GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang

Real-world Graphs

Transportation Graph figure credit: Web

Pre-training and Fine-tuning

Computer Vision ResNet ImageNet

NLP BERT Wikipedia + Book corpus

Graph Learning GCC

Problem

GNN pre-training problem.

The GNN Pre-Training Problem

- Problem:
 - Learn a function f that maps a vertex to a low-dimensional vector
 - Structural similarity: map vertices with similar local network topologies close in the vector space
 - Transferability: compatible with vertices and graphs from various sources, even unseen during training time.

GCC Framework

Graph Contrastive Coding

Graph Contrastive Coding (GCC)

Hypothesis:

Graph structural patterns are universal and transferable across networks.

GCC Pre-training

- Pre-training Task: Instance Discrimination
- InfoNCE Loss: output instance representations that are capable of capturing the similarities between instances

$$\mathcal{L} = -\log \frac{\exp(\mathbf{q}^{\top} \mathbf{k}_{+} / \tau)}{\sum_{i=0}^{K} \exp(\mathbf{q}^{\top} \mathbf{k}_{i} / \tau)}$$
• query instance x^{q}
• query instance x^{q}
• query general embedding of x^{q} , i.e., $\mathbf{q} = f(x^{q})$
• dictionary of keys $\{\mathbf{k}_{0}, \mathbf{k}_{1}, \dots, \mathbf{k}_{K}\}$

- query instance x^q

- $\ker \mathbf{k} = f(x^k)$
- Contrastive learning for graphs?
 - Q1: How to define instances in graphs?
 - Q2: How to define (dis) similar instance pairs?
 - Q3: What are the proper encoders?

GCC Pre-training

- Q1: How to define instances in graphs?
- Q2: How to define (dis) similar instance?
- Q3: What are the proper encoders?

$$\mathcal{L} = -\log \frac{\exp (\boldsymbol{q}^{\top} \boldsymbol{k}_{+} / \tau)}{\sum_{i=0}^{K} \exp (\boldsymbol{q}^{\top} \boldsymbol{k}_{i} / \tau)}$$

GCC Pre-training: Learning Algorithms

- Optimizing Contrastive Loss
 - Encoded query q
 - K+1 encoded keys $\{k_0, \dots, k_K\}$

$$\mathcal{L} = -\log \frac{\exp \left(\boldsymbol{q}^{\top} \boldsymbol{k}_{+} / \tau\right)}{\sum_{i=0}^{K} \exp \left(\boldsymbol{q}^{\top} \boldsymbol{k}_{i} / \tau\right)}$$

figure credit:

Momentum Contrast for Unsupervised Visual Representation Learning arxiv.org/abs/1911.05722

GCC Fine-tuning

Fine-Tuning

GCC Fine-tuning: Full v.s. Freezing

Full fine-tuning

Freezing fine-tuning

Experiments

GCC Pre-Training / Fine-tuning

• Six real-world information networks for pre-training.

Dataset	Academia	DBLP (SNAP)	DBLP (NetRep)	IMDB	Facebook	LiveJournal
V	137,969	317,080	540,486	896,305	3,097,165	4,843,953
E	739,384	2,099,732	30,491,458	7,564,894	47,334,788	85,691,368

Pre-Training

- Fine-tuning Tasks:
 - Node classification
 - Graph classification
 - Top-k Similarity search

Fine-Tuning

Task 1: Node Classification

- Setup
 - US-Airport
 - AMiner academic graph

Datasets	US-Airport	H-index	
V	1,190	5,000	
E	13,599	44,020	
ProNE GraphWave Struc2vec GCC (E2E, freeze) GCC (MoCo, freeze)	62.3 60.2 66.2 64.8 65.6	69.1 70.3 > 1 Day 78.3 75.2	
GCC (rand, full)	64.2	76.9	
GCC (E2E, full)	68.3	80.5	
GCC (MoCo, full)	67.2	80.6	

Task 2: Graph Classification

- Setup
 - COLLAB, RDT-B, RDT-M, & IMDB-B, IMDB-M

Datasets	IMDB-B	IMDB-M	COLLAB	RDT-B	RDT-M
# graphs	1,000	1,500	5,000	2,000	5,000
# classes	2	3	3	2	5
Avg. # nodes	19.8	13.0	74.5	429.6	508.5
DGK	67.0	44.6	73.1	78.0	41.3
graph2vec	71.1	50.4	-	75.8	47.9
InfoGraph	73.0	49.7	_	82.5	53.5
GCC (E2E, freeze)	71.7	49.3	74.7	87.5	52.6
GCC (MoCo, freeze)	72.0	49.4	78.9	89.8	53.7
DGCNN	70.0	47.8	73.7	_	_
GIN	75.6	51.5	80.2	89.4	54.5
GCC (rand, full)	75.6	50.9	79.4	87.8	52.1
GCC (E2E, full)	70.8	48.5	79.0	86.4	47.4
GCC (MoCo, full)	73.8	50.3	81.1	87.6	53.0

Task 3: Top-k Similarity Search

- Setup
 - AMiner academic graph

	KDD-ICDM		SIGIR-CIKM		SIGMOD-ICDE	
	2,867	2,607	2,851	3,548	2,616	2,559
E	7,637	4,774	6,354	7,076	8,304	6,668
# groud truth		697		874		898
k	20	40	20	40	20	40
Random	0.0198	0.0566	0.0223	0.0447	0.0221	0.0521
RolX	0.0779	0.1288	0.0548	0.0984	0.0776	0.1309
Panther++	0.0892	0.1558	0.0782	0.1185	0.0921	0.1320
GraphWave	0.0846	0.1693	0.0549	0.0995	0.0947	0.1470
GCC (E2E)	0.1047	0.1564	0.0549	0.1247	0.0835	0.1336
GCC (MoCo)	0.0904	0.1521	0.0652	0.1178	0.0846	0.1425

Conclusion

- We study the pre-training of GNN with the goal of characterizing and transferring structural representations in social and information networks.
- We present Graph Contrastive Coding, which is a graph-based contrastive learning framework to pre-train GNN.
- The pre-trained GNN achieves competitive performance to its supervised trained-fromscratch counterparts in 3 graph learning tasks on 10 graph datasets.

Thanks.

Q&A

https://github.com/THUDM/GCC

Find us at KDD 2020

https://github.com/THUDM/GCC