
MixGCF: An Improved Training Method for Graph Neural
Network-based Recommender Systems

Tinglin Huang†★, Yuxiao Dong‡, Ming Ding♦, Zhen Yang♦, Wenzheng Feng♦
Xinyu Wang†, Jie Tang♦§

†Zhejiang University, ‡Facebook AI, ♦Tsinghua University
tinglin.huang@zju.edu.cn,yuxiaod@fb.com,dm18@mails.tsinghua.edu.cn,zheny2751@gmail.com

fwz17@mails.tsinghua.edu.cn,wangxinyu@zju.edu.cn,jietang@tsinghua.edu.cn

ABSTRACT
Graph neural networks (GNNs) have recently emerged as state-of-
the-art collaborative filtering (CF) solution. A fundamental chal-
lenge of CF is to distill negative signals from the implicit feedback,
but negative sampling in GNN-based CF has been largely unex-
plored. In this work, we propose to study negative sampling by
leveraging both the user-item graph structure and GNNs’ aggrega-
tion process. We present the MixGCF method—a general negative
sampling plugin that can be directly used to train GNN-based rec-
ommender systems. InMixGCF, rather than sampling raw negatives
from data, we design the hop mixing technique to synthesize hard
negatives. Specifically, the idea of hop mixing is to generate the
synthetic negative by aggregating embeddings from different lay-
ers of raw negatives’ neighborhoods. The layer and neighborhood
selection process are optimized by a theoretically-backed hard se-
lection strategy. Extensive experiments demonstrate that by using
MixGCF, state-of-the-art GNN-based recommendation models can
be consistently and significantly improved, e.g., 26% for NGCF and
22% for LightGCN in terms of NDCG@20.

CCS CONCEPTS
• Information systems → Recommender systems; • Mathe-
matics of computing→ Graph algorithms.
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Figure 1: An illustration of hop mixing for synthesizing a
negative item in MixGCF, where the user and item are rep-
resented by their ego-networks respectively, and the high-
lighted circles indicate the selected neighbors.
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1 INTRODUCTION
Recommender systems have been widely used for avoiding infor-
mation overload in applications as diverse as online shopping [53],
social network [29], advertising [15], and Web search [17]. Its goal
is to provide users with personalized information feeding, that is,
for each user, the problem of recommendation is to predict the
items that she or he will consume.

Among the most promising techniques for this problem has been
the usage of collaborative filtering (CF) [21], which models users’
historical interactions with items to profile users and items for pre-
dicting future interactions. To date, the most prevalent CF solutions
are to project users and items into the latent embedding space,
such as matrix factorization [23] and neural networks [14] based
techniques. To further improve the embedding quality, one promi-
nent direction is to model user-item interactions as a graph and
leverage graph neural networks (GNNs) [8, 11, 20] to incorporate
structural information into the embeddings. Notably, the GNN-
based recommendation models, such as PinSage [49], NGCF [43],
and LightGCN [13], have generated state-of-the-art performance
with Web-scale applications.
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The typical flow of (GNN-based) recommender systems is rel-
atively straightforward. Given a user-item interaction graph, it
begins with defining an aggregation function over the structure to
propagate neighborhood information, usually followed by a pooling
operation for outputting both user and item embeddings. Similar
to conventional recommendation methods, its objective function
is designed to prefer an observed user-item pair (as positive) to
unobserved ones (as negative pairs). Take the widely-adopted BPR
loss [31] for example, for each user and one of her positive items,
we conduct negative sampling to pick one item as the negative from
those she never interacts with.

Essentially, the negative samples play a decisive role in the per-
formance of (GNN-based) recommendation models. Commonly,
a uniform distribution is used for negative sampling [13, 43]. To
improve the quality of negative samples, studies have attempted
to design new sampling distributions for prioritizing informative
negatives [17, 28, 40, 44, 48, 52]. In doing so, the model would be
challenged and forced to distinguish their differences at a finer gran-
ularity. To improve negative sampling in GNNs, PinSage [49] sam-
ples the negatives based on their PageRank scores and MCNS [48]
re-designs both positive and negative sampling distributions with
their structural correlations in mind. However, these attempts in
GNNs only focus on improving negative sampling in the discrete
graph space, ignoring GNNs’ unique neighborhood aggregation
process in the embedding space.

Contributions. In this work, we propose to design negative sam-
pling strategies for better training GNN-based recommender sys-
tems. We present a simple MixGCF framework for generating hard
negative samples. Instead of directly sampling real negatives from
the data, MixGCF takes inspirations from data augmentation and
metric learning to synthesize negative samples by leveraging the
underlying GNN-based recommender.

To make synthetic negatives hard for the recommendation mod-
els, MixGCF designs two strategies: positive mixing and hop mixing.
In positive mixing, we introduce an interpolation mixing method
to pollute the embeddings of raw negative samples by injecting
information from positive ones into them. In hop mixing, we sam-
ple several raw negative samples, e.g., 𝑣−

𝑖
, 𝑣−
𝑗
, and 𝑣−

𝑘
, in Figure 1

and generate the embedding of the synthetic negative 𝑣− by using
their polluted embeddings aggregated from selected hops of their
neighbors. For example, as indicated by the blue circles, hop 0, 1,
and 2 are selected from 𝑣−

𝑖
, 𝑣−
𝑗
, and 𝑣−

𝑘
, respectively. It is worth men-

tioning that the selection of which hop from whose neighborhood
is guided by a designed hard selection strategy.

We perform extensive experiments on benchmark recommenda-
tion datasets. Experimental results show that by replacing their de-
fault negative sampler to MixGCF, the state-of-the-art GNN-based
recommendation models can be consistently improved, such as
average relative increase of 22% for LightGCN and 26% for NGCF in
terms of NDCG@20. Furthermore, we compare MixGCF with vari-
ous negative sampling techniques, the results of which demonstrate
the empirical advantage of MixGCF over them.

In summary, our work makes the following contributions:

• Introduce the idea of synthesizing negative samples rather than
directly sampling negatives from the data for improving GNN-
based recommender systems.

• Present a general MixGCF framework with the hop mixing and
positive mixing strategies that can be naturally plugged into
GNN-based recommendation models.

• Demonstrate the significant improvements that MixGCF brings
to GNN recommenders, as well as its consistent outperformance
over a diverse set of negative sampling techniques.

2 PRELIMINARIES AND PROBLEM
In this section, we first review the overall process of graph neural
network (GNN) based collaborative filtering (CF) for recommender
systems. We then introduce the studied problem that concerns the
training of the above process.

2.1Graph Neural Networks for Recommendation
Commonly, the input of recommendation systems includes a set
of users U = {𝑢}, items V = {𝑣}, and users’ implicit feedback
O+ = {(𝑢, 𝑣+)|𝑢 ∈ U, 𝑣+ ∈ V}, where each pair indicates an inter-
action between user 𝑢 and item 𝑣+. The goal is to estimate the user
preference towards items.

Recently, studies have shown that GNN-based CF models offer
promising results for this task [13, 43, 49]. The main idea is to
measure user 𝑢’s preference on item 𝑣 based on their multi-hop
neighbors. Specifically, these techniques generate the latent repre-
sentations of the target user and item, the inner product of which
is used to quantify the preference, that is, 𝑦(𝑢, 𝑣) = e∗𝑢

⊤e∗𝑣 .
Next, we briefly introduce the process of GNN-based CF, in-

cluding aggregation, pooling, and its optimization with negative
sampling.

Aggregation. Each user and item are associated with an initial
embedding e𝑢 and e𝑣 as its representation vector, respectively. In
order to exploit the CF signal from neighbor nodes, GNN-based
recommendation models apply different aggregation functions to
propagate information over neighbors [3, 13, 37, 43, 49]. Take Light-
GCN for example, its aggregation process is:

e(𝑙+1)
𝑢 =

∑
𝑖∈𝑁𝑢

1√
|𝑁𝑢 | |𝑁𝑖 |

e(𝑙 )
𝑖
, e(𝑙+1)

𝑣 =
∑
𝑗 ∈𝑁𝑣

1√
|𝑁𝑣 | |𝑁 𝑗 |

e(𝑙 )
𝑗
. (1)

where e(𝑙 )
𝑢 , e

(𝑙 )
𝑣 are the embeddings of user 𝑢 and item 𝑣 at 𝑙-th

layer of GNN, N𝑢 denotes the set of items that interact with user
𝑢, and N𝑣 denotes the set of users that interact with item 𝑣 . By
stacking multiple aggregation layers, each user/item can gather the
information from its higher-order neighbors. For simplicity, we use
e(𝑙 ) as the 𝑙-th layer embedding in the following sections.

Pooling. Different from GNNs for node classification [11, 20],
where representations in the final layer are used, the GNN-based
CF models usually adopt the pooling operation to generate the final
representations for users and items. According to [47], this can help
avoid over-smoothing and determine the importance of a node’s
subgraph information at different ranges.

Specifically, at the final layer 𝐿, the pooling function is applied
to generate the final user/item representations e∗𝑢/e∗𝑣 . For example,
LightGCN uses sum-based pooling:

e∗𝑢 =
𝐿∑
𝑙=0

𝜆𝑙e
(𝑙 )
𝑢 , e

∗
𝑣 =

𝐿∑
𝑙=0

𝜆𝑙e
(𝑙 )
𝑣 , (2)



and NGCF uses concat-based pooling:

e∗𝑢 = e(0)
𝑢 | |· · · | |e(𝐿)

𝑢 , e∗𝑣 = e(0)
𝑣 | |· · · | |e(𝐿)

𝑣 , (3)

Optimization with Negative Sampling. The task of learning to
rank is to provide a user with a ranked list of items by assuming
that the items preferred by the user should rank higher than others.
However, the ranked item list for each user oftentimes can only be
inferred from the implicit feedback that only consists of the positive
observations. One straightforward solution is to assume that users
prefer the observed items over all unobserved ones. Due to the
large size of unobserved items (usually in 𝑂(|V|2)), the learning
objective is usually simplified by negative sampling as the BPR loss
[31]:

max
∏

𝑣+,𝑣−∼𝑓S(𝑢)
𝑃𝑢 (𝑣+ > 𝑣− |Θ) (4)

where 𝑣+ and 𝑣− denote the positive and negative items, respec-
tively, 𝑃𝑢 (𝑎 > 𝑏) represents user 𝑢 prefers item 𝑎 over 𝑏, 𝑓S(𝑢) is the
distribution of negative sampling, and Θ is the parameter of the
model. Most recommendation methods consider negative sample
from a uniform distribution (𝑓S(𝑢) as 𝑓uniform(𝑢)) [13, 14, 29, 31, 43].

2.2 The Negative Sampling Problem
According to the loss function in Eq. (4), the negative sampling strat-
egy plays a critical role in the model training of recommendation.
Intuitively, the negative samples close to positive ones, a.k.a. hard
negative samples, can make the models better learn the boundary
between positive and negative instances [49]. To this end, several
attempts have been made to sample hard negatives to improve the
optimization of general recommender systems [6, 17, 30, 52].

However, negative sampling for GNN-based recommenders has
remained largely unexplored. Notably, early attempts—PinSage [49]
and MCNS [48]—focus on improving the sampling distributions
at the discrete structure level, seeking better hard negative (raw)
nodes in the graph. In this work, we ask the question of whether
we can synthesize harder negative samples in the continuous space,
based on the GNN underlying the recommender.

3 THE MIXGCF METHOD
MixGCF is a general algorithm for negative sampling in GNN-
based recommendation. It can be directly plugged into existing
GNN-based recommendation algorithms, such as LightGCN and
NGCF.

Instead of sampling real items from the data as negative ones [28,
31, 40, 48, 52], MixGCF proposes to synthesize informative (and
fake) negative items based on the graph structure for training GNN-
based CF recommendation models. Specifically, MixGCF introduces
the positive mixing and hop mixing techniques to synthesize nega-
tive samples by mixing information from different local graphs.

The flow of MixGCF is illustrated in Figure 2. In positive mix-
ing, we develop an interpolation mixing method to inject informa-
tion from positive samples to negative ones, making hard negative
candidates. In hop mixing, we first leverage a hard negative selec-
tion strategy to extract unique information from each of the hard
negatives generated above, and then use the pooling operation to

Figure 2: An overview of MixGCF, where e(𝑙 ) denotes the 𝑙-
th layer embedding of node 𝑒, and e′(𝑙 ) denotes the 𝑙-th layer
embedding generated by positive mixing.

combine the diverse information extracted for creating the fake but
informative negative items.

3.1 Positive Mixing
Recall that in a 𝐿-layer GNN, for each item 𝑣 , we can have 𝐿 + 1
embeddings for 𝑣 , each of which e(𝑙 )

𝑣 corresponds to the embedding
that is aggregated with 𝑙 layers (0 ≤ 𝑙 ≤ 𝐿).

To fake the negative 𝑣−
𝑖
with its embedding e𝑣− in Figure 2, we

first follows the convention [17, 49] to select𝑀 negative items to
form the candidate setM, with𝑀 usually being much smaller than
the number of items in the data. These𝑀 negative items can form
a candidate negative embedding set E = {e(𝑙 )

𝑣𝑚 } of size𝑀 × (𝐿 + 1).
A very recent study [17] suggests that recommendation models

usually operate on an input space that mainly comprises of easy
negatives, therefore we propose to improve the quality of the em-
beddings E of candidate negatives. Inspired by𝑚𝑖𝑥𝑢𝑝 [18, 51], we
introduce the idea of positive mixing to inject positive information
e𝑣+ into negative embeddings in E.𝑚𝑖𝑥𝑢𝑝 is an interpolation based
data augmentation method, which enforces the model to output
linearly between the training data. Specifically, for each candidate
negative embedding e(𝑙 )

𝑣𝑚 ∈ E, the positive mixing operation is
formalized as:

e′(𝑙 )𝑣𝑚 = 𝛼 (𝑙 )e(𝑙 )
𝑣+ + (1 − 𝛼 (𝑙 ))e(𝑙 )

𝑣𝑚 , 𝛼
(𝑙 ) ∈ (0, 1), (5)

where 𝛼 (𝑙 ) is the mixing coefficient that is uniformly sampled for
each hop 𝑙 . Note that the mixing coefficient of𝑚𝑖𝑥𝑢𝑝 is sampled
from a beta distribution Beta(𝛽, 𝛽), which has a heavy impact on
the model’s generalization ability [50]. To decouple the impact, the
mixing coefficient 𝛼 (𝑙 ) in our positive mixing is uniformly sampled
from (0, 1) (cf. Section 4.3 for the empirical discussions on 𝛼 (𝑙 )).



Let E ′ be the enhanced embedding set for the candidate negatives
M. Positive mixing enhances the negatives by (1) injecting positive
information into negative samples, which can help enforce the
optimization algorithm to exploit the decision boundary harder, and
(2) introducing stochastic uncertainty into them with the random
mixing coefficient.

3.2 Hop Mixing
With the embeddings E ′ = {e′(𝑙 )𝑣𝑚 } of candidate negative items
enhanced by positive mixing, we present the hop mixing technique
to generate the synthetic negative item 𝑣− and its embedding e𝑣− .
The main idea of hop mixing is to leverage the hierarchical (layer-
based) aggregation process in GNNs.

Specifically, for each layer 𝑙 (0 ≤ 𝑙 ≤ 𝐿), we sample one candidate
negative embedding e′(𝑙 )𝑣𝑥 (1 ≤ 𝑥 ≤ 𝑀) from E ′(𝑙 ), which contains
all the 𝑙-th layer embeddings of the candidate negative items in M.
Take 𝐿=2 for example, we can sample e′(0)

𝑣𝑎 , e
′(1)
𝑣𝑏
, and e′(2)

𝑣𝑐 from E ′.
Note that 𝑎, 𝑏, and 𝑐 are not necessary to be distinct.

The idea of hopmixing is then to combine all the 𝐿+1 embeddings
selected by layer to generate the representation e𝑣− of the (fake)
negative 𝑣−. Specifically, the representation is synthesized by fusing
all candidate embeddings by the pooling operation:

e𝑣− = 𝑓pool
(
e′(0)
𝑣𝑥 , · · · , e

′(𝐿)
𝑣𝑦

)
, (6)

where e′(𝑙 )𝑣𝑥 denotes the 𝑙-th layer embedding of 𝑣𝑥 that is sampled
at layer 𝑙 , and 𝑓pool(·) applies the same pooling operation used in
the current GNN-based recommender.

The essential question for hop mixing is how to effectively sam-
ple candidate embedding e′(𝑙 )𝑣𝑥 (1 ≤ 𝑥 ≤ 𝑀) from E ′(𝑙 ) at each layer
𝑙 . Notably, a recent study on negative sampling for graph represen-
tation learning (MCNS) [48] theoretically shows that the expected
risk of the optimal parameter e𝑇𝑢 e𝑣 between the expected loss 𝐽 (𝜃∗)
and empirical loss 𝐽 (𝜃𝑇 ) satisfies:

E
[
| |(𝜃𝑇 − 𝜃∗)𝑢 | |2

]
=

1
𝑇

(
1

𝑝𝑑 (𝑣 |𝑢)
− 1 +

1
𝐾𝑝𝑛(𝑣 |𝑢)

− 1
𝐾

), (7)

where 𝑝𝑑 (𝑣 |𝑢), 𝑝𝑛(𝑣 |𝑢) denote the estimated positive distribution
and negative distribution, respectively, 𝑇 is the number of node
pairs, and 𝐾 is the number of negatives for each user recruiting in
the loss. This derivation suggests that if 𝑝𝑛(𝑣 |𝑢) is proportional to
𝑝𝑑 (𝑣 |𝑢), the expected risk is only dependent on the 𝑝𝑑 (𝑣 |𝑢), and the
interaction probability between a user-item pair with a high inner
product score can be estimated accurately.

Based on the above theory, the suggested way for negative sam-
pling is to select the negative according to the estimated positive
distribution. Here we apply the inner product score to approximate
the positive distribution and pick the candidate sample with the
highest score, which is also called the hard negative select strat-
egy [30, 52]. Formally, the hard selection strategy at the 𝑙-th layer
is implemented as:

e′(𝑙 )𝑣𝑥 = arg max
e′(𝑙 )𝑣𝑚 ∈E(𝑙 )

𝑓Q(𝑢, 𝑙 ) · e′(𝑙 )𝑣𝑚 , (8)

where · is the inner product operation, and 𝑓Q(𝑢, 𝑙 ) is a query map-
ping that returns an embedding related to the target user 𝑢 for the
𝑙-th hop.

Algorithm 1: The training process with MixGCF
Input: Training set {(𝑢, 𝑣+)}, Recommender 𝑓GNN, Number

of negative candidate𝑀 , Number of aggregation
layers 𝐿.

for 𝑡 = 1, 2, · · · ,𝑇 do
Sample a mini-batch of positive pairs {(𝑢, 𝑣+)}.
Initialize loss L = 0.
// Negative Sampling via MixGCF.
for each (𝑢, 𝑣+) pair do

Get the aggregated embeddings of each node by
𝑓GNN.

Get the set of candidate negative embeddings E by
uniformly sampling𝑀 negatives.
Get the updated set of negative candidate E ′ by (5).
Synthesize a hard negative e𝑣− based on E ′ by (6).
L = L + ln𝜎 (e𝑢 · e𝑣− − e𝑢 · e𝑣+ ).

end
Update 𝜃 by descending the gradients ∇𝜃L.

end

The query in Eq. (8) is dependent on the pooling module of
the GNN used for recommendation. As discussed in Section 2, the
mainstream pooling module in GNN-based recommendation [13,
43] can be categorized into sum-based and concat-based pooling
operations. Therefore, there are two options for the inner product
between the target user embedding e𝑢 and the embedding of the
synthesized negative e𝑣− :

• Sum-based pooling: e𝑢 · e𝑣− = ∑𝐿
𝑙=0 𝜆𝑙e𝑢 · e(𝑙 )

𝑣−

• Concat-based pooling: e𝑢 · e𝑣− = ∑𝐿
𝑙=0 e

(𝑙 )
𝑢 · e(𝑙 )

𝑣− .
To make the selection process in Eq. (8) consistent with the pooling
used in the GNN recommender, we let 𝑓𝑄 (𝑢, 𝑙 ) = e𝑢 for sum-based
pooling and 𝑓𝑄 (𝑢, 𝑙 ) = e(𝑙 )

𝑢 for concat-based pooling, respectively.

3.3 Optimization with MixGCF
Now, we can use the proposed MixGCF method as the negative
sampling method 𝑓S(·) in the loss function (Eq. (4)) to optimize the
parameters of the GNN-based recommendation model. Straightfor-
wardly, the BPR loss function can be updated as

LBPR =
∑

(𝑢,𝑣+)∈O+

e𝑣−∼𝑓MixGCF(𝑢,𝑣+)

ln𝜎 (e𝑢 · e𝑣− − e𝑢 · e𝑣+ ), (9)

where 𝜎(·) is the sigmoid function, O+ is the set of the positive
feedback, and e𝑣− ∼ 𝑓MixGCF(𝑢, 𝑣+) represents that the instance
(embedding) e𝑣− is synthesized by the proposed MixGCF method.

3.4 Discussions on MixGCF

General Plugin. Observed from Eq. (9), the proposed negative
sampling method—MixGCF—can be naturally plugged into the
ranking loss. In addition, MixGCF is a simple and non-parametric
method. Altogether, these make MixGCF a general technique for
improving a set of GNN-based recommendation models.

Data Augmentation. Unlike the prior efforts which elaborate
versatile strategies to sample an existing negative item, MixGCF



instead proposes the paradigm of synthesizing negative items based
on the hop-wise sampling. Such a method could be also understood
from the perspective of data augmentation, since the synthesized in-
stance is conformed to but different from the existing instances [33].
This enables the recommender to be trained on the more sophisti-
cated data, leading to an improved generalization.

Approximation of Multiple Negatives. As shown in metric
learning [16, 32, 34], recruiting multiple negative instances in loss
function for each update can speed up the convergence of the
underlying model and offer better performances. Instead of directly
sampling multiple negatives, MixGCF naturally provides a low-cost
approximation of them by hop mixing, potentially making it benefit
from the metric learning conclusion above.

3.5 Time Complexity
The time cost of MixGCF mainly comes from two parts. For the hop
mixing module, the computational complexity of the hop-grained
negative selection scheme is 𝑂(𝑀𝐿𝑑), where 𝑀 is the size of the
negative candidate set, 𝐿 is the number of GNN layers, and 𝑑 is
the embedding dimension. For the positive mixing module, the
complexity of the linear combination is𝑂(𝑀𝐿𝑑), which is equivalent
to the hop mixing module’s. Therefore, the time complexity of
MixGCF is 𝑂(𝑀𝐿𝑑).

4 EXPERIMENTS
We evaluate our proposed MixGCF method on three benchmark
datasets with three representative GNN-based CFmodes—LightGCN,
NGCF, and PinSage—as the base recommenders.We compareMixGCF
with other state-of-the-art negative sampling methods to demon-
strate the superiority of our proposed method. We then conduct the
hyper-parameter study and ablation study to analyze the behavior
of MixGCF.

4.1 Experimental Settings

Dataset Description. In this paper, we evaluate our method on
three benchmark datasets: Alibaba [48], Yelp2018 [43], and Ama-
zon [48], which are publicly available. Each dataset consists of the
user-item interactions solely, as summarized in Table 1. We follow
the same settings described in [43, 48] to split the datasets into
training, validation, and testing sets.

Evaluation Metrics. We choose the widely-used Recall@𝑁 and
NDCG@𝑁 as the evaluation metrics (𝑁 = 20 by default). Unlike the
previous studies [14, 39, 48] that conduct the sampled metrics, we
compute Recall@𝑁 and NDCG@𝑁 by the all-ranking protocol [22].
We report the average metrics of all users in each testing set.

Recommender. To verify the effectiveness of MixGCF, we per-
form experiments on three GNN-based recommenders as follows.
The detailed descriptions are in Section 2.1.
• LightGCN [13]: This is a state-of-the-art CF method. LightGCN
claims that the design of NGCF is heavy and burdensome since
each node in the user-item graph is only described by an ID.
LightGCN omits the non-linear transformation and applies the
sum-based pooling module to achieve better empirical perfor-
mance.

Table 1: Statistics of the datasets.
Dataset #Users #Items #Interactions Density
Alibaba 106, 042 53, 591 907, 407 0.00016
Yelp2018 31, 668 38, 048 1, 561, 406 0.00130
Amazon 192, 403 63, 001 1, 689, 188 0.00014

Table 2: Overall Performance Comparison.
Alibaba Yelp2018 Amazon

Recall NDCG Recall NDCG Recall NDCG
LightGCN+RNS 0.0584 0.0275 0.0628 0.0515 0.0398 0.0177
LightGCN+DNS 0.0737 0.0343 0.0695 0.0571 0.0449 0.0211
LightGCN+IRGAN 0.0605 0.0280 0.0641 0.0527 0.0412 0.0185
LightGCN+AdvIR 0.0583 0.0273 0.0624 0.0510 0.0401 0.0185
LightGCN+MCNS 0.0632 0.0284 0.0658 0.0529 0.0423 0.0192
LightGCN+MixGCF 0.0763∗ 0.0357∗ 0.0713∗ 0.0589∗ 0.0460∗ 0.0216∗

NGCF+RNS 0.0426 0.0197 0.0577 0.0469 0.0294 0.0123
NGCF+DNS 0.0453 0.0207 0.0650 0.0529 0.0312 0.0130
NGCF+IRGAN 0.0435 0.0200 0.0615 0.0502 0.0283 0.0120
NGCF+AdvIR 0.0440 0.0203 0.0614 0.0500 0.0318 0.0134
NGCF+MCNS 0.0430 0.0200 0.0625 0.0501 0.0313 0.0136
NGCF+MixGCF 0.0544∗ 0.0262∗ 0.0688∗ 0.0566∗ 0.0350∗ 0.0154∗

PinSage+RNS 0.0196 0.0085 0.0410 0.0328 0.0193 0.0080
PinSage+DNS 0.0405 0.0183 0.0590 0.0488 0.0217 0.0088
PinSage+IRGAN 0.0200 0.0090 0.0422 0.0343 0.0248 0.0088
PinSage+AdvIR 0.0196 0.0090 0.0387 0.0313 0.0243 0.0087
PinSage+MCNS 0.0212 0.0095 0.0432 0.0349 0.0202 0.0088
PinSage+MixGCF 0.0489∗ 0.0226∗ 0.0632∗ 0.0525∗ 0.0273∗ 0.0124∗

• NGCF [43]: Inspired by Graph Convolution Network [11, 20],
NGCF applies the message-passing scheme on the bipartite user-
item graph to exploit the high-order neighbors’ information. To
be specific, each node obtains the transformed representations of
its multi-hop neighbors by recursively aggregating the message
propagated from the adjacent neighbors.

• PinSage [49]: As an inductive variant of GNN, PinSage designs
a random-walk based sampling method to sample neighbors for
each node and proposes to sample hard negative based on PageR-
ank score. We apply a sum-based pooling strategy to generate
the embeddings of nodes.

Baselines. We compare the proposed method, MixGCF, with static
(RNS), hard negative (DNS), GAN-based (IRGAN and AdvIR), and
graph-based (MCNS) sampler, as follows:

• RNS [31]: Random negative sampling (RNS) strategy applies
uniform distribution to sample negative items. It is independent
of the recommender and is applied in various tasks.

• DNS [52]: Dynamic negative sampling (DNS) strategy is the state-
of-the-art sampler [17, 30], which adaptively selects the negative
item scored highest by the recommender. Such the negative is
viewed as the hard negative and can provide a large gradient to
the parameters.

• IRGAN [40]: IRGAN integrates the recommender into a gener-
ative adversarial net (GAN) where the generator performs as a
sampler to pick the negative for confusing the recommender.

• AdvIR [28]: AdvIR is also an adversarial sampler that incorpo-
rates adversarial sampling with adversarial training by adding
adversarial perturbation.

• MCNS [48]:Markov chainMonte Carlo negative sampling (MCNS)
is the pioneer to theoretically analyze the impact of negative
sampling in link prediction. Based on the deduced theory, MCNS



Table 3: Performance of MixGCF without positive mixing.
Alibaba Yelp2018 Amazon

Recall NDCG Recall NDCG Recall NDCG
LightGCN+MixGCFw/o p-m 0.0748 0.0347 0.0705 0.0581 0.0448 0.0212
NGCF+MixGCFw/o p-m 0.0479 0.0226 0.0674 0.0555 0.0332 0.0147
PinSage+MixGCFw/o p-m 0.0486 0.0231 0.0526 0.0432 0.0273 0.0120

(a) LightGCN, Alibaba (b) LightGCN, Yelp2018 (c) LightGCN, Amazon

(d) NGCF, Alibaba (e) NGCF, Yelp2018 (f) NGCF, Amazon

(g) PinSage, Alibaba (h) PinSage, Yelp2018 (i) PinSage, Amazon

Figure 3: Impact of positive mixing.

proposes to sample negative by approximating the positive dis-
tribution and accelerate the process by Metropolis-Hastings al-
gorithm.

Parameter Settings. We implement our MixGCF and recommen-
dations models by PyTorch and will release our code upon accep-
tance. For each recommender, we fix the embedding size as 64,
the optimizer as Adam [19], and use Xavier [9] to initialize the
parameters. We set the batch size as 1024 for NGCF, 2048 for Pin-
Sage, and 2048 for LightGCN. We conduct a grid search to find
the optimal settings for each recommender: the learning rate is
searched in {0.0001, 0.0005, 0.001}, and 𝐿2 regularization is tuned in
{10−6, 10−5, 10−4, 10−3}. The number of sampled neighbors in each
layer of PinSage is fixed as 5. As for MCNS, the maximum depth
of dfs is 100 by default. The candidate size𝑀 in MixGCF and DNS
are searched in {8, 16, 32, 64} and we report its effect on MixGCF in
Section 4.3. The aggregation module number of the recommender 𝐿
is set as 3 by default, and we evaluate the impact of 𝐿 in Section 4.3.
The detailed settings of MixGCF and recommenders are provided
in Appendix A.

Table 4: Impact of the number of aggregation modules (𝐿).
Alibaba Yelp2018 Amazon

Recall NDCG Recall NDCG Recall NDCG
LightGCN+MixGCF-1 0.0651 0.0309 0.0684 0.0564 0.0403 0.0193
LightGCN+MixGCF-2 0.0726 0.0335 0.0707 0.0582 0.0438 0.0209
LightGCN+MixGCF-3 0.0763 0.0357 0.0713 0.0589 0.0460 0.0216
NGCF+MixGCF-1 0.0484 0.0234 0.0647 0.0526 0.0320 0.0151
NGCF+MixGCF-2 0.0545 0.0262 0.0664 0.0542 0.0345 0.0153
NGCF+MixGCF-3 0.0544 0.0262 0.0688 0.0566 0.0350 0.0154
PinSage+MixGCF-1 0.0487 0.0231 0.0639 0.0526 0.0289 0.0130
PinSage+MixGCF-2 0.0472 0.0223 0.0627 0.0519 0.0278 0.0121
PinSage+MixGCF-3 0.0489 0.0226 0.0632 0.0525 0.0273 0.0124

Table 5: Impact of the size of candidate set (𝑀).
Alibaba Yelp2018 Amazon

Recall NDCG Recall NDCG Recall NDCG

LightGCN+MixGCF

M=8 0.0697 0.0311 0.0664 0.0547 0.0443 0.0203
M=16 0.0728 0.0339 0.0684 0.0562 0.0460∗ 0.0216∗

M=32 0.0763∗ 0.0357∗ 0.0703 0.0579 0.0455 0.0215
M=64 0.0744 0.0355 0.0713∗ 0.0589∗ 0.0430 0.0206

NGCF+MixGCF

M=8 0.0468 0.0201 0.0627 0.0512 0.0350 0.0147
M=16 0.0518 0.0237 0.0658 0.0539 0.0333 0.0144
M=32 0.0532 0.0253 0.0682 0.0560 0.0347 0.0154
M=64 0.0544∗ 0.0262∗ 0.0688∗ 0.0566∗ 0.0350∗ 0.0154∗

PinSage+MixGCF

M=8 0.0178 0.0075 0.0495 0.0402 0.0204 0.0072
M=16 0.0388 0.0173 0.0546 0.0448 0.0207 0.0084
M=32 0.0435 0.0195 0.0608 0.0501 0.0238 0.0106
M=64 0.0489∗ 0.0226∗ 0.0632∗ 0.0525∗ 0.0273∗ 0.0124∗

4.2 Performance Comparison
We report the detailed performance comparison in Table 2 where
we highlight the results of the best baselines (underlined) and our
MixGCF (starred). The observations are as followed:
• LightGCN consistently outperforms NGCF and PinSage by a
large margin on three datasets, verifying that the nonlinearity
and weight matrix are useless for collaborative filtering.

• MixGCF yields the best performance on all the datasets. These im-
provements are attributed to the following reasons: (1) Through
hop mixing technique, MixGCF augments the negative samples,
which improves the generalization of recommender; (2) The syn-
thesized hard negative that incorporates the different semantics
information frommultiple instances offers a informative gradient
to the recommender.

• The relative improvements on NGCF and PinSage are more sig-
nificant than on LightGCN. Some possible reasons are: (1) The
burdensome design offers a larger parameter space, meaning
that NGCF and PinSage may benefit more from an informative
negative; (2) As a state-of-the-art CF model, LightGCN is capable
of discriminating between the positive and easy negative item.
Thus, the impact of synthesized hard negative to LightGCN is
not as significant as the other two recommendation models.

• DNS performs as the strongest baseline in most cases, which
is consistent with previous studies [17, 30, 44]. It reveals that
selecting the hardest negative provides a meaningful gradient to
guide the model.

Running Time. Take LightGCN as the example, the time elapsed
for training per epoch of RNS, DNS, MixGCF, IRGAN, AdvIR and
MCNS are about 23s, 78s, 88s, 93s, 100s, 200s as for Alibaba; 45s,
100s, 128s, 156s, 170s and 326s as for Yelp2018; and 50s, 90s, 100s,
200s, 232s, and 400s approximately as for Amazon.

Overall, the experimental results demonstrate the superiority of
our proposed MixGCF. Specifically, it outperforms all baselines across



(a) Alibaba (b) Yelp2018 (c) Amazon

Figure 4: Performance comparison over different distributions, i.e., Beta, Gaussian and Uniform distribution, of random coef-
ficient (𝛼 (𝑙 )) on three datasets.

Table 6: Impact of the number of negative instances (𝐾).
Alibaba Yelp2018 Amazon

Recall NDCG Recall NDCG Recall NDCG

LightGCN+MixGCF

K=1 0.0763 0.0357 0.0713 0.0589 0.0460 0.0216
K=2 0.0763 0.0359 0.0716 0.0591 0.0460 0.0216
K=4 0.0775 0.0368 0.0722 0.0595 0.0462 0.0217
K=8 0.0794 0.0378 0.0723 0.0593 0.0464 0.0220

NGCF+MixGCF

K=1 0.0544 0.0262 0.0688 0.0566 0.0350 0.0154
K=2 0.0582 0.0279 0.0681 0.0560 0.0345 0.0157
K=4 0.0596 0.0288 0.0688 0.0564 0.0346 0.0156
K=8 0.0624 0.0305 0.0683 0.0562 0.0345 0.0157

PinSage+MixGCF

K=1 0.0489 0.0226 0.0632 0.0525 0.0273 0.0124
K=2 0.0529 0.0249 0.0631 0.0523 0.0302 0.0138
K=4 0.0550 0.0256 0.0640 0.0532 0.0300 0.0137
K=8 0.0560 0.0261 0.0651 0.0537 0.0300 0.0140

three datasets on three GNN-based recommendation models. It also
has comparable complexity to other samplers, especially the MCNS.

4.3 Study of MixGCF
In this section, we first conduct an ablation study to investigate the
effect of positive mixing. Towards the further analysis, we explore
the influence of neighbor range, i.e., the number of aggregation
modules. We then study how different size of candidate set and
the distribution of the random coefficient in positive mixing affect
the performance. In what follows, we extend the pairwise BPR loss
to 𝐾-pair loss for analyzing the impact of the number of negative
instances. For a fair comparison, we use the identical experimental
settings as Section 4.2.

Impact of Presence of Positive Mixing. To verify the impact of
positive mixing, we do an ablation study by disabling the positive
mixing module (cf. Eq. (5)) of MixGCF, termed MixGCFw/o p-m. The
experimental results are shown in Table 3 and we further plot the
training curves of LightGCN, NGCF and PinSage in Figure 3. The
observations are as followed:
• Aligningwith Table 2 in Section 4.2, removing the positivemixing
module degrades the performance of recommenders in most
cases, indicating the necessity of positive mixing.

• Without positive mixing, MixGCF still outperforms DNS in most
cases, manifesting that the hop-wise sampling is more effective
than instance-wise sampling in GNN-based recommendation.

• Comparing the training curves of MixGCF and MixGCFw/o p-m,
it can be founded that the performance of MixGCFw/o p-m soars
in the early phase but quickly reaches the peak and plumbs while

MixGCF benefits from positive mixing and becomes more robust
against the over-fitting.

Impact of Neighbor Range. To analyze the impact of the neigh-
bor range, we vary 𝐿 in the range of {1, 2, 3} and summarize the
results in Table 4. We observe that:

• Increasing the neighbor range can improve the performance of
recommenders in most cases. It is reasonable since considering
the larger range of neighbors, more negative items can be inte-
grated into the synthesized negative.

• It can be found that MixGCF-1 achieves comparable or even
higher performance to the MixGCF-2 and MixGCF-3 on PinSage.
The possible reason is that the heavy design makes PinSage suffer
from the risk of over-smoothing.

Impact of Candidate Set. We also conduct an experiment to ana-
lyze the influence of the size of the candidate set𝑀 . We search𝑀
in range of {8, 16, 32, 64} and sum up the results in Table 5 where
the best results is highlighted (starred). The observations are as
followed:

• Increasing the candidate set size enhances the accuracy of rec-
ommenders in most cases. For example, NGCF obtains the best
performance on three datasets with𝑀 = 64.

• Interestingly, the improvements on Amazon is not significant as
the other datasets when 𝑀 is increased. We attribute it to the
different scale and distribution of these datasets.

Impact of Distribution of Positive Mixing. Since the random
coefficient 𝛼 (𝑙 ) is the core of positive mixing, we conduct a ex-
periment to investigate the impact of its distribution on Light-
GCN. We explore different choices according to the relevant re-
searches [18, 51]:

• Beta distribution.𝑚𝑖𝑥𝑢𝑝 [51] samples amixing coefficient from
Beta distribution Beta(𝛽, 𝛽) to interpolates two samples. Follow-
ing its experimental settings, we vary 𝛽 in range {0.2, 0.4}.

• Gaussian distribution. Gaussian distribution Gaus(𝜇, 𝜎) is one
of the most prevalent distributions in machine learning. Here we
fix 𝜇 = 0.5, 𝜎 = 0.1.

• Uniform distribution. MoCHi [18] serves for self-supervised
learning approaches, and proposes creating a convex linear com-
bination of negative feature and query feature [12] for alleviating
the false negative issue. It randomly samples a mixing coefficient



from uniform distribution Uni(0, 𝑎). Following its setting and our
positive mixing, we fix 𝑎 = 0.5, 1 to study.

The experimental results are illustrated in Figure 4. We have the
following observations:
• Our original setting in positive mixing, i.e., Uni(0, 1), yields the
best performance in all the cases. Comparing with Uni(0, 0.5),
the possible reason why Uni(0, 1) achieves a higher performance
is that limiting the selecting range of random coefficient will
reduce the search space of the model’s parameters.

• The beta distribution does not perform well on three datasets.
We attribute it to the requirement of a sophisticated selection of
the hyper-parameter 𝛽 , which is known as a limitation of𝑚𝑖𝑥𝑢𝑝 .

Based on the above discussions, we find that sampling 𝛼 (𝑙 ) from
uniform distribution leads to a good performance. Thus, to avoid
complicating MixGCF, we fix the sampling distribution as Uni(0, 1).

Impact of Number of Negatives. We further conduct an exper-
iment to investigate the influence of the number of negative in-
stances 𝐾 . Most of the prior work on negative sampling [28, 40,
44, 52] apply pairwise BPR loss to optimize the model. Inspired by
the efforts on metric learning [32, 34], we generalize the pairwise
BPR loss to 𝐾-pair loss and study its effect on MixGCF. We vary 𝐾
in range of {1, 2, 4, 8}. Note that when 𝐾 = 1, the 𝐾-pair loss will
degenerate into the BPR loss. The detailed description of 𝐾-pair
loss is in Appendix A.2.

We summarize the results in Table 6, and observe that increasing
the 𝐾 enhances the performance of the recommender consistently
in most cases, verifying the effectiveness of the combination of
MixGCF and 𝐾-pair loss. Such a phenomenon is expected since that
the model distinguishes multiple synthesized negatives at the same
time can lead to a more discriminative representation of the data
and faster convergence.

5 RELATEDWORK
5.1 GNN-Based Recommendation
Recommendation system has been applied to many online services,
such as E-commerce and social media [5, 14, 23, 24]. To provide
personalized information accurately, the recommendation system
should estimate the preference of users towards myriad items. The
most common paradigm is reconstructing the historical interactions
by parameterizing the users and items.

In the recent years, GNN-based recommendation has gained
considerable attention since the most information can be organized
into a graph structure. To be specific, many recent works [3, 13, 35,
37, 43, 49] consider the interactions between users and items as a bi-
partite graph, and utilize the graph neural network (GNN) to refine
the representations of each node. For example, PinSage [49] designs
a random-walk based sampling method to sample neighborhoods
and the visit counts are taken as the importance coefficients during
aggregation. GC-MC [37] models each node only with its adjacent
neighbors by the aggregation module for the rating prediction task.
NGCF [43] exploits the multi-hop community information by recur-
sively propagating the message and combines the representations
of different layers to obtain a better performance. LightGCN [13]
argues the burdensome design of NGCF and simplifies the aggrega-
tion module by removing the nonlinear feature transformation.

To alleviate the cold-start issue and enhance the performance,
some previous works take the side information, e.g., social net-
work [7, 29, 46] and knowledge graph [2, 38, 39, 42, 45], into ac-
count. For instance, GraphRec [7] integrates the users into a social
network and refines the representations of each node with a graph
attention network. KGAT [42] integrates the items into a knowl-
edge graph and considers the interaction between users and items
as a relation. It adopts the graph attention mechanism to exploit
the high-order connections.

5.2 Negative Sampling for Recommendation
Negative sampling is first proposed to accelerate the training of
skip-gram [26]. In recent years, negative sampling has been studied
in recommendation task for solving one-class problem [4, 27]. To
be specific, most interactions between users and items are in the
form of implicit feedback, which only consists of positive feedback.
Existing negative sampling methods roughly fall into four groups.

Static Sampler [26, 31] samples the negative item from a fixed
distribution. Bayesian Personalized Ranking (BPR) [31] applies uni-
form distribution to sample negative, which is one of the most
prevalent methods. In addition, the negative sampling distribution
of some previous work on network embedding [10, 36] is propor-
tional to the 3/4 power of the positive distribution.

GAN-based Sampler [1, 28, 40, 41] is an adversarial sampler based
on generative adversarial network (GAN). For example, IRGAN [40]
trains a generative adversarial network to play a min-max game
with the recommender. The sampler performs as a generator and
samples the negative to confuse the recommender. KBGAN [1]
applies the framework to knowledge graph embedding task by
training two translation-based models. AdvIR [28] adds the pertur-
bation in adversarial sampling to make the model more robust.

HardNegative Sampler [6, 17, 30, 52] adaptively picks the hardest
negative by the current recommender. As a representative hard
negative sampler, DNS [52] selects the negative scored highest by
the recommender. Themain difference betweenMixGCF andDNS is
the sampling level. To be specific, DNS is an instance-wise sampling
method, which aims to sample a representation for one certain item.
MixGCF is developed to serve the GNN-based recommender and is
a hop-wise sampling method which samples the representations of
each hop among the negative. Besides, MixGCF applies the positive
mixing to improve the quality of negative candidates (Section 3.1).

Graph-based Sampler [44, 48, 49] samples the negative based on
the graph information. For example, MCNS [48] derives a theory
to quantify the impact of the negative sampling distribution, and
based on the theory, it approximates the positive distribution with
self-contrast approximation. KGPolicy [44] incorporates knowledge
graph into negative sampling and develop a reinforcement learning
agent to sample high-quality negative items. PinSage [49] samples
the node according to their Personalized PageRank scores.

6 CONCLUSION
In this work, we study the GNN-based recommendations with the
goal of improving the quality of negative samples. We devise a
simple and non-parametric method: MixGCF, which is a general



technique for the GNN-based recommendation models. Instead
of sampling existing negative items, MixGCF integrates multiple
negatives to synthesize a hard negative by positive mixing and hop
mixing. We conduct experiments on public datasets and the results
suggest that MixGCF can empower state-of-the-art GNN-based
recommenders to achieve significant performance improvements
over their original versions.

Capturing (negative) signals from data implicitly plays a crucial
role in various fundamental learning tasks, such as contrastive
learning and self-supervised learning. One promising direction
is to bridge the developments from different topics for deriving
general insights and inspiring perspectives. In the future, we would
like to explore and further the techniques proposed in MixGCF
for graph and relational data pre-training, so as to learn strongly
generalizable representations of data.
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A APPENDIX
In the appendix, we present the detailed implementation note of
MixGCF, including the running environment and the parameter set-
tings. We then formally introduce 𝐾-pair loss. Finally, we describe
the datasets, i.g., Alibaba, Yelp2018 and Amazon, and evaluation
metrics. All codes used in this paper are publicly available.

A.1 Implementation Note
Running Environment. The experiments are conducted on a sin-
gle Linux server with Intel(R) Xeon(R) CPU Gold 6420 @ 2.60GHz,
376G RAM and 10 NVIDIA GeForce RTX 3090TI-24GB. Our method
is implemented on PyTorch 1.7.0 and Python 3.7.6.
Hyperparameter settings. The following Table lists the parame-
ter settings of each recommender and MixGCF on three datasets.
The hyperparameters include the learning rate 𝑙𝑟 , the embedding
size 𝑑 , the number of aggregation modules 𝐿, the batch size 𝐵, the
coefficient of 𝐿2 regularization 𝑙2, and the size of the candidate set
𝑀 .

𝑙𝑟 𝑙2 𝐵 𝑑 𝐿 𝑀

LightGCN
Alibaba 10−3 10−4 2048 64 3 32
Yelp2018 10−3 10−4 2048 64 3 64
Amazon 10−3 10−4 2048 64 3 16

NGCF
Alibaba 10−3 10−4 1024 64 3 64
Yelp2018 10−4 10−4 1024 64 3 64
Amazon 10−4 10−4 1024 64 3 64

PinSage
Alibaba 10−3 10−4 2048 64 3 64
Yelp2018 10−3 10−4 2048 64 3 16
Amazon 10−3 10−4 2048 64 3 64

Implementation Details. Our implementation can be split into
four parts: data iteration, embedding generation, negative sampling,
and model learning. For each epoch, we randomly shuffle the train-
ing data and select the positive pairs with a size of 𝐵 orderly until
the end of the epoch. Then for each data batch, the current recom-
mender generates the aggregated embeddings of users and items
based on PyTorch 1.7.0 APIs. In this paper, we focus on the negative
sampling part. The negative sampler picks/synthesizes a negative
instance for each positive pair. After obtaining the negative items,
we feed the representations of target users, positive items, and neg-
ative items into the loss function and update the parameters of the
model based on the gradient.

A.2 𝐾-Pair Loss
Inspired by the prior researches on metric learning [16, 34], we
extend the pairwise BPR loss [31] to 𝐾-pair loss aiming to enhance
the performance of the model. Formally, the pairwise BPR loss is
as follow:

LBPR =
∑

(𝑢,𝑣+,𝑣−)∈O
− ln𝜎(𝑦𝑢,𝑣+ − 𝑦𝑢,𝑣− )

where 𝑦𝑢,𝑣 denotes the matching score between user 𝑢 and item
𝑣 , and O = {(𝑢, 𝑣+, 𝑣−)|(𝑢, 𝑣+) ∈ O+, (𝑢, 𝑣−) /∈ O+} is the training
dataset comprising of the interactions O+ and the negative samples.
Equivalently, we have

LBPR =
∑

(𝑢,𝑣+,𝑣−)∈O
− ln

exp(𝑦𝑢,𝑣+ )
exp(𝑦𝑢,𝑣+ ) + exp(𝑦𝑢,𝑣− )

The 𝐾-pair loss proposed in [34] is formulated as:

L𝐾−pair =
∑

(𝑢,𝑣+,𝑣−0 , · · ·,𝑣−𝐾 )∈O
− ln

exp(𝑦𝑢,𝑣+ )
exp(𝑦𝑢,𝑣+ ) + ∑𝐾

𝑖=0 exp(𝑦𝑢,𝑣−
𝑖

)

where {𝑣−0 , · · · , 𝑣
−
𝐾
} denotes the set of 𝐾 sampled negatives for each

interaction pair.

A.3 Datasets
We use three publicly available datasets which vary in terms of
domain, size, and sparsity to evaluate our proposed MixGCF.
• Alibaba [48] is collected from the Alibaba online shopping plat-
form. The authors of MCNS organize the purchase record of
selected users to construct the bipartite user-item graph.

• Yelp2018 [43] is from the 2018 edition of the Yelp challenge.
Each interaction of the graph is represented a restaurant or bar
consumption record of a user. Besides, the authors applied the 10-
core setting to filter out the nodes with less than 10 interactions.

• Amazon [48] is first released in [25] which contains several
datasets of different products. The authors selected the "elec-
tronics" category to form a bipartite user-item graph whose time
stamp spans from May 1996 to July 2014.

A.4 Evaluation Metrics
In this paper, we conduct the all-ranking protocol and adopt two
evaluation metrics: Recall@𝑁 and NDCG@𝑁 . The detailed intro-
duction is shown as follow:
• Recall@𝑁 is the proportion of relevant items found in the top-
k recommendation. To be specific, we compute Recall@𝑁 as
follow:
(1) For each user 𝑢 in testing set, we compute the matching score

with the rest of items {𝑣0, · · · , 𝑣𝑆 } which are never shown in
the training interactions of 𝑢.

(2) Sort the list of 𝐿 = {e𝑇𝑢 e𝑣0 , · · · , e𝑇𝑢 e𝑣𝑆 } in descending order.
(3) Count the number of relevant items |I𝑢,𝑁 | occurring in the

top 𝑁 terms of 𝐿.
(4) Calculate Recall@𝑁 = 1

|U |
∑
𝑢∈U

|I𝑢,𝑁 |
|I𝑢 | , whereU is the test-

ing set of users and I𝑢 is the set of testing items for 𝑢.
• NDCG@𝑁 measures the quality of ranking list at a finer gran-
ularity than Recall@𝑁 . It assigns different weight to different
ranks of items. We compute NDCG@𝑁 as follow:
(1) For each user 𝑢 in testing set, we compute the matching score

with the rest of items {𝑣0, · · · , 𝑣𝑆 } which are never shown in
the training interactions of 𝑢.

(2) Sort the list of 𝐿 = {e𝑇𝑢 e𝑣0 , · · · , e𝑇𝑢 e𝑣𝑆 } in descending order.
(3) Calculate the discounted cumulative gain:

DCG@𝑁 =
1
|U|

∑
𝑢∈U

𝑁∑
𝑛=1

𝛿(𝐿𝑛 ∈ I𝑢 )
log2(𝑛 + 1)

where 𝐿𝑛 denotes the 𝑛-th term of 𝐿, and 𝛿(·) is the indicator
function.

(4) Calculate NDCG@𝑁 = DCG@𝑁 /IDCG@𝑁 , where IDCG@𝑁
denotes the ideal discounted cumulative gain.
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