
QUINT: On Query-Specific Optimal Networks

Liangyue Li
Arizona State University
liangyue@asu.edu

Yuan Yao
Nanjing University

targenardy@gmail.com

Jie Tang
Tsinghua University

jietang@tsinghua.edu.cn

Wei Fan
Baidu Big Data Lab

fanwei03@baidu.com

Hanghang Tong
Arizona State University

hanghang.tong@asu.edu

ABSTRACT
Measuring node proximity on large scale networks is a funda-
mental building block in many application domains, ranging
from computer vision, e-commerce, social networks, software
engineering, disaster management to biology and epidemi-
ology. The state of the art (e.g., random walk based meth-
ods) typically assumes the input network is given a priori,
with the known network topology and the associated edge
weights. A few recent works aim to further infer the optimal
edge weights based on the side information.

This paper generalizes the challenge in multiple dimen-
sions, aiming to learn optimal networks for node proximity
measures. First (optimization scope), our proposed formu-
lation explores a much larger parameter space, so that it is
able to simultaneously infer the optimal network topology
and the associated edge weights. This is important as a noisy
or missing edge could greatly mislead the network node prox-
imity measures. Second (optimization granularity), while all
the existing works assume one common optimal network, be
it given as the input or learned by the algorithms, exists
for all queries, our method performs optimization at a much
finer granularity, essentially being able to infer an optimal
network that is specific to a given query. Third (optimiza-
tion efficiency), we carefully design our algorithms with a
linear complexity wrt the neighborhood size of the user pref-
erence set. We perform extensive empirical evaluations on a
diverse set of 10+ real networks, which show that the pro-
posed algorithms (1) consistently outperform the existing
methods on all six commonly used metrics; (2) empirically
scale sub-linearly to billion-scale networks and (3) respond
in a fraction of a second.

Keywords
Node proximity; Optimal networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13-17, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939768

1. INTRODUCTION
Measuring node proximity (i.e., similarity/relevance) on

large scale networks is a fundamental building block in many
application domains, ranging from computer vision [23], e-
commerce [10, 9], social networks [28, 29], software engi-
neering [27], disaster management [41] to biology [22] and
epidemiology [31].

The state of the art has mainly focused on best lever-
aging the network topology for measuring node proximity.
Among others, a prevalent choice for node proximity is ran-
dom walk based methods (e.g., random walk with restart
and many of its variants - see Section 5 for a review), largely
due to its flexibility in summarizing multiple weighted rela-
tionships between nodes. These methods typically assume
the input network is given a priori, with the known, whether
static or dynamic, network topology and the associated edge
weights. A few recent works aim to further infer the opti-
mal edge weights based on the side information (e.g., user
feedback, node/edge attribute information). Representative
works include supervised random walk (SRW) [5] and learn-
ing to rank methods [2, 3]. Moreover, an implicit assumption
behind these existing works is that one common (optimal)
network, be it given a priori or learned by the algorithms,
exists for all queries. Despite much progress has been made,
several algorithmic questions have largely remained nascent.

Q1 Optimal weights or optimal topology? Both supervised
random walks and learning to rank methods assume
the topology of the input network is given and fixed.
Yet, both the edge weights and the network topol-
ogy could affect the proximity measures. More often
than not, a noisy or missing edge could largely mislead
random walks, and thus lead to sub-optimal proxim-
ity measures. On the other hand, almost any real-
world network is incomplete and/or noisy [15]. How
can we design an algorithm that is able to simultane-
ously learn the optimal network topology as well as
the associated edge weights, to better measure node
proximity?

Q2 One-fits-all, or one-fits-one? Most, if not all, of the
existing works implicitly assume there exists one com-
mon optimal network for measuring node proximity
for all the queries. From the optimization perspective,
such a one-(network)-fits-all-(queries) assumption might
be sub-optimal. How can we optimize the input net-
work at the finer granularity, to learn a query-specific

http://dx.doi.org/10.1145/2939672.2939768

network for a given query (i.e., one-(network)-fits-one-
(query))?

Q3 Offline learning or online learning? Even if we re-
strict ourselves to only learning the optimal weights
for only one single network, it is already a computa-
tionally intensive procedure. For example, both su-
pervised random walks and learning to rank methods
rely on a costly iterative sub-routine to compute a sin-
gle gradient vector (a key step in these methods), and
consequently the learning process has to be conducted
in the off-line stage. The answers to Q1 and Q2 would
further intensify the computational challenge. For Q1
(i.e., to learn the optimal network topology), it would
require to significantly expand the parameter space to
O(n2), where n is the number of the nodes in the net-
work. For Q2 (i.e., to learn one network for one query),
it would require to learn many networks (i.e., one net-
work for one query), and to conduct learning in the
on-line query stage. How can we design an effective
on-line learning algorithm that simultaneously fulfills
both Q1 and Q2, and in the meanwhile scales to billion-
scale networks and responds in (near-)real time?

We aim to answer all these questions in this paper. First
(for Q1 - optimizaiton scope), our proposed formulation ex-
plores a much larger parameter space, so that it is able to si-
multaneously infer the optimal network topology and the as-
sociated edge weights. Second (for Q2 - optimization granu-
larity), while all the existing works assume there is one com-
mon optimal network for all queries, our method performs
optimization at a much finer granularity, essentially being
able to infer a (different) optimal network that is specific to
a given query. Third (for Q3 - optimization efficiency), we
carefully design our algorithms with a linear complexity wrt
the neighborhood size of the user preference sets, which is
often sub-linear wrt the size of the input network. Our main
contributions can be summarized as follows:

• Paradigm Shift: we go beyond the two fundamental
assumptions (i.e., Q1 and Q2) and introduce two new
design objectives for node proximity measures, includ-
ing (D1) to simultaneously learn the optimal topology
and the associated edge weights, and (D2) to learn
an optimal network for a given query node (i.e., one-
network-fits-one-query).

• Algorithms and Analysis: we propose an optimiza-
tion based approach to fulfill the two design objectives,
and further develop a family of effective and efficient
algorithms to solve it, including an on-line algorithm
with a linear complexity wrt the neighborhood size of
the user preference sets.

• Empirical Evaluations: we conduct extensive ex-
periments on a diverse set of 10+ real networks and
demonstrate that our algorithms (1) consistently out-
perform all existing methods on six commonly used
evaluation metrics, (2) empirically scale sub-linearly
to billion-scale networks and (3) respond in a fraction
of a second.

The rest of the paper is organized as follows. Section 2
formally defines the query-specific optimal network learn-
ing problem. Section 3 introduces the proposed algorithms.

Table 1: Symbols

Symbols Definition

G = (V,E) a network
A adjacency matrix of the input network
As adjacency matrix of the learned optimal network
s query node
rs ranking vector for node s

P = {x1, x2, . . . , xp} set of positive nodes
N = {y1, y2, . . . , yl} set of negative nodes

g(·) loss function
n number of nodes in the network
m number of edges in the network
c decay factor in random walks
b margin in the loss function

λ, β trade-off parameters

Section 4 presents the empirical evaluation results. After
reviewing related work in Section 5, we conclude the paper
in Section 6.

2. PROBLEM DEFINITION AND PRELIM-
INEARIES

In this section, we present the notations used through-
out the paper (summarized in Table 1), formally define the
query-specific optimal network learning problem and then
give preliminaries on random walk based methods for node
proximity.

2.1 Problem Definitions
We use bold upper-case letters for matrices (e.g., A), bold

lowercase letters for vectors (e.g., v), and lowercase letters
(e.g., α) for scalars. For matrix indexing, we use a conven-
tion similar to Matlab as follows. We use A(i, j) to denote
the entry at the intersection of the i-th row and j-th column
of matrix A, A(i, :) to denote the i-th row of A and A(:, j)
to denote the j-th column of A. Besides, we use prime for
matrix transpose (e.g., A′ is the transpose of A).

In our problem setting, we are given a network which is
represented by an n×n normalized adjacency matrix, which
has m non-zero elements (i.e., edges). As mentioned ear-
lier, there is often rich information from user provided feed-
back/preference in some applications [32, 3]. For a user s,
s/he could explicitly indicate some nodes that s/he wants
to connect with, defined as positive nodes, and some other
nodes that s/he wants to avoid, defined as negative nodes.
We use the positive set P = {x1, x2, . . . , xp} to denote the
set of positive nodes, i.e., s likes nodes xi. Similarly, we
use the negative set N = {y1, y2, . . . , yl} to denote the set
of negative nodes, i.e., s dislikes yi. See [5, 32] on how to
select the positive and negative sets. Our goal is to learn an
optimal network for this specific query node s, so that, when
measured on the learned network, the proximities from s to
the nodes in P and those in N match his/her preference.
With these notations, the problem can be formally defined
as follows:

Problem 1. Query-specific Optimal Network Learning

Given: a network with adjacency matrix A, a query node
s, positive node set P and negative node set N .

Learn: an optimal network As specific to the query s.

2.2 Preliminaries
Random walk based methods (such as random walk with

restart [30] and many of its variants) have been a prevalent
choice for proximity measures. Here, we present a brief sum-
marization of random walk with restart (RWR), which is the
base of our proposed methods. Please refer to Section 5 for
detailed review of node proximity measures. For a given net-
work G, RWR works as follows. Consider a random surfer
that starts from the node s. At each step, the random surfer
has two options: (1) transmits to one of its neighbors with
probability proportional to the edge weights; or (2) jumps
back to the starting node s with a restart probability (1−c).
The proximity score from node s to node i is defined as the
steady state probability rsi that the random surfer will visit
node i. Define the ranking vector rs for node s as the vec-
tor of proximity scores from node s to all the nodes on the
network, RWR recursively computes the ranking vector as
follows:

rs = cArs + (1− c)es, (1)

where A is the adjacency matrix of the network G and es

is a vector of all zeros except 1 at the s-th position.
The ranking vector rs can also be computed in the fol-

lowing closed form: rs = (1 − c)(I − cA)−1es. Let Q =
(I− cA)−1, we can see that rs is the s-th column of Q with
some constant scaling. In other words, we can regard the
element Q(i, j) as the (scaled) proximity score from node j
to node i. For the normalized matrix A, it is often chosen
as the stochastic matrix of the input network. Nonetheless,
from the algorithmic perspective, we can also choose other
forms to normalize A, e.g., the so-called normalized graph
laplacian [42]. In fact, as long as the leading eigenvalue of A
is less than 1/c, we can show that Eq. (1) always converges
to its closed-form solution. Having this in mind, we will re-
move this constraint (i.e., A being a stochastic matrix) to
simplify the proposed algorithms. We will also discuss how
to impose such a constraint if the stochastic matrix is indeed
a desired output in some applications.

3. PROPOSED ALGORITHMS
In this section, we present our algorithm, QUINT, to learn

a QUery-specific optImal NeTwork (i.e. Problem 1). We
first introduce the proposed formulations and give optimiza-
tion solutions, followed up with scalable algorithms and some
variants.

3.1 QUINT - Formulations
Given the input network with the adjacency matrix A,

and a query node s along with its associated positive node
set P and negative node set N , we want to learn an optimal
network with adjacency matrix As such that the proxim-
ity from s to positive nodes in P and negative nodes in N
matches the preference. The key ideas behind our proposed
formulations can be summarized as follows. First, we want
to avoid that the learned network As deviates too far from
the input network A. Second, on the learned network As,
the measured proximity should match the user preference.
That is, if we compute the ranking vector rs for s using the
learned adjacency matrix As, the proximity from s to any
positive node in P is greater than to any negative node in
N , i.e., rs(x) > rs(y), ∀x ∈ P, ∀y ∈ N . Based on the above
intuition, we propose the following formulation to learn a

query-specific network:

arg min
As

‖As −A‖2F
s.t., Q(x, s) > Q(y, s), ∀x ∈ P, ∀y ∈ N ,

(2)

where Q = (I − cAs)−1 contains the pairwise node prox-
imities on the learned network. In Eq. (2), the objective
function states that the distance from the learned network
adjacency matrix As to the original network A measured
by Frobenuis norm should be minimized; while in the con-
straint, we want the proximity from node s to any positive
node in P to be greater than to any negative node in N .
This is a hard constraint as we do not allow any exception.
In practice, the constraint might not be satisfied by all the
possible pairs of positive and negative nodes. Instead, we
can relax the constraint and introduce some penalization if
violations occur. This relaxed soft version can be formulated
as follows:

arg min
As

L(As) = λ‖As−A‖2F +
∑

x∈P,y∈N

g(Q(y, s)−Q(x, s)),

(3)
where λ is the trade-off parameter that balances between
the adjacency matrices difference and constraint violations.
To penalize the constraint violations, we introduce the loss
function g(·). Ideally, we want Q(y, s) < Q(x, s). Hence, if
Q(y, s) < Q(x, s), i.e., the constraint is not violated, then
g(·) = 0; otherwise if Q(y, s) > Q(x, s), then g(·) > 0 to
penalize such a violation. In the paper, we consider the
Wilcoxon-Mann-Whitney (WMW) loss [35] with width b,
which is differentiable and was originally proposed to opti-
mize the area under the ROC curve (AUC):

g(x) =
1

1 + exp(−x/b) .

Remarks: The formulation in Eq. (3) bears a high-level
resemblance to the supervised random walks (SRW) [5] in
terms of the way they encode the user preference. Nonethe-
less, there are several subtle differences between them. First,
we explore a much larger parameter space in the order of
O(n2), whereas SRW only searches in a d-dimensional vec-
tor space, where d is the length of the feature vector. The
potential benefit is that we are able to search for both the
optimal topology and the associated edge weights. Second,
our formulation is tailored for a specific query node, and
thus is potentially able to learn an optimal network for that
specific query (instead of one universal network for all the
queries). Third, in our formulation, we drop the typical con-
straint that requires the learned network As to be a stochas-
tic matrix. We find that such a relaxation will greatly ease
the optimization algorithm, without a noticeable empirical
performance degradation. For readers who are interested in
keeping this constraint in our formulation, we will present a
variant to do so in Section 3.4.3.

3.2 QUINT - Optimization Solutions
The objective function in Eq. (3) is non-convex. We aim

to solve it using gradient descent based methods by first
calculating the derivative of L(As) w.r.t. As and then up-
dating the adjacency matrix As along the negative direction
of the derivative.

The derivative of L(As) w.r.t. As can be written as fol-

s x

ij

Query node

Positive node
@Q(x, s)

@As(i, j)

Q(j, s) ⇥ Q(x, i)

/

Neighbor of Neighbor ofs x

Figure 1: Update on As(i, j).

lows:

∂L(As)
∂As

= 2λ(As −A) +
∑

x∈P,y∈N

∂g(Q(y,s)−Q(x,s))
∂As

= 2λ(As −A) +
∑
x,y

∂g(dyx)

∂dyx
(∂Q(y,s)

∂As
− ∂Q(x,s)

∂As
),

(4)
where we denote dyx = Q(y, s) − Q(x, s) and we apply
chain rule in the second step. The WMW loss function is

differentiable and its derivative is computed as:
∂g(dyx)

∂dyx
=

1
b
g(dyx)(1 − g(dyx)) . To compute the derivative of ∂Q(y,s)

∂As

is more involved, since Q is an inverse of a matrix, which
itself is a function of As.

From the basic identity for derivatives of a matrix in-
verse [24], we have that:

∂Q
∂As(i,j)

= −Q ∂(I−cAs)
∂As(i,j)

Q = cQJijQ, (5)

where 1 ≤ i ≤ n, 1 ≤ j ≤ n, and Ji,j is a single-entry matrix
with J(i, j) = 1 and zeros everywhere else.

Based on the above equation, we have that

∂Q(x, s)

∂As(i, j)
= cQ(x, i)Q(j, s). (6)

The intuition behind the formulation is that the update
to As(i, j) is proportional to the product of the proximity
from i to x and the proximity from s to j. In other words,
if i is a close neighbor of x (i.e., large Q(x, i)) and j is
a close neighbor of s (i.e., large Q(j, s)), as illustrated in
Figure 1, then As(i, j) will have a relatively large update.
This makes sense since a larger increase on As(i, j) (i.e., a
pair of close neighbors of the query node s and a positive
node x, respectively) will increase the chance of reaching x
from s by random walks (i.e., increasing Q(x, s) measured
on the updated adjacency matrix As).

Following this, we can compute the derivative of ∂Q(x,s)
∂A

as:

∂Q(x, s)

∂As
= c[Q(x, i)Q(j, s)]1≤i≤n,1≤j≤n = cQ(x, :)′Q(:, s)′.

(7)

Similarly, the derivative of ∂Q(y,s)
∂As

can be computed as:

∂Q(y, s)

∂As
= cQ(y, :)′Q(:, s)′. (8)

Therefore, the derivative of L(As) w.r.t. As can be rewrit-

ten as follows:

∂L(As)
∂As

= 2λ(As −A) +
∑
x,y

∂g(dyx)

∂dyx
(
∂Q(y,s)
∂As

− ∂Q(x,s)
∂As

)

= 2λ(As −A) +
∑
x,y

c
∂g(dyx)

∂dyx
(Q(y, :)′ −Q(x, :)′)Q(:, s)′.

(9)
The above optimization solution for the query-specific net-

work learning is summarized in Algorithm 1. From the al-
gorithm we can see that, we not only update the weights of
existing edges, but might also add an unseen edge and/or
remove a noisy edge during the update (i.e., changing the
original topology).

Algorithm 1 QUINT– Learning a Query-Specific Optimal
Network

Input: (1) the initial network adjacency matrix A,
(2) a query node s,
(3) a positive node set P
(4) a negative node set N
(5) parameters c, λ, b, and step size η.

Output: The adjacency matrix As of the optimal network
specific to query s.

1: Initialize As = A;
2: while not converged do
3: for each positive node x from P do
4: for each negative node y from N do
5: Compute Q(:, s), Q(y, :) and Q(x, :);

6: Compute c
∂g(dyx)

∂dyx
(Q(y, :)′ −Q(x, :)′)Q(:, s)′;

7: end for
8: end for
9: Compute the derivative ∂L(As)

∂As
by Eq (9);

10: Update As = As − η · ∂L(As)
∂As

;
11: end while
12: return the learned network adjacency matrix As;

We summarize complexities of Algorithm 1 in Theorem 1.

Theorem 1. (Time and Space Complexities of Algorithm 1).
Algorithm 1 takes O(T1|P|·|N |(T2m+n2)) time, where T1 is
the number of iterations to convergence, and T2 is the num-
ber of iterations in the power method for computing ranking
vector. It takes additional O(n2) space.

Proof. The inner loop, line 5 and line 6, is executed
|P| · |N | times. For line 5, it would be too expensive (O(n3))
to first compute Q = (I − cAs)−1. Instead, we can use
power method to extract the corresponding column of Q by
Eq. (1) and this line would take O(T2m) time, where T2

is the number of iterations in the power method and m is
the number of edges. Line 6 involves a multiplication of a
column vector and a row vector, which would take O(n2). As
a result, the overall time complexity is O(T1|P| · |N |(T2m+
n2)), where T1 is the number of iterations to convergence.
The two vectors in the multiplication are dense and their
multiplication would result in an n×n dense matrix, taking
O(n2) additional space.

3.3 QUINT - Scale-up for Online Queries
To learn an optimal network for one query using Algo-

rithm 1, it would take O(T1|P| · |N |(T2m + n2)), which is
not scalable to large real network data (usually in the order
of millions or billions of nodes/edges), not to mention that
it practically eliminates the possibility to conduct learning

in on-line stage. In this subsection, we introduce an effec-
tive on-line algorithm to learn the optimal network for each
query. The key idea behind the fast solution is that the op-
timal network can be approximated by a rank-one pertur-
bation to the original network. If we observe more closely
at the derivative of L(As) w.r.t. As in Eq. (9), the second
term (the summation over x and y) is exactly a matrix of
rank one for a specific query.

Following the rank-one perturbation assumption, we can
approximate the optimal network as As = A + fg′, where f
and g are n-dimensional vectors we want to learn. Having
this, we can formulate our optimal network learning with
rank-one perturbation as follows:

arg min
f ,g
L(f ,g) = λ‖fg′‖2F + β(‖f‖2 + ‖g‖2)

+
∑

x∈P,y∈N
g(Q(y, s)−Q(x, s)), (10)

where λ and β are the trade-off parameters. Notice that in
this formulation, Q = (I−cA−cfg′)−1 is a function of both
f and g.

We apply an alternating strategy to solve the above for-
mulation. Let us first fix g and solve for f . The derivative
of L(f) w.r.t. f can be written as follows:

∂L(f)
∂f

= 2λfg′g + 2βf +
∑

x∈P,y∈N

∂g(Q(y,s)−Q(x,s))
∂f

= 2λfg′g + 2βf +
∑
x,y

∂g(dyx)

∂dyx
(∂Q(y,s)

∂f
− ∂Q(x,s)

∂f
),

(11)
where we denote dyx = Q(y, s)−Q(x, s). The question now

becomes how to compute the derivative ∂Q(x,s)
∂f

.
Again, according to the basic identity for derivative of a

matrix inverse, we have the following:

∂Q

∂f(i)
= −Q

∂(I− cA− cfg′)
∂f(i)

Q = cQeig
′Q. (12)

Following this, we obtain

∂Q(x, s)

∂f(i)
= cQ(x, i)Q(:, s)′g. (13)

Now, we can compute the derivative ∂Q(x,s)
∂f

as follows:

∂Q(x, s)

∂f
= c[Q(x, i)Q(:, s)′g]1≤i≤n = cQ(x, :)′Q(:, s)′g. (14)

Therefore, the derivative of L(f) w.r.t. f can be computed
as follows:

L(f)
∂f

= 2λfg′g + 2βf +
∑
x,y

∂g(dyx)

∂dyx
(
∂Q(y,s)

∂f
− ∂Q(x,s)

∂f
)

= 2λfg′g + 2βf +
∑
x,y

c
∂g(dyx)

∂dyx
(Q(y, :)′ −Q(x, :)′)(Q(:, s)′g).

(15)
The computation for the derivative of L(g) w.r.t. g is sim-

ilar to Eq. (15) with f substituted with g and g substituted
with f .

We summarize the above optimization solution for optimal
network learning with rank-one perturbation in Algorithm 2,
along with its complexity analysis in Theorem 2.

Theorem 2. (Time and Space Complexities of Algorithm 2).
Algorithm 2 takes O(T1|P| · |N |(T2m+n)) time, where T1 is

Algorithm 2 QUINT-rankOne – Learning a Query-Specific
Optimal Network

Input: (1) the initial network adjacency matrix A,
(2) a query node s,
(3) a positive node set P
(4) a negative node set N
(5) parameters c, λ, β, b, and step size η.

Output: The rank-one perturbation to the network f and
g.

1: Initialize f and g;
2: while not converged do
3: for each positive node x from P do
4: for each negative node y from N do
5: Compute Q(:, s), Q(y, :) and Q(x, :);

6: Compute c
∂g(dyx)

∂dyx
(Q(y, :)′ −Q(x, :)′)(Q(:, s)′g);

7: end for
8: end for
9: Compute the derivative ∂L(f)

∂f
by Eq (15);

10: Compute the derivative ∂L(g)
∂g

;

11: Update f = f − η · ∂L(f)
∂f

;

12: Update g = g − η · ∂L(g)
∂g

;
13: end while
14: return the learned rank-one perturbations f and g;

the number of iterations to convergence, and T2 is the num-
ber of iterations in the power method for computing ranking
vector. It takes additional O(n) space.

Proof. The inner loop, line 5 and line 6, is executed |P| ·
|N | times. For line 5, we can use power method to extract
the corresponding column of Q by Eq. (1) and this line would
take O(T2m) time, where T2 is the number of iterations in
the power method. Line 6 takes O(n). As a result, the
overall time complexity is O(T1|P| · |N |(T2m+n), where T1

is the number of iterations to convergence. The additional
space takes O(n), i.e., the length of the vectors.

Remarks: The major computational overhead of Algo-
rithm 2 comes from line 5 to extract certain columns of
Q, which leads to an O(T2m) complexity. In the next sub-
section, we propose additional ways to further speed up the
algorithm to scale linearly and even sub-linearly on n.

3.4 QUINT - Variants
In this subsection, we first provide several ways to further

speed up the proposed algorithm to scale linearly and even
sub-linearly; and then point out a way to satisfy stochastic-
ity of the output and to learn the decay factor c in RWR.

3.4.1 Variant #1: Taylor Approximation for Q

As we mentioned above, the major time complexity of
Algorithm 2 is due to the extraction of certain columns of
Q using the power method. In fact, we could approximate
Q using Taylor approximation as follows:

Q = (I− cA)−1

≈ I +
∑k

i=1 c
kAk.

(16)

If we use first order Taylor approximation, i.e. k = 1 in
Eq. (16), line 5 in Algorithm 2 would only take O(n) in-
stead of O(T2m). Therefore, the overall time complexity of
Algorithm 2 can be reduced to O(T1|P| · |N |n).

3.4.2 Variant #2: Localized Rank-One Perturbation
It is often not necessary to update the global adjacency

matrix, instead, we could focus on certain local zones in
the network that will play a more important role to the
proximities from the query node s.

In particular, we would update the local structure in the
neighborhood of the query node as well as the neighbor-
hood of the preference sets. Denote the neighborhood of
node s (including s) by N(s) = {z|(z, s) ∈ E} ∪ {s} and de-
note the neighborhood of the positive and negative nodes
by N(P,N) = {z|z ∈ N(x) or z ∈ N(y), ∀x ∈ P, ∀y ∈
N}. When we update f using Eq. (15), we only need to
update f(i), i ∈ N(s). Similarly, when we update g, we
only need to update g(i), i ∈ N(P,N). This will further
bring down the time complexity of Algorithm 2 to O(T1|P| ·
|N |max(|N(s)|, |N(P,N)|)) (Theorem 3).

Theorem 3. (Time Complexity of QUINT-rankOne with
First-order Taylor Approximation and Localized Rank-One
Perturbation.) If we use first-order Taylor approximation
for Q and localized rank-one perturbation in QUINT-rankOne,
it would take O(T1|P| · |N |max(|N(s)|, |N(P,N)|)) to learn
the optimal network.

Proof. Omitted for brevity.

3.4.3 Variant #3: Stochastic Matrix As

As mentioned earlier, we do not require the learned net-
work As to be a stochastic matrix, which largely eases the
optimization process. If a stochastic matrix is indeed the de-
sired output network, we can naturally modify the proposed
algorithms to fulfill it. To be specific, immediately follow-
ing the gradient descent step in the proposed algorithms, we
introduce a simplex projection operation for each column of
As [33]. In this way, we ensure that matrix As is always
a valid stochastic matrix. However, we do not observe a
noticeable empirical improvement by the simplex projection
operation, yet it introduces an additional O(n2 logn) (since
we need to do so for n columns) into the overall time com-
plexity. Therefore, we do not recommend it in practice.

3.4.4 variant #4: Learning Decay Factor in RWR
An important parameter in RWR is the decay factor c,

which is usually manually set. As a side product, our pro-
posed methods naturally provide a way to learn the param-
eter c. In this setting, we assume the network structure A
is known and fixed, and we have the following optimization
formulation:

arg min
c
L(c) =

∑
x∈P,y∈N

g(Q(y, s)−Q(x, s)).

The key to the above optimization problem is to calculate
the derivative of L(c) w.r.t. c. We have that

∂L(c)
∂c

=
∑

x∈P,y∈N

∂g(Q(y,s)−Q(x,s))
∂c

=
∑
x,y

∂g(dyx)

∂dyx
(∂Q(y,s)

∂c
− ∂Q(x,s)

∂c
).

Again, we have the following identity

∂Q

∂c
= −Q

∂(I− cA)

∂c
Q = QAQ.

Following this, we can get

∂Q(x, s)

∂c
= Q(x, :)AQ(:, s).

The derivative of L(c) w.r.t. c becomes

∂L(c)
∂c

=
∑
x,y

∂g(dyx)

∂dyx
(∂Q(y,s)

∂c
− ∂Q(x,s)

∂c
)

=
∑
x,y

∂g(dyx)

∂dyx
(Q(y, :)−Q(x, :))AQ(:, s).

We omit the detailed algorithm description for learning
the parameter c due to the space limit.

4. EMPIRICAL EVALUATIONS
In this section, we design and conduct experiments mainly

to answer the following questions:

• Effectiveness: How effective are the proposed algo-
rithms for learning a query-specific optimal network?

• Efficiency: How fast and scalable are the proposed
algorithms?

4.1 Datasets
We test our algorithms on a diverse set of real-world net-

work datasets, including collaboration networks, social net-
works, infrastructure networks, etc. The statistics of all the
datasets used are summarized in Table 2.

Collaboration Networks. We use four collaboration
networks from arXiv preprint archive1. In the networks, the
nodes are authors and an edge exists between two authors
if they have co-authored the same paper. We consider such
collaboration networks from four areas of Physics: Astro-
physics (Astro-Ph), general relativity and quantum cosmol-
ogy (GR-QC), high energy physics theory (Hep-TH) and
high energy physics phenomenology (Hep-PH).

Social Networks. Here, nodes are users and edges in-
dicate social relationships. Among them, Last.fm provides
a music streaming and recommendation service and users
can befriend with each other. LiveJournal provides social
networking service where users can write a blog, journal or
diary. LinkedIn provides social networking service to pro-
fessionals and helps people find the right position. Twitter
is a popular micro-blogging website where people can follow
each other. Email-Enron is a communication network that
covers around half million email communications [17]. The
nodes are email addresses and an edge exists between two
nodes if they have communicated through emails.

Infrastructure Networks. Oregon is a network of
routers in Autonomous Systems (AS) inferred from Oregon
route-views between March 31, 2001 and May 26, 2001 [17].
Airport network represents one month of internal US air traf-
fic links between 2,833 airports2.

Sports Networks. NBA dataset contains NBA and
ABA statistics from the year of 1946 to the year of 2009 [18].
The nodes are players and two players have an edge if they
played in the same team before.

Biology Networks. Gene is a human gene regula-
tory network obtained based on gene expression profiles 3.
Protein is a network of proteins obtained by BLAST algo-
rithm [4] for comparing the sequence similarity.

4.2 Experiment Setup
We test the effectiveness of our query-specific optimal net-

work learning algorithms in the task of link prediction – to

1http://arxiv.org/
2 http://www.levmuchnik.net/Content/Networks/
NetworkData.html
3http://www.cise.ufl.edu/research/sparse/matrices/
Belcastro/human gene2.html

http://www.levmuchnik.net/Content/Networks/NetworkData.html
http://www.levmuchnik.net/Content/Networks/NetworkData.html
http://www.cise.ufl.edu/research/sparse/matrices/Belcastro/human_gene2.html
http://www.cise.ufl.edu/research/sparse/matrices/Belcastro/human_gene2.html

Table 2: Statistics of the datasets.

Category Network # Nodes # Edges

Collaboration

Astro-Ph 19,144 198,110
GR-QC 5,242 14,496
Hep-TH 10,700 25,997
Hep-PH 12,527 118,515

Social
Email-Enron 36,692 183,831

Last.fm 136,420 1,685,524
LiveJournal 3,017,286 87,037,567

LinkedIn 6,726,011 19,360,690
Twitter 40,171,624 1,468,365,182

Infrastructure
Oregon 7,352 15,665
Airport 2,833 7,602

Sports NBA 3,924 126,994

Biology
Gene 14,340 43,588

Protein 2,712 25,979

predict links in the network that will be created in the fu-
ture. We reserve half of the edges as the training set (i.e.,
the observed network) and the rest as testing set and for
choosing the positive and negative node sets. In particular,
for each query node s, we choose 5 positive nodes to which
it has an edge and 5 negative nodes to which it has no edge.
To simulate the noisy edges, we add edges from the query
node to its negative nodes with weight 1 and edges from the
neighborhood of the query node to the neighborhood of the
negative nodes with weight 0.1.

Evaluation metrics: We quantify the performance for link
prediction using several metrics. Among them, Mean Aver-
age Precision (MAP) [36] measures the overall performance
based on precision at different recall levels. Mean Percent-
age Ranking (MPR) [13] computes the average percentile-
ranking over all node pairs (e.g., a percentile-ranking 0%
means that connected node has the highest ranking score).
Half-Life Utility (HLU) [8] estimates how likely a node will
connect to the nodes in the ranking list, and the likelihood
would decay exponentially as the rank increases.

In addition, we also consider the commonly used Area
under the ROC curve (AUC), Precision@K, and Recall@K.
Ideally, we want to achieve lower MPR value and higher
values on other metrics.

Repeatability of Experimental Results. All the datasets are
publicly available. We will release the code of the proposed
algorithms through authors’ website. For all the results re-
ported, we set λ = β = 0.1 and b = 1. The experiments are
performed on a Windows machine with four 3.5GHz Intel
Cores and 256GB RAM.

4.3 Effectiveness Results
We perform the effectiveness comparisons with the follow-

ing methods:
1. Random Walk with Restart (RWR): perform RWR on

the network with no side information used.

2. Common Neighbors: count the number of common
neighbors as ranking scores.

3. Adamic/Adar [1]: similar to Common Neighbors but
with more weights given to those common neighbors
with fewer degrees.

4. Supervised Random Walk (SRW) [5]: learn a function
that assigns weights to edges. For an edge, we use
its two nodes’ degrees and number of their common
neighbors as features.

5. wiZAN Dual [36]: incorporate node similarities into
one-class collaborative filtering.

6. ProSIN [32]: refine the network structure in response
to the user feedback.

7. QUINT-Basic: use the power method to extract columns
of Q in Algorithm 1.

8. QUINT-Basic1st: use first order Taylor approximation
of Q for the columns extraction in Algorithm 1.

9. QUINT-rankOne: use first order Taylor approximation
of Q for the columns extraction in Algorithm 2.

The effectiveness comparison results across a diverse set of
networks on the six evaluation metrics are shown from Fig-
ure 2 to Figure 6. We have the following observations: (1)
our QUINT family algorithms consistently outperform other
comparison methods across all the datasets on all the six
evaluation metrics. For example, on the Astro dataset, com-
pared with the best competitor ProSIN, QUINT-rankOne
is 21.4% higher on MAP, 13.5% higher on HLU. (2) The
QUINT-Basic1st and QUINT-rankOne share a similar perfor-
mance as QUINT-Basic, indicating that both approximation
strategies are effective.

We also perform a t-test between the MAP results of
QUINT-rankOne and the best competitor ProSIN on Astro.
The p-value is 3.7e-44, which suggests the improvement of
the proposed methods is indeed statistically significant.

4.4 Efficiency Results
Scalability: We show the running time per query vs. num-

ber of nodes (n) and edges (m) on the LinkedIn, LiveJournal
and Twitter networks from Figure 8 to Figure 13. We do not
report the running time of QUINT-Basic on Twitter dataset
because of “out of memory” error (O(n2) space complexity).
Our QUINT-rankOne algorithm scales sub-linearly w.r.t. to
both n and m on LinkedIn and Twitter, while scales linearly
w.r.t. to n and m on LiveJournal. This is in accordance
with our complexity analysis, since QUINT-rankOne is lin-
ear w.r.t. to the size of neighborhood of the query as well
as positive and negative nodes, which is at most linear w.r.t.
n and m. In addition, it only takes ∼ 0.34s for QUINT-
rankOne to process one query on the largest dataset (i.e.
Twitter) with ∼ 1.4 billion edges and ∼ 40 million nodes.

5. RELATED WORK
In this section, we review the related work.
Node Proximity and RWR. Measuring node proximity

in a network is an important task in many real applications,
ranging from computer vision [23], e-commerce [10, 9], so-
cial networks [28, 29, 11], software engineering [27], disaster
management [41] to biology [22] and epidemiology [31]. The
state of the art has mostly focused on best exploring the
topology information for measuring the proximity. Among
others, the random walk based methods have gained preva-
lence largely due to its superiority in capturing the multiple
weighted relationships between nodes. Despite their suc-
cesses, several limitations still exist.

First (Q1), most of the existing works assume a fixed net-
work topology along with its associated edge weights, al-
though the real networks could be incomplete and noisy.
For this reason, Agarwal et al. [3, 2] propose to compute
the global rankings of nodes in a network by learning the
edge weights; Backstrom and Leskovec [5] propose to learn
the optimal edge weights based on the node and edge at-
tributes/features. However, these methods still assume the
topology of the given network is fixed. Another work pro-
poses to use side information to refine the network topology

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Email Gene Last.fm

Admic/Adar Common Nbr SRW
RWR wiZAN_Dual ProSIN
QUINT-Basic QUINT-Basic1st QUINT-rankOne

Figure 2: MAP performance comparisons on different network datasets. Higher is better. Best viewed in color.

0

10

20

30

40

50

60

70

80

90

Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Email Gene Last.fm

HLU
Admic/Adar Common Nbr SRW RWR wpZAN_double
ProSIN QUINT-Basic QUINT-Basic1st QUINT-rankOne

Figure 3: HLU performance comparisons on different network datasets. Higher is better. Best viewed in color.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Email Gene Last.fm

AUC
Admic/Adar Common Nbr SRW RWR wpZAN_double
ProSIN QUINT-Basic QUINT-Basic1st QUINT-rankOne

Figure 4: AUC performance comparisons on different network datasets. Higher is better. Best viewed in color.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Email Gene Last.fm

Precision@20
Admic/Adar Common Nbr SRW RWR wpZAN_double
ProSIN QUINT-Basic QUINT-Basic1st QUINT-rankOne

Figure 5: Precision@20 performance comparisons on different network datasets. Higher is better. Best viewed in color.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Email Gene Last.fm

Recall@5
Admic/Adar Common Nbr SRW RWR wpZAN_double
ProSIN QUINT-Basic QUINT-Basic1st QUINT-rankOne

Figure 6: Recall@5 performance comparisons on different network datasets. Higher is better. Best viewed in color.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Email Gene Last.fm

MPR
Admic/Adar Common Nbr SRW RWR wpZAN_double
ProSIN QUINT-Basic QUINT-Basic1st QUINT-rankOne

Figure 7: MPR performance comparisons on different network datasets. Lower is better. Best viewed in color.

0 1 2 3 4 5 6
x 106

10−3

10−2

10−1

100

101

102

103

104

Nodes

Ru
nn

in
g

Ti
m

e
(s

ec
on

d)

QUINT−Basic
QUINT−Basic1st
QUINT−rankOne

0 1 2 3 4 5 6
x 106

1

2

3

4

5

6

7

8
x 10−3

Nodes

Ru
nni

ng
Tim

e (
sec

ond
)

QUINT−rankOne

Figure 8: Running time
per query vs. number of
nodes on LinkedIn dataset
(y-axis is in log scale). In-
set: scalability of QUINT-
rankOne only (y-axis is in
linear scale).

0 1 2 3 4 5 6 7 8 9
x 106

10−3

10−2

10−1

100

101

102

103

104

Edges

Ru
nn

in
g

Ti
m

e
(s

ec
on

d)

QUINT−Basic
QUINT−Basic1st
QUINT−rankOne

0 1 2 3 4 5 6 7 8 9
x 106

1

2

3

4

5

6

7

8
x 10−3

Edges

Ru
nn

ing
 Ti

me
 (s

ec
on

d)

QUINT−rankOne

Figure 9: Running time per
query vs. number of edges on
LinkedIn dataset (y-axis is in
log scale). Inset: scalability
of QUINT-rankOne only (y-
axis is in linear scale).

0 0.5 1 1.5 2 2.5 3
x 106

10−2

10−1

100

101

102

103

104

Nodes

Ru
nn

in
g

Ti
m

e
(s

ec
on

d)

QUINT−Basic
QUINT−Basic1st
QUINT−rankOne

0 0.5 1 1.5 2 2.5 3
x 106

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Nodes

Ru
nn

ing
 Ti

me
 (s

ec
on

d)

QUINT−rankOne

Figure 10: Running time per
query vs. number of nodes
on LiveJournal dataset (y-
axis is in log scale). In-
set: scalability of QUINT-
rankOne only (y-axis is in
linear scale).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 107

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Edges

Ru
nn

ing
 Ti

me
 (s

ec
on

d)

QUINT−rankOne

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 107

10−2

10−1

100

101

102

103

104

Edges

Ru
nn

in
g

Ti
m

e
(s

ec
on

d)

QUINT−Basic
QUINT−Basic1st
QUINT−rankOne

Figure 11: Running time per
query vs. number of edges
on LiveJournal dataset (y-
axis is in log scale). In-
set: scalability of QUINT-
rankOne only (y-axis is in
linear scale).

0 0.5 1 1.5 2 2.5 3 3.5 4
x 107

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Nodes

Ru
nn

ing
 Ti

me
 (s

eco
nd

)

QUINT−rankOne

0 0.5 1 1.5 2 2.5 3 3.5 4
x 107

10−1

100

101

102

103

Nodes

Ru
nn

in
g

Ti
m

e
(s

ec
on

d)

QUINT−Basic1st
QUINT−rankOne

Figure 12: Running time per
query vs. number of nodes
on Twitter dataset (y-axis is
in log scale). Inset: scalabil-
ity of QUINT-rankOne only
(y-axis is in linear scale).

0 5 10 15
x 108

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Edges

Ru
nn

ing
 Ti

me
 (s

ec
on

d)

QUINT−rankOne

0 5 10 15
x 108

10−1

100

101

102

103

Edges

Ru
nn

in
g

Ti
m

e
(s

ec
on

d)

QUINT−Basic1st
QUINT−rankOne

Figure 13: Running time per
query vs. number of edges on
Twitter dataset (y-axis is in
log scale). Inset: scalability
of QUINT-rankOne only (y-
axis is in linear scale).

[32], so that the random walks can be guided towards/away
from certain specific zones in the network.

Second (Q2), an implicit assumption behind most existing
works is that one common (optimal) network exists for all
queries. In some scenarios, it is desirable to find a query-
specific optimal network. Some recent work aim at finding
k nearest neighbor nodes without calculating the ranking
scores of all nodes for a given query node [7, 34, 39]. How-
ever, their focus is more on the computational efficiency.

Third (Q3), scalable computation is a key challenge for
node proximity measures, and various solutions have been
proposed to alleviate this issue. Lofgren et al. [21] propose to
efficiently compute the RWR score between two given nodes
under a certain error bound based on a bi-directional search.
Yu and Lin [38] incrementally update the RWR scores when

the underlying network structure changes without recom-
puting from scratch. Shin et al. [26] scale up RWR compu-
tation by reordering the adjacency matrix so that it contains
a large and easy-to-invert submatrix. After the preprocess-
ing, the RWR scores can be efficiently calculated. Zhang et
al. [40] design a sampling method to accelerate the proximity
computation based on the concept of random path. These
efforts are complementary to the proposed algorithms in this
paper - after we learn a query-specific optimal network, we
can leverage these methods to speedup the subsequent prox-
imity score computation.

Overall, none of the existing works simultaneously address
all these challenges (i.e., Q1-Q3 summarized in Section 1).

Collaborative Filtering. Considering the problem set-
ting, our work is also related to collaborative filtering [16,
14]. For example, we can apply collaborative filtering to
learn the hidden relationships between nodes, and use the
recovered weights as node proximity [36]; however, collabo-
rative filtering still uses a fixed observed network/matrix as
input. Ruchansky et al. [25] propose to use side information
to complete a matrix/network (i.e., to infer user preference)
by actively probing a subset of true underlying matrix; in
contrast, our goal is to use the user preference to learn the
optimal network for a given query.

Link Prediction. Finally, our work is also related to
link prediction [19, 6]. While link prediction aims at pre-
dicting the existence of a network edge, our goal is to learn
an optimal network where edges can be added, strength-
ened or weakened. RWR score computation based on our
learned network could be used to improve link prediction.
For example, we can directly use the RWR scores to predict
links [20], or merge RWR scores with other inputs such as
node attributes for link prediction [37, 12].

6. CONCLUSIONS
In this paper, we study the problem of learning query-

specific optimal networks for node proximity measures. The
proposed QUINT algorithm advances the state of the art in
multiple dimensions, with a larger optimization scope, at a
finer optimization granularity, and with a much better opti-
mization efficiency. The extensive empirical evaluations on
a diverse set of real networks show that the proposed algo-
rithms (1) consistently outperform all the existing methods
on all six commonly used metrics; (2) scale (sub)-linearly to
billion-scale networks; (3) respond in a fraction of a second.

7. ACKNOWLEDGMENTS
This work is partially supported by the National Science

Foundation under Grant No. IIS1017415, by DTRA under
the grant number HDTRA1-16-0017, by Army Research Of-
fice under the contract number W911NF-16-1-0168, by Na-
tional Institutes of Health under the grant number R01LM011986,
Region II University Transportation Center under the project
number 49997-33 25 and a Baidu gift. Jie Tang is supported
by the National 863 Program (2014AA015103, 2015AA124102)
and NSFC (2014CB340506, 2012CB316006).

8. REFERENCES
[1] L. A. Adamic and E. Adar. Friends and neighbors on

the web. Social networks, 25(3):211–230, 2003.
[2] A. Agarwal and S. Chakrabarti. Learning random

walks to rank nodes in graphs. In ICML, 2007.

[3] A. Agarwal, S. Chakrabarti, and S. Aggarwal.
Learning to rank networked entities. In KDD, pages
14–23. ACM, 2006.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic local alignment search tool.
Journal of molecular biology, 215(3):403–410, 1990.

[5] L. Backstrom and J. Leskovec. Supervised random
walks: predicting and recommending links in social
networks. In WSDM, pages 635–644. ACM, 2011.

[6] N. Barbieri, F. Bonchi, and G. Manco. Who to follow
and why: link prediction with explanations. In KDD,
pages 1266–1275. ACM, 2014.

[7] P. Bogdanov and A. Singh. Accurate and scalable
nearest neighbors in large networks based on effective
importance. In CIKM, pages 1009–1018. ACM, 2013.

[8] J. S. Breese, D. Heckerman, and C. M. Kadie.
Empirical analysis of predictive algorithms for
collaborative filtering. In UAI, 1998.

[9] Y.-C. Chen, Y.-S. Lin, Y.-C. Shen, and S.-D. Lin. A
modified random walk framework for handling
negative ratings and generating explanations. ACM
Transactions on Intelligent Systems and Technology,
4(1):12, 2013.

[10] H. Cheng, P.-N. Tan, J. Sticklen, and W. F. Punch.
Recommendation via query centered random walk on
k-partite graph. In ICDM, pages 457–462. IEEE, 2007.

[11] D. F. Gleich and C. Seshadhri. Vertex neighborhoods,
low conductance cuts, and good seeds for local
community methods. In KDD. ACM, 2012.

[12] N. Z. Gong, A. Talwalkar, L. Mackey, L. Huang,
E. C. R. Shin, E. Stefanov, E. R. Shi, and D. Song.
Joint link prediction and attribute inference using a
social-attribute network. ACM TIST, 5(2):27, 2014.

[13] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In ICDM,
pages 263–272. IEEE, 2008.

[14] P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank
matrix completion using alternating minimization. In
STOC, pages 665–674. ACM, 2013.

[15] M. Kim and J. Leskovec. The network completion
problem: Inferring missing nodes and edges in
networks. In SDM, pages 47–58, 2011.

[16] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD,
pages 426–434. ACM, 2008.

[17] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[18] L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin, and
N. Buchler. Replacing the irreplaceable: Fast
algorithms for team member recommendation. In
WWW, pages 636–646, 2015.

[19] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks. In CIKM, 2003.

[20] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla.
New perspectives and methods in link prediction. In
KDD, pages 243–252. ACM, 2010.

[21] P. A. Lofgren, S. Banerjee, A. Goel, and C. Seshadhri.
Fast-ppr: Scaling personalized pagerank estimation for
large graphs. In KDD, pages 1436–1445. ACM, 2014.

[22] J. Ni, H. Tong, W. Fan, and X. Zhang. Inside the
atoms: ranking on a network of networks. In KDD,
pages 1356–1365, 2014.

[23] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu.
Automatic multimedia cross-modal correlation
discovery. In KDD, pages 653–658. ACM, 2004.

[24] K. B. Petersen and M. S. Pedersen. The matrix
cookbook, nov 2012.

[25] N. Ruchansky, M. Crovella, and E. Terzi. Matrix
completion with queries. In KDD, pages 1025–1034.
ACM, 2015.

[26] K. Shin, J. Jung, S. Lee, and U. Kang. Bear: Block
elimination approach for random walk with restart on
large graphs. In SIGMOD. ACM, 2015.

[27] D. Surian, N. Liu, D. Lo, H. Tong, E.-P. Lim, and
C. Faloutsos. Recommending people in developers’
collaboration network. In WCRE, 2011.

[28] H. Tong and C. Faloutsos. Center-piece subgraphs:
problem definition and fast solutions. In KDD, pages
404–413, 2006.

[29] H. Tong, C. Faloutsos, B. Gallagher, and
T. Eliassi-Rad. Fast best-effort pattern matching in
large attributed graphs. In KDD, pages 737–746, 2007.

[30] H. Tong, C. Faloutsos, and J. Pan. Fast random walk
with restart and its applications. In ICDM, pages
613–622, 2006.

[31] H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad,
C. Faloutsos, and D. Chau. On the vulnerability of
large graphs. In ICDM, pages 1091–1096, 2010.

[32] H. Tong, H. Qu, and H. Jamjoom. Measuring
proximity on graphs with side information. In ICDM,
pages 598–607, 2008.

[33] W. Wang and M. A. Carreira-Perpinán. Projection
onto the probability simplex: An efficient algorithm
with a simple proof, and an application.
arXiv:1309.1541, 2013.

[34] Y. Wu, R. Jin, and X. Zhang. Fast and unified local
search for random walk based k-nearest-neighbor
query in large graphs. In SIGMOD, pages 1139–1150.
ACM, 2014.

[35] L. Yan, R. Dodier, M. Mozer, and R. Wolniewicz.
Optimizing classifier performance via an
approximation to the Wilcoxon-Mann-Whitney
statistic. ICML, pages 848–855, 2003.

[36] Y. Yao, H. Tong, G. Yan, F. Xu, X. Zhang, B. K.
Szymanski, and J. Lu. Dual-regularized one-class
collaborative filtering. In CIKM. ACM, 2014.

[37] Z. Yin, M. Gupta, T. Weninger, and J. Han. A unified
framework for link recommendation using random
walks. In ASONAM, pages 152–159. IEEE, 2010.

[38] W. Yu and X. Lin. Irwr: Incremental random walk
with restart. In SIGIR, pages 1017–1020. ACM, 2013.

[39] C. Zhang, S. Jiang, Y. Chen, Y. Sun, and J. Han. Fast
inbound top-k query for random walk with restart. In
PKDD, pages 608–624, 2015.

[40] J. Zhang, J. Tang, C. Ma, H. Tong, Y. Jing, and J. Li.
Panther: Fast top-k similarity search on large
networks. In KDD, 2015.

[41] L. Zheng, C. Shen, L. Tang, T. Li, S. Luis, and S.-C.
Chen. Applying data mining techniques to address
disaster information management challenges on mobile
devices. In KDD, pages 283–291, 2011.

[42] D. Zhou, B. Schölkopf, and T. Hofmann.
Semi-supervised learning on directed graphs. In NIPS,
2004.

http://snap.stanford.edu/data

	Introduction
	Problem Definition and Preliminearies
	Problem Definitions
	Preliminaries

	Proposed Algorithms
	QUINT - Formulations
	QUINT - Optimization Solutions
	QUINT - Scale-up for Online Queries
	QUINT - Variants
	Variant #1: Taylor Approximation for Q
	Variant #2: Localized Rank-One Perturbation
	Variant #3: Stochastic Matrix As
	variant #4: Learning Decay Factor in RWR

	Empirical Evaluations
	Datasets
	Experiment Setup
	Effectiveness Results
	Efficiency Results

	Related Work
	Conclusions
	ACKNOWLEDGMENTS
	References

