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ABSTRACT
Numerous models have been proposed for modeling social
networks to explore their structure or to address applica-
tion problems, such as community detection and behavior
prediction. However, the results are still far from satisfac-
tory. One of the biggest challenges is how to capture all the
information of a social network such as links, communities,
user attributes, roles and behaviors, in a unified manner.

In this paper, we propose a unified probabilistic frame-
work, the Community Role Model (CRM), to model a so-
cial network. CRM incorporates all the information of nodes
and edges that form a social network. We propose methods
based on Gibbs sampling and an EM algorithm to estimate
model parameters and fit our model to real social networks.
Real data experiments show that CRM can be used not only
to represent a social network, but also to handle various ap-
plication problems with better performance than a baseline
model, without any modification to the model.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Sociology; H.2.8
[Database Applications]: Data Mining

Keywords
Social Network, Community, Behavior Prediction

1. INTRODUCTION
Online social networks—e.g., Twitter, Facebook, Flickr—

have become large complex virtual systems. Visible and in-
visible elements interact and affect each other. We can use
a graph to model the structure of a social network, where
nodes and edges represent users and interactions, which are
visible elements. There are also dynamic visible elements—
i.e., user actions, such as retweeting in Twitter and com-
menting in Flickr. Moreover, there are also invisible ele-
ments, such as community [13, 38] and role [46, 50], that af-
fect the visible elements. Previous research, such as [10, 33,
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45] and empirical studies on online social networks, includ-
ing Facebook [44], Twitter [20], Flickr [31], YouTube [32],
Yahoo!360 [18], Cyworld, Myspace and Orkut [1], revealed
many interesting phenomena and basic underlying laws. For
example, in a social network, nodes may have closer relation-
ships within a community than across communities. Nodes
may have different attributes—for example, some nodes may
be popular, and have many followers, but others may be dif-
ferent. Nodes may exhibit different behaviors—for example,
some nodes seem very active, and repost messages or com-
ment on pictures, while others may not. However, according
to [42], people’s behaviors not only depend on their own at-
tributes, but also on the influence of their neighbors and
communities. How should we model a complex social net-
work so that the model can capture the intrinsic relations
between all these elements, such as conformity influence, in-
dividual attributes, and actions? How do we use a social
network model to handle issues such as community detec-
tion and behavior prediction?

Social network analysis has been attracting much inter-
est from researchers. Many models have been proposed to
model the structure of a social network [15, 16, 22, 35, 36, 37,
48] and to handle issues such as social influence analysis [2,
9, 14, 28, 41, 42, 50], behavior prediction [39, 46], and link
prediction [17, 23, 27, 40]. [15] uses latent space to model a
social network in which every node is associated with a loca-
tion in p-dimensional space, and two nodes are more likely
to have links if they are closer. [48] describes a random
graph model for social networks based on the dot product,
which assigns each node a random vector, and quantifies the
probability of a link between two nodes by the dot product
of their vectors. [6] proposes a model that regards nodes as
points in Euclidean space, and generates edges based on a
mixture of the distances between nodes and a ranking func-
tion. [21] proposes a model to simulate the forming process
of a social network with the Kronecker product of adjacency
matrices. [16] introduces a multiplicative attribute graph
model that uses the affinity of attributes of two nodes to
indicate the potential for them to form a link. [46] takes
the roles that nodes might play into consideration and pro-
poses a model to predict information diffusion in a social
network. [50] proposes a probabilistic model that combines
the nodes’ attributes and community influence to analyze
nodes’ behaviors. Although much progress has been made,
the results of existing work are not satisfactory, due to their
limitations:

1. Most social network models utilize only portions of the
available social network information. For example, [42]



only takes link information into consideration, ignoring
the differences between the nodes themselves, while
[46] assumes three roles that nodes could play, ignoring
the conformity influence in information diffusion.

2. Most models only focus on a few aspects of social net-
works, missing the global view. For example, some
papers only focus on the static structure of social net-
works, while others focus only on user behaviors.

3. Many models are based on discriminative methods and
have not capture the nature of social networks. As a
result, they can only be used to settle specific issues.
Such models may seems reasonable in some specific
circumstances but not in others.

4. Some works use a deterministic method. However, this
is usually impractical in complex social networks.

In this paper, we mine the intrinsic relationships between
all visible and invisible elements of a social network, includ-
ing communities, links, node attributes, roles and actions,
and incorporate them into a unified probabilistic genera-
tive framework. The proposed model can also easily handle
many practical issues in social networks, such as community
detection and behavior prediction, without any modification
to the model. To the best of our knowledge, this is the first
model that captures all the information of a social network
and can represent all its facets. The contributions of this
paper include:

1. We incorporate various elements of a social net-
work into a unified probabilistic generative framework,
which can represent a complex social network better
than other models. We further design a method to
estimate the parameters of the model.

2. We use our model to generate a synthetic network with
the learned parameters, and verify the superiority of
our model to the baseline method in terms of six met-
rics.

3. We apply the model to two problems—behavior pre-
diction and community detection—verifying its versa-
tility and effectiveness.

This paper is organized as follows: In Section 2, we pro-
pose the Community Role Model (CRM) to model a social
network and provide a method for parameter estimation and
inference of CRM. We conduct two sets of experiments and
a case study on real data sets in Section 3. Section 4 is a
survey of related work. We conclude the paper in Section 5.

2. MODEL

2.1 Intuition
The intuition behind our model is that we can describe a

social network as follows:
First, a social network is composed of many nodes/users,

and each node is associated with many edges/links. [12] of-
fers an edge-distribution law, stating that the distribution of
edges is usually locally inhomogeneous, and highly concen-
trated within special groups of nodes, but sparse between
these groups. In other words, each node may belong to sev-
eral communities, and whether it has a link to other nodes
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Figure 1: Social network

might depend on the communities to which it belongs. Thus
we can assume that each node has a distribution over the
communities—i.e., that different nodes may be located in
different communities. A node in a specific community may
have a unique probability to link to another node. For ex-
ample, as Figure 1 shows, in community c1, v has a higher
probability to link to u and a lower probability to link to
w. However, the situation is reversed when v belongs to
community c2.

Second, each node has many attributes, such as in-degree,
out-degree, and other attributes. Based on these attributes,
we can classify the nodes into clusters. Each cluster can
be regarded as a role that nodes play. For example, some
nodes may have higher in-degree, and play the role of opin-
ion leader [30], while others may have higher out-degree, and
tend to transfer messages across communities, playing the
role of structural hole spanner [29]. The attributes of each
role satisfy a specific distribution—such as a Gaussian dis-
tribution. Each node has a distribution over roles according
to its attributes.

Last, each node may take some actions, such as transfer-
ring a message, commenting on other people’s pictures, or
following others. Most nodes tend to take similar actions
with nodes in the same community; in other words, whether
a node takes a specific action partly depends on the com-
munity it belongs to. Moreover, whether a node takes an
action may also depend on the role it plays. For example,
according to [29], 25% of information diffusion is controlled
by 1% of nodes serving the role of structural hole spanners.
Thus, when we predict the action that a node might take,
we must consider the distributions that the node has over
both communities and roles.

2.2 Formulation
We use G = (V,E,X) to denote the structure of a social

network, where V is the set of all users and E is an N ×N
matrix, with each element ev,u = 0 or 1 indicating whether
user v has a link to/with user u. We use the cardinality
|V | = N to denote the number of the users. The set of
edges that associate with v is denoted as Ev. Notation X
denotes an attributes matrix with size N × H, where H is

the number of all attributes. Each element x
(v)
h ∈ X denotes

the h-th attribute of user v. Unlike the value of e, x
(v)
h is

continuous.

Definition 1. Community. A social network consists of
multiple communities, denoted as c = [1, 2, ..., C]. Each
community has a multinomial distribution over all pairs



Table 1: Notations in the CRM model
SYMBOL DESCRIPTION

C number of communities
R number of roles
ev,u the edge between v and u

x
(v)
h the h-th attribute of node v

y
(v)
m the m-th action of node v

zv,i
the community that the i-th edge of
node v is assigned to

dv the role that node v is assigned to

φ(v) multinomial distribution over communities
specific to node v

θ(v)
multinomial distribution over roles
specific to node v

ζ(c)
multinomial distribution over edges/nodes
specific to community c

ρτ,r
multinomial distribution over actions
specific to community-role pair (τ, r)

µr,h mean of h-th attribute specific to role r

σr,h
standard deviation of h-th attribute
specific to role r

(v, u), denoted as ζ. For a directed graph, the edge ev,u
and eu,v share one item in the parameters—i.e., the pair

(v, u), in community distributions. ζ
(c)
v,u denotes the proba-

bility of ev,u/eu,v in community c, subject to
∑
v,u ζ

(c)
v,u = 1.

Note that, since edges are denoted by nodes, we could easily
transform the distribution of communities over edges into
distribution over nodes, which conforms to the usual defini-
tion of community and become easier to understand in some
circumstances, such as community detection.

Definition 2. Node Distribution over Communities.
Each node has a multinomial distribution over communities,

which is denoted as φ. φ
(v)
c denotes the probability for v to

be located in c, and is subject to
∑
c φ

(v)
c = 1.

Definition 3. Role. A node may play multiple different
roles, denoted as r = [1, 2, ..., R]. Each role has a set of
parameters for the distribution the attributes conform to.
Here we use Gaussian distribution. If a node plays role r,
its h-th attribute conforms to N(µr,h, σ

2
r,h).

Definition 4. Nodes Distribution over Roles. Each
node has a multinomial distribution over roles, which is de-

noted as θ. θ
(v)
r denotes the probability for v to play role r,

and is subject to
∑
r θ

(v)
r = 1.

Definition 5. Action. Each node can take some actions,
such as transferring a message or following others. For dif-
ferent kinds of social networks, actions take different forms.
Take the action of repost in a microblog network, for exam-
ple. We use y(v) to denote a repost action of user v. We
set time t = 0 as the start point. During time period [0, T ],
there are M messages posted by the users that v follows.

We use y
(v)
m = 0 or 1 (i = 1, 2, ...,M) to denote whether v

reposts the m-th message during a reasonable time period
[0, T ′].

Definition 6. Community-Role Pair. Whether a node
would take an action depends on the communities it and its
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Figure 2: The CRM model

target belong to and the role it plays. We use ρ to denote
the distribution of community-role pairs over actions. Ac-

cording to the above definition, action y
(v)
m only contains two

cases, so we can use a Bernoulli distribution to model the
distribution of community-role pairs over actions. ρτ,rm de-
notes the probability for ym = 1, where τ = 1(cv 6= cu). 1(·)
is an indicator function. If cv 6= cu, 1(cv 6= cu) = 1, other-
wise 0. It is noted that the “community” in “community-role
pair” represents whether the node and its target belong to
the same community, so τ is binary, with 0 meaning the
same community and 1 meaning different communities.

2.3 Model Description
Our goal is to devise a probabilistic generative model,

CRM, to represent a social network by capturing relation-
ships and interactions between all the elements of such a net-
work, including links, node attributes, communities, roles,
actions, etc. To do this, CRM assumes that a social net-
work can be generated through three processes, with each
process based on one of the three visible elements in a social
network—edges, node attributes, and actions.

An edge is defined to be an item from a set in-
dexed by 1, 2, · · · , N2. (For an undirected graph, it is
1, 2, · · · , N(N + 1)/2.) We represent edges using unit-basis
vectors, of which only one component is 1 and all other com-
ponents are 0. Each node is associated with a sequence of
several edges denoted by v = (ev,i, ej,v), where i ∈ Iin and
j ∈ Iout. Iin is the set of tail endpoints adjacent to v, while
Iout is the set of head endpoints adjacent to v. For an undi-
rected graph, each edge of v can be denoted with the node
which is the edge’s endpoint adjacent to v. Each node be-
longs to several communities. Thus we can regard a node as
a random mixture over communities. The generative process
of all edges in a social network can be described as follows:

For each node v in the graph:

1. Draw ζ from Dirichlet(λ);

2. Draw a φv from Dirichlet(β) prior;

3. For each edge ev,i:

• Draw a community zv,i = c from multinomial dis-
tribution φv;

• Draw an edge ev,i from a multinomial ζ(c) specific
to community c.



The time complexity of the above process is
O(nonezeros(E)), where nonezeros(E) denotes the
number of nonzero items in E. The distribution of edges E
is as:

p(E|β, λ) =

∫
p(ζ|λ)

∏
v

∫
p(φv|β)

·
∏
|Ev|

∑
zv,i

p(zv,i|φv)p(ev|zv,i, ζ)dφvdζ.
(1)

Each node plays several roles and is associated with a
sequence of several attributes, denoted by v = (xh), where
h = [1, 2, ..., H]. We define each role as a distribution over
attributes and each node is a random mixture over roles.
The generative process of all nodes in a social network can
be described as follows:

For each node v in the graph:

1. Draw a θv from Dirichlet(α) prior;

2. Draw a role dv = r from multinomial distribution θv;

3. For each attribute of v, draw a value x
(r)
h ∼

G(µr,h, σ
2
r,h).

The time complexity of the above process is O(NH). The
joint distribution of attributes X is defined as:

p(X|α, µ,σ) =
∏
v

∫
p(θv|α)

·
∑
dv

p(dv|θv)
∏
h

p(x
(v)
h |dv, µr,k, σr,k)dθv.

(2)

Regarding actions, each node is associated with a se-
quence of several actions denoted by v = (ym), where
m = [1, 2, ...,M ]. The generative process of the actions can
be described as follows:

For each action ym:

1. Draw ρ from Dirichlet(γ) prior;

2. Draw a community cv for v from φv;

3. Draw a community cu for u, which post the message
m, from φu;

4. Draw a role r from θv;

5. Draw ym ∼ Bernoulli(ρτ,r).

The time complexity of the above process is O(NM). The
joint distribution of actions Y is defined as:

p(Y |γ, φ, θ) =

∫
p(ρτ,r)∏

v

∑
τ

∑
r

p(r|θv)p(τ |φv)p(y(v)m |ρτ,r)dρτ,r.
(3)

2.4 Inference and Parameters Estimation
It is intractable to directly solve the above distribution

functions. We use Gibbs sampling to estimate φ and ζ.
The posterior probability of zv,i is calculated by

p(zv,i = c|z−v,−i, E) ∝
n
(v)
−v,−i,c + β

|Ev|+ |C|β
n
(e)
−v,−i,c + λ

n
(e)
−v,−i,· + |E|λ

. (4)

After Gibbs sampling, parameters φ and ζ can be esti-
mated by:

φv,c =
nv,c + β

|Ev|+ |C|β
, (5)

ζc,e =
nc,e + λ

nc + |E|λ . (6)

We use an EM algorithm to iteratively maximize the joint
likelihood of users’ attributes X and to estimate parameters
θ and η. The likelihood of X can be written as:

L =
∏
v

∏
h

∑
dv

θv,r√
2πσr,h

e
−

(xv,h−µr,h)2

2σ2
r,h . (7)

In the E-step, we estimate the h-th item of θ given the
current parameters by:

θv,r =

∏
h(2π)−

1
2 σ−1

r,he
−

(xv,h−µr,h)2

2σ2
r,h

∑
dv

∏
h(2π)−

1
2 σ−1

r,he
−

(xv,h−µr,h)2

2σ2
r,h

. (8)

Then in the M-step, we update parameters µ and σ by
the following equations. (Detailed derivation of θ, µ, and σ
is given in Appendix.)

µr,h =

∑
v θv,rxv,h∑
v θv, r

, (9)

σr,h =

√∑
v θv,r(xv,h − µr,h)2∑

v θv,r
. (10)

Because φ and θ have been estimated during the above
processes, we only need to estimate ρ. Again, with Gibbs
sampling, we first calculate the posterior probability of the
(av, dv) by the following equation:

p(av = τ, dv = r|a−v, r−v,y) ∝ (φvφ
T
v )θv

n−v,−m,τ,r + γ

|M |+ 2|H|γ .

(11)
After sampling, the parameter ρ can be estimated by:

ρ =
nv,m,τ,r + γ

|M |+ 2|H|γ . (12)

Model Applications. The learned CRM models can be
used in various applications such as community discovery
and behavior prediction. Essentially, parameters ζ repre-
sent (overlapping) communities discovered by CRM, while
parameters ρ can be used to predict users’ actions.

3. EXPERIMENTS
Now we evaluate the effectiveness of the proposed CRM

model on real-world datasets. We first use a real dataset to
learn the parameters of CRM. Then we use the parameters
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Figure 3: Metric values of the Coauthor network and the two networks generated by CRM and MAG. CRM
outperforms MAG for every metric

to generate a synthetic social network that, ideally, should
recover the original appearance. After that, we evaluate
CRM by the following three tasks:

• Structure recovery. We compare the difference of
structures between the generated synthetic network
and the real network by means of six metrics: de-
gree distribution, cluster coefficient, etc. Obviously,
the more similar the features of the synthetic network
and the real network, the better the model.

• Behavior prediction. CRM can predict users’ ac-
tions by parameter ρ. We use four metrics, including
precision, recall, F1-measure, and AUC, to evaluate
the performance of CRM in predicting actions quanti-
tatively.

• Community detection. CRM can mine communi-
ties by parameter ζ. We use a case study to demon-
strate its effectiveness in detecting communities qual-
itatively.

3.1 Dataset
To evaluate CRM, we use three datasets.
The Coauthor1 dataset is collected from [43], consist-

ing of 1,712,433 computer science authors and 2,092,356 pa-
pers published by those authors between 1975 and 2012.
For evaluation, we use a sub-network from [29], which con-
tains 1765 authors, 13,415 corresponding collaboration rela-
tionships, and 7,233 papers published at 28 computer sci-
ence conferences. These conferences can be divided into
six fields: Artificial Intelligence(AI); Database(DB); Data
Mining(DM); Distributed Parallel Computing(DP); Graph-
ics, Vision and HCI (GV); Networks, Communication and

1https://aminer.org/billboard/AMinerNetwork

Performance(NC). The conference list for each field can be
found at [29]. We define an action of this network as pub-
lishing a paper in one of above research fields. Thus, there
are six kinds of actions.

The Facebook2 dataset is from [25], which contains in-
formation from 4,039 Facebook users and 88,234 links.

Weibo3 is a popular microblogging service in China,
which reports having more than 5 hundred million regis-
tered users. We use a sub-network from [49] with 1,776,950
users, 308,489,739 following relationships, 300,000 original
messages and 23,755,810 repost actions.4 All the messages
were posted between Sep. 28th, 2012 and Oct. 29th, 2012.
We classify all the original messages into ten topics, and de-
fine an action as posting or reposting a message in one topic,
so the number of kinds of actions is ten.

3.2 Structure Recovery
We use the MAG model described by [16] as the baseline,

which serves as a state-of-the-art method for modeling the
structure of social networks. To demonstrate our model’s
superiority, we use the following network properties as our
metrics to measure the difference of structure between the
real network and the generated synthetic network. Part of
the metrics are also used in [21] and [16], which represent
the properties of a network from various aspects.

• Degree is the degree of nodes versus the number of
corresponding nodes. As we know, it conforms to a
power-law distribution in a scale-free network.

• Pairs of Nodes is the cumulative number of pairs of
nodes that can be reached in ≤ h hops.

2http://www.facebook.com
3http://weibo.com
4https://aminer.org/billboard/Influencelocality
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Figure 4: Metric values of the Facebook network and the two networks generated by CRM and MAG. CRM
outperforms MAG for every metric

• Eigenvalues are eigenvalues of the adjacency matrix
representing the given network versus their rank.

• Eigenvector is the components of the leading eigen-
vector versus the rank.

• Clustering coefficient [45] is the average local clus-
tering coefficient of nodes versus their degree.

• Triangle Participation Ratio is the number of tri-
angles that a node is adjacent to versus the number of
nodes.

We conduct this experiment on Coauthor and Facebook.
For each dataset, we compute these values separately for the
three networks: the real network, G; the generated network,
GCRM with our model; and the generated network GMAG

with the baseline model. Part of the code to compute the
metric values is from [26]. Then we plot each metric of
the three networks in one sub-figure in Figure 3 for Coau-
thor and Figure 4 for Facebook. Due to the heavy-tailed
phenomenon of the metrics, we plot them in terms of cumu-
lative distribution functions. Take the degree distribution,
for example, the corresponding number of nodes for degree
x is the number of nodes whose degrees are larger than x.
From Figure 3 and Figure 4 we can see that both the net-
works generated by our model on the two datasets are more
similar to the ground truth than to the baseline in all the
above metrics, which signifies that our model is better than
the baseline in modeling the structure of a social network.

3.3 Behavior Prediction
CRM can be also used to predict user behavior by pa-

rameter ρ. Given a social network G and action history A,
we can build a training set {(xi, yi)}i=1,2,··· ,n, where xi is
the attribute vector of a user and yi = a indicates that the
user takes action a. Regarding baselines, we use existing

Table 3: Improvement shown by CRM over SVM,
SMO, LR, NB, RBF, and C4.5 in terms of precision,
recall, F1-measure, and AUC

Data Sets Precision Recall F1-measure AUC
Coauthor 0.37% 13.76% 7.04% 9.45%

Weibo 36.22% 40.14% 38.14% 32.08%

classification algorithms, such as Support Vector Machine
(SVM), Sequential Minimal Optimization (SMO), Logistic
Regression (LR), Naive Bayes (NB), Gaussian Radial Basis
Function Neural Network (RBF), and C4.5. We use Preci-
sion, Recall, F1-measure, and Area Under Curve (AUC) to
evaluate the performance of each algorithm, and compare
with the proposed CRM model.

We conduct this experiment on Coauthor and Weibo. Ta-
ble 2 lists the results of all comparison methods on the two
datasets, and Table 3 gives the average improvement by
CRM compared with the baseline methods. CRM clearly
outperforms other methods on most metrics in Coauthor
and Weibo. Take F1-measure, for example, in the Coau-
thor dataset, CRM results in a 7.04% improvement, and in
Weibo, it achieves a 38.14% improvement on average. The
improvement differences may lie in that whether a user posts
or reposts a message has a stronger relation with his/her
communities and friends, while whether a researcher pub-
lishes a paper in a specific area mostly depends on his/her
attributes, having little to do with the influence of his/her
communities and friends. CRM achieves much better per-
formance in Weibo since it takes both communities and per-
sonal attributes into consideration, while other methods only
take individual attributes into consideration. On the other
hand, for researchers in Coauthor, CRM’s superiority is less
significant, because taking communities into consideration



Table 2: Average prediction performance of different methods on the Coauthor and Weibo datasets. The
numbers enclosed in brackets are standard deviations.

Date set Method Precision Recall F1-measure AUC

Coauthor

SVM
SMO
LR
NB

RBF
C4.5
CRM

0.8838(0.1725)
0.8647(0.1218)
0.8668(0.1242)
0.8183(0.1830)
0.8552(0.1058)
0.8328(0.0518)
0.8562(0.1490)

0.5562(0.3183)
0.8142(0.1260)
0.8292(0.1022)
0.8115(0.1444)
0.8353(0.1165)
0.8015(0.1286)

0.8630(0.0598)

0.6827(0.2054)
0.8387(0.1138)
0.8476(0.1016)
0.8149(0.1549)
0.8451(0.1081)
0.8169(0.1478)

0.8596(0.1013)

0.7360(0.1111)
0.9218(0.0366)
0.9642(0.0196)
0.9417(0.0335)
0.9477(0.0271)
0.9065(0.1165)

0.9800(0.0199)

Weibo

SVM
SMO
LR
NB

RBF
C4.5
CRM

0.5067(0.1405)
0.5074(0.1464)
0.5199(0.1306)
0.5112(0.1245)
0.5225(0.1361)
0.5237(0.1367)

0.7017(0.1300)

0.5027(0.1185)
0.5209(0.1099)
0.5469(0.1073)
0.5692(0.1083)
0.4679(0.1117)
0.5322(0.1114)

0.7305(0.1079)

0.5047(0.1150)
0.5141(0.1271)
0.5331(0.1157)
0.5386(0.1172)
0.4937(0.1217)
0.5279(0.1211)

0.7158(0.1149)

0.6068(0.1113)
0.6145(0.0363)
0.6330(0.0377)
0.6397(0.0394)
0.5945(0.0085)
0.6271(0.1083)

0.8174(0.0233)
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Figure 5: The sums of log-likelihood of edges and
actions change with C.

is less helpful in predicting whether a researcher publishes a
paper in an area.

3.4 Case Study
CRM can be also used to detect communities with param-

eter ζ. For a new social network dataset, we must decide
the number of communities C before detecting communities
with CRM. To find the best C for the Coauthor dataset, we
fix R = 6 5 and set C =6, 20, 50, 100, 150, 200, 250, 300 se-

5We conducted an experiment verifying that the log-
likelihood of actions in CRM on the Coauthor dataset is
not very sensitive to the value of R, and R = 6 is slightly
better than other values.

quentially, and compute the sums of log-likelihood for edges
and actions with Eq.(13) and Eq.(14) separately serving as
a posteriori measure to evaluate parameter C, and thus ob-
tain Figure (5). The larger the sum of log-likelihood, the
better the parameter. From Figure 5 we can easily believe
that C = 150 may be the best choice for parameter C.

L(edges) =

|E|∑
i=1

ln p(ei), (13)

L(actions) =

|Y |∑
i=1

ln p(yi). (14)

Through the training of the model, we obtain the com-
munity distribution over nodes. We fix C = 150 and select
three communities. Table 5 lists the representative five re-
searchers with the highest probabilities in each community.

4. RELATED WORK
There are three types of research related to this work:

network structure modeling, behavior prediction, and com-
munity detection.

Network structure modeling. Network structure
modeling has a long history and has become a hot topic,
attracting more and more interest from computer-science
researchers. There is great interest in uncovering underly-
ing principles with which networks comply. Early in 1960,
[11] proposed a model that uses a real number p ∈ (0, 1) to
predict whether two nodes have a link between them, where
p is determined by the scale of the network. [5] proposes a
generative model, in which a graph is generated by adding
nodes into an existing graph, and the probabilities of new
nodes having links with existing nodes depend on the de-
gree of existing nodes at that time. [8] proposes a model
that constructs a sequence of nodes by some values. In that
model, the probability that two nodes have a link is propor-
tional to the product of the values of the two nodes. [19]
proposes a model in which, when adding a node to an exist-
ing graph, selecting an existing node randomly and adding
links with its neighbors with certain probabilities yields a
model. [4] adopts a mechanism that not only adds but also
deletes nodes when generating a network. [15] introduces



Table 4: Representative researchers in three differ-
ent communities

Comm. Name Affiliation

1

Jiawei Han
Jian Pei

Philip S. Yu
Hong Cheng
Wei Wang

UIUC
SFU
UIC

CUHK
UNC

2

Thomas S. Huang
Yun Raymond Fu

Shuicheng Yan
Mark A. Hasegawa-Johnson

Xiaoou Tang

UIUC
UB

NUS
UIUC
CUHK

3

Philip A. Bernstein
Nathan Andrew Goodman

David Dewitt
Erhard Rahm

Michael Stonebraker

Microsoft
UA

UW-Madison
U. of Leipzig

MIT

latent space to model a social network, and [37] extends
this concept into dynamic networks. However, all the above
works ignore an important concept: community.

Behavior prediction. This work was first conducted by
economists in the 1890s. Recently, many computer scientists
have been working on this topic in the social network con-
text. [7] conducts a famous experiment indicating that one’s
voting choices are susceptible to those of his/her friends. [42]
predicts user behaviors with influence from his/her friends
and communities. However, neither takes personal behavior
patterns into consideration. [47] analyzes retweeting behav-
ior in Twitter, and proposes a factor graph model to predict
retweeting behavior. [51] leverages knowledge of user behav-
ior in different networks to alleviate the data sparsity prob-
lem and enhance the predictive performance of user model-
ing. [3] analyzes click stream data and reveals key features
of social network workloads, such as how frequently people
connect to social networks and for how long, as well as the
types and sequences of activities that users conduct on so-
cial networks. [46] studies the reposting actions of users in
social networks. This paper classifies users into three roles—
opinion leader, structural hole spanner, and ordinary user,
which have different behavior patterns. Whether a user re-
posts a message greatly depends on the role it plays.

Community detection. Since the concept of commu-
nity was raised formally, various methods to detect commu-
nity have been proposed. Due to space limitations, we do
not list them here. With the proliferation of community de-
tection methods, evaluating them has become a hot topic.
Modularity [34] is a kind of measure to evaluate commu-
nity detection algorithms through comparing edge densities.
[24] regards community quality as a function of its size, and
offers a more-refined lens to examine community detection
methods.

5. CONCLUSION
In this paper, we study how to model a social network,

capturing all its information, such as links, communities,
user roles, user attributes, and user actions. From the re-
lationships between these objects, we devise a probabilistic
generative framework, the Community Role Model, to de-
fine a social network model. We apply CRM to real-world
datasets, and obtain better performance than that of a state-
of-the-art baseline method. CRM can also be used to ad-

dress various practical problems without any change to the
model itself, showing its superiority.

Understanding the nature of social networks is very im-
portant for modeling them, and for addressing a series of
problems attached to them. As for future work, it would be
intriguing to mine more factors that affect network struc-
ture and user behaviors so as to simulate a dynamic social
network. It is also interesting to integrate nonparametric
methods into our model to base parameter value choices on
the data itself.
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APPENDIX
A. ESTIMATING θ, µ AND σ

From Eq.(7), we get the log-likelihood of attributes of all
nodes, as in Eq.(15).

L =
∑
v

∑
h

ln p(xvh; θ, µ, σ)

=
∑
v
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h

ln

R∑
d
(v)
h

=1
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wvr ln

θv,r√
2πσr,h

e
−
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2σ2
r,h

wvr
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(15)

According to the Jensen Inequation, the inequality sign

can be removed iff
p(xvh|d

(v)
h

;µ,σ)p(d
(v)
h

;θ)

wvr
= c, where c is a

constant and w is a distribution d over r, so
∑
r w

v
r = 1. We

can set
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(16)

First we assume that we have the values of µ and σ, then
we maximize the lower bound of L by updating θ. Since∑
r θv,r = 1, we get Eq.(17) through the Lagrange Multi-

plier.

Lθ =
∑
v

∑
h

R∑
r=1

wvr ln

θv,r√
2πσr,h

e
−

(xv,h−µr,h)2

2σ2
r,h

wvr
−ε(

∑
r

θv,r−1).

(17)

We compute the derivative of Eq.(17) with regard to θv,r,
and obtain Eq.(18).

∂Lθ
∂θv,r

=
∑
h

wvr
θv,r

+ ε. (18)

We set Eq.(18) to 0, and get
wvr
θv,r

= ε
H

= constant. Be-

cause
∑
r θv,r =

∑
r w

v
r = 1, we get Eq.(19).

θv,r = wvr . (19)

Then we maximize the lower bound of L by computing its
derivative with regard to µ.
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(20)

We set Eq.(20) to 0, and get Eq.(21).

µr,h =

∑
v w

v
rx

(v)
h∑

v w
v
r

. (21)

Next we maximize the lower bound of L by computing its
derivative with regard to σ.
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r,h).

(22)

We set Eq.(22) to 0, and get Eq.(23).

σr,h =

√∑
v w

v
r (x

(v)
h − µr,h)2∑
v w

v
r

. (23)

Combining Eq.(16), Eq.(19), Eq.(21) and Eq.(23), we get
Eq.(8), Eq.(9) and Eq.(10).


