only 13 seconds on the whole DBLP

dataset. As a classification approach, SVM's scalabilitglated
to the size of training data. As an example, the feature caatipn
takes one hour and a half, and the model learning takes 3hdgco
for Trainl and 6min26s for Train2.

5.4 Applications

The discovered advisor-advisee relationships can benefitym
applications, such as online query of advisors, visuatimadf ge-
nealogy, and expert findingtc. Here we show two examples.
Visualization of genealogyThe visualized hierarchies of research
community based on the relationship can help us gain a hatter
sight of the community. With visualization technique froh®] we
can draw the advising tree on hierarchical circles. For gtanin

Figure 7 we show a subtree of the Mathematics Genealogy.-To vi

sualize our results on it, we draw edges with different coldiVe
have visualized results from both the baseline algorithnh Rend

true positive relations, the average graduate time is 198 vior
false negative results, the average is 1983. We can alsgzaedl-
laboration patterns for different research topics andiatfins by
looking at those mistakes. For example, the adwsmg tremofe
theoretical computer scientists
centered in Prof. Manuel Blum
has a lot of outliers when de-
tecting their relationship. This
implies they have some unusual
collaboration patterns. We then
found that Diane Hernek and
Russell Impagliazzo have no
publication coauthored with their advisor, while Peter Gt

and Luis von Ahn only have 1/8 of their papers with Manuel Blum
in DBLP.

Expert finding and Bole search Here we illustrate one appli-
cation on bole search [19], a specific expert finding taskjraym

to identify best supervisors (according to their nurturdittj14])

in a specific research field. The task requires advisor-advis-
lationships as input which are usually unavailable. To tjten
tively evaluate how the advisor-advisee relationshipshedp bole
search, we compare a retrieval method with and without these
lationships on a data set used in [19]. Specifically, the data
consists 9 queries (e.g., data mining and machine learrang)for
each query, 50 top ranked researchers by ArnetMiner.ortakes

as candidates. We sent an email to each of the 50 researciters a
another 50 young researchers who start publishing papérsron
recent years (>2003) for feedbacks (“yes”, or “no”, or “notes).
Finally a list of best supervisors are organized for eachygbg
simply counting the number of “yes”(+1) and “no”(-1) frometh
100 received feedbacks. Details can be referred to [19].eBsy
comparison, we did not use the learning-to-rank approashga
ported in [19]). Instead, we use the language model (LM)cihi
does not consider the advisor-advisee relationships, ardréstic-

/ Russell Impagliazzo

%z‘% i

TPFG. The figure is better to be viewed in color mode. We sde tha based method which simply combines the language model with
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