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Graph Representation Learning

Graph Embeddings

Downstream Tasks

Tasks
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Sampled Noise Contrastive Estimation Framework

Sample positive nodes Generate node embeddings Sample negative nodes

SampledNCE Framework

Cross-entropy loss
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Problems & Challenges

Unexplored

Lacking systematically analyzed 

Related Work:

Advantage: mine hard negative samples
Disadvantage: sampling with rejection may cost so 
many time to try.

Hard-samples Negative Sampling

Advantage: adversially generate “difficult” samples
Disadvantage: Training difficulties; Long training time

GAN-based Negative Sampling

Advantage: simple and fast
Disadvantage: static, inconsiderate to the 
personalization of nodes.

Degree-based Negative Sampling
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Negative Sampling
• Definition:

Given a graph             , where                                      is the node set,     

is the edge set. 

calculate all nodes

only calculate k nodes

For a node pair           ,  maximize the log-likelihhod of this pair and minimize 

the log-likelihood of all unconnected node pairs:

Negative Sampling: sample k negative nodes to replace all nodes.

1) Accelerate the training process.    2) Reduce computational complexity

• Purpose:
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How does negative sampling influence the learning?

Q1: Does        affect the embedding learning?                        

◎ Yes ◎ No

Q2:What is the relationship between       and       ?                     

◎ ◎ ◎ ◎

Positive Sampling Distribution              

Negative Sampling Distribution

Notations:
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How does negative sampling influence the learning?
Objective Function: 

Simplify As:                           

Bernoulli distributions:

Optimal Embedding:

Gibbs Inequality:
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What extent does negative sampling influence the learning?

Mean Squared Error: 

Empirical Risk：

Theorem: the random variable                    asymptotically 
converges to a distribution with zero mean vector and 
covariance matrix      . Proof by

Taylor Expansion

Theorem
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The Principle of Negative Sampling

A simple solution is to sample negative nodes positively but sub-linearly 

correlated to their positive sampling distribution. 

• Monotonicity:                   

Optimal Embedding 
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Our Solution: MCNS Model
Markov chain Monte Carlo Negative Sampling (MCNS)：

• an effective and scalable negative sampling strategy.

• applies our theory with an approximated positive distribution based on current 

embeddings. 

• leverages a special Metropolis-Hastings algorithm for sampling. 

An Approximated Positive Distribution:
• Self-contrast approximation:

- replacing       by inner products based on the current encoder
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Our Solution: MCNS Model

Negative Distribution:

• Very time-consuming

• Each sampling requires 𝑂 (𝑛) time, making it impossible for middle- or large-

scale graphs. 

• Accelerating by Metropolis-Hastings algorithm.
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Our Solution: MCNS Model
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Our Solution: MCNS Model

Proposal Distribution            : 

mixing uniform sampling 

and sampling from the nearest 

k nodes with probability   each.

Step-1

Step-2

Step-3

Step-4
Step-5
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Experimental Settings

3 representative tasks. 3 graph representation learning algorithms.

5 datasets.                               19 experimental settings.
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Recommendation Results

MCNS achieves

significant gains 

of 2%∼ 13%

over the best 

baselines.
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Link Prediction Results

MCNS outperforms all 

baselines with various 

graph representation 

learning methods
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Node Classification Results

MCNS stably outperforms 

all baselines regardless of 

the training set ratio     .
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Efficiency Comparison 

The runtime of MCNS and 

hard-samples or GAN-

based strategies with 

GraphSAGE encoder in 

recommendation task.

Runtime Comparisons:
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Futher Analysis: Comparison with Power of Degree

• Abscissa: 𝛽 varies from -1 to 1.

• Results: 

1) Best 𝛽 varies on datasets.

2) MCNS naturally adapts to 

different datasets.

Degree-based NS: 
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Futher Analysis: Parameter Analysis
• Margin 𝛾:

- the hinge loss begins to take effect when 𝛾 ≥ 0 

- reaches its optimum at 𝛾 ≈ 0.1

• Embedding Dimension:

- set as 512 

- achieve the trade-off between perfortmance and 

time consumption.

0.1
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Further Understanding
• Whether sampling more negative samples is always helpful ?

• Improve at first: decrease the risk

• Decrease after the optimum:  extra 

bias is added
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Further Understanding

• Why our conclusion contradicts with the intuition “positively 
sampling nearby nodes and negatively sampling far away 
nodes” ?

– InverseDNS: selecting the one 

scored lowest in the candidate items.

– Performance go down as 𝑀

increases.
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Summary

• We systematically analyze the role of negative sampling from the perspectives of 

both objective and risk; and quantify that the negative sampling distribution should 

be positively but sub-linearly correlated to their positive sampling distribution.

• We propose MCNS, approximating the positive distribution with self-contrast 

approximation and accelerating negative sampling by Metropolis-Hastings.

• We achieve state-of-the-art performance in recommendation, link prediction and 

node classification, on a total of 19 experimental settings.
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Code & Data: https://github.com/THUDM/MCNS

Thank you~

https://github.com/THUDM/MCNS

