
BatchSampler: Sampling Mini-Batches for Contrastive Learning
in Vision, Language, and Graphs

Zhen Yang
∗

Tsinghua University

yangz21@mails.tsinghua.edu.cn

Tinglin Huang
∗†

Tsinghua University

Yale University

tinglin.huang@yale.edu

Ming Ding
∗

Tsinghua University

dm18@mails.tsinghua.edu.cn

Yuxiao Dong
‡

Tsinghua University

yuxiaod@tsinghua.edu.cn

Rex Ying

Yale University

rex.ying@yale.edu

Yukuo Cen

Tsinghua University

cyk20@mails.tsinghua.edu.cn

Yangliao Geng

Tsinghua University

gengyla@mail.tsinghua.edu.cn

Jie Tang
‡

Tsinghua University

jietang@tsinghua.edu.cn

ABSTRACT
In-Batch contrastive learning is a state-of-the-art self-supervised

method that brings semantically-similar instances close while push-

ing dissimilar instances apart within a mini-batch. Its key to success

is the negative sharing strategy, in which every instance serves as a

negative for the others within the mini-batch. Recent studies aim to

improve performance by sampling hard negatives within the current
mini-batch, whose quality is bounded by the mini-batch itself. In

this work, we propose to improve contrastive learning by sampling

mini-batches from the input data. We present BatchSampler
1
to

sample mini-batches of hard-to-distinguish (i.e., hard and true nega-

tives to each other) instances. To make each mini-batch have fewer

false negatives, we design the proximity graph of randomly-selected

instances. To form the mini-batch, we leverage random walk with

restart on the proximity graph to help sample hard-to-distinguish

instances. BatchSampler is a simple and general technique that can

be directly plugged into existing contrastive learning models in

vision, language, and graphs. Extensive experiments on datasets

of three modalities show that BatchSampler can consistently im-

prove the performance of powerful contrastive models, as shown

by significant improvements of SimCLR on ImageNet-100, SimCSE

on STS (language), and GraphCL and MVGRL on graph datasets.

CCS CONCEPTS
• Computing methodologies→ Learning paradigms.

∗
These authors contributed equally to this research.

†
This work was done when the author worked at Tsinghua University.

‡
YD and JT are the corresponding authors.

1
The code is available at https://github.com/THUDM/BatchSampler

This work is licensed under a Creative Commons Attribution

International 4.0 License.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0103-0/23/08.

https://doi.org/10.1145/3580305.3599263

KEYWORDS
Mini-Batch Sampling; Global Hard Negatives; Contrastive Learning

ACM Reference Format:
Zhen Yang, Tinglin Huang, Ming Ding, Yuxiao Dong, Rex Ying, Yukuo Cen,

Yangliao Geng, and Jie Tang. 2023. BatchSampler: Sampling Mini-Batches

for Contrastive Learning in Vision, Language, and Graphs. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3580305.3599263

1 INTRODUCTION
Contrastive learning [25, 34] is one of the dominant strategies

for self-supervised representation learning across various data do-

mains, such as MoCo [20] and SimCLR [10] in computer vision,

SimCSE [16] in natural language processing, and GraphCL [57] in

graph representation learning. The essence of self-supervised con-

trastive learning is to make similar instances close to each other and

dissimilar ones farther away in the learned representation space.

The course of self-supervised contrastive models usually starts

with loading each mini-batch of 𝐵 instances sequentially from the

input data (e.g., the images in Figure 2 (a)). In each batch, each

instance 𝑥 is associated with its augmentation 𝑥+ as the positive
samples and the other instances as negatives {𝑥−}. Commonly by

using the InfoNCE loss [34], the goal of contrastive learning is to

discriminate instances by mapping positive pairs (𝑥, 𝑥+) to similar

embeddings and negative pairs (𝑥, 𝑥−) to dissimilar embeddings.

Given the self-supervised contrastive setting, the negative sam-

ples {𝑥−}—with unknown labels—play an essential role in the

contrastive optimization process. To improve in-batch contrastive

learning, there are various attempts to take on them from different

perspectives. Globally, SimCLR [10] shows that simply increasing

the size𝐵 of themini-batch (e.g., 8192)—i.e., more negative samples—

outperforms previously carefully-designed strategies, such as the

memory bank [49] and the consistency improvement of the stored

negatives in MoCo [20]. Locally, given each mini-batch, recent stud-

ies such as the DCL and HCL [12, 38] methods have focused on

identifying true or hard negatives within this batch. In other words,

3057

https://github.com/THUDM/BatchSampler
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3580305.3599263
https://doi.org/10.1145/3580305.3599263
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599263&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zhen Yang et al.

Uniform Sampler

kNN Sampler

BatchSampler

…

Negative PairsInput Pairs Positive Pairs

…
(,)

Pairwise
NS…

In-Batch NS
(DCL, HCL)

Input Instances

…

Sampling
Mini-Batch

…<latexit sha1_base64="N511KzNRYgZfDqhv6VmU158qgR0=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdSUFN11WtA+opSTTaR1Mk5BM1FIEf8Ctfpr4B/oX3hmnoBbRCUnOnHvPmbn3+nEgUuk4rzlrZnZufiG/WFhaXlldK65vNNIoSxivsyiIkpbvpTwQIa9LIQPeihPuDf2AN/3rUxVv3vAkFVF4IUcx7wy9QSj6gnmSqPO77n63WHLKjl72NHANKMGsWlR8wSV6iMCQYQiOEJJwAA8pPW24cBAT18GYuISQ0HGOexRIm1EWpwyP2Gv6DmjXNmxIe+WZajWjUwJ6E1La2CFNRHkJYXWareOZdlbsb95j7anuNqK/b7yGxEpcEfuXbpL5X52qRaKPY12DoJpizajqmHHJdFfUze0vVUlyiIlTuEfxhDDTykmfba1Jde2qt56Ov+lMxao9M7kZ3tUtacDuz3FOg8Ze2T0su2cHpcqJGXUeW9jGLs3zCBVUUUOdvAd4xBOeraoVWpl1+5lq5YxmE9+W9fABE4+QJQ==</latexit>x3
<latexit sha1_base64="xWkfXyDG9fI2NNm9gKOMXekx8Ns=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSUFN11WtA+opSTTaQ1NkzCZqKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9ZMwSKXjvOasufmFxaX8cmFldW19o7i51UjjTDBeZ3EYi5bvpTwMIl6XgQx5KxHcG/khb/rDMxVv3nCRBnF0KccJ74y8QRT0A+ZJoi7uugfdYskpO3rZs8A1oASzanHxBVfoIQZDhhE4IkjCITyk9LThwkFCXAcT4gShQMc57lEgbUZZnDI8Yof0HdCubdiI9soz1WpGp4T0ClLa2CNNTHmCsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VItHHia4hoJoSzajqmHHJdFfUze0vVUlySIhTuEdxQZhp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQeOg7B6V3fPDUuXUjDqPHexin+Z5jAqqqKFO3gM84gnPVtWKrMy6/Uy1ckazjW/LevgAES+QJA==</latexit>x2

<latexit sha1_base64="NyR0aLhNLWgZTRhFhGFXMet/Un8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSUFN11WtA+opSTTaQ1NkzCZqKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9ZMwSKXjvOasufmFxaX8cmFldW19o7i51UjjTDBeZ3EYi5bvpTwMIl6XgQx5KxHcG/khb/rDMxVv3nCRBnF0KccJ74y8QRT0A+ZJoi7uuofdYskpO3rZs8A1oASzanHxBVfoIQZDhhE4IkjCITyk9LThwkFCXAcT4gShQMc57lEgbUZZnDI8Yof0HdCubdiI9soz1WpGp4T0ClLa2CNNTHmCsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VItHHia4hoJoSzajqmHHJdFfUze0vVUlySIhTuEdxQZhp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQeOg7B6V3fPDUuXUjDqPHexin+Z5jAqqqKFO3gM84gnPVtWKrMy6/Uy1ckazjW/LevgAFe+QJg==</latexit>x4
<latexit sha1_base64="5eYjXmlK51xSlYURc7AZI/9mRmY=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSVFN11WtA+opSTTaR1MkzCZqKUI/oBb/TTxD/QvvDOmoBbRCUnOnHvPmbn3+nEgEuU4rzlrZnZufiG/WFhaXlldK65vNJIolYzXWRREsuV7CQ9EyOtKqIC3Ysm9oR/wpn99quPNGy4TEYUXahTzztAbhKIvmKeIOr/rnnSLJafsmGVPAzcDJWSrFhVfcIkeIjCkGIIjhCIcwENCTxsuHMTEdTAmThISJs5xjwJpU8rilOERe03fAe3aGRvSXnsmRs3olIBeSUobO6SJKE8S1qfZJp4aZ83+5j02nvpuI/r7mdeQWIUrYv/STTL/q9O1KPRxZGoQVFNsGF0dy1xS0xV9c/tLVYocYuI07lFcEmZGOemzbTSJqV331jPxN5OpWb1nWW6Kd31LGrD7c5zToLFXdg/K7tl+qXKcjTqPLWxjl+Z5iAqqqKFO3gM84gnPVtUKrdS6/Uy1cplmE9+W9fABNy+QNA==</latexit>xB

…<latexit sha1_base64="N511KzNRYgZfDqhv6VmU158qgR0=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdSUFN11WtA+opSTTaR1Mk5BM1FIEf8Ctfpr4B/oX3hmnoBbRCUnOnHvPmbn3+nEgUuk4rzlrZnZufiG/WFhaXlldK65vNNIoSxivsyiIkpbvpTwQIa9LIQPeihPuDf2AN/3rUxVv3vAkFVF4IUcx7wy9QSj6gnmSqPO77n63WHLKjl72NHANKMGsWlR8wSV6iMCQYQiOEJJwAA8pPW24cBAT18GYuISQ0HGOexRIm1EWpwyP2Gv6DmjXNmxIe+WZajWjUwJ6E1La2CFNRHkJYXWareOZdlbsb95j7anuNqK/b7yGxEpcEfuXbpL5X52qRaKPY12DoJpizajqmHHJdFfUze0vVUlyiIlTuEfxhDDTykmfba1Jde2qt56Ov+lMxao9M7kZ3tUtacDuz3FOg8Ze2T0su2cHpcqJGXUeW9jGLs3zCBVUUUOdvAd4xBOeraoVWpl1+5lq5YxmE9+W9fABE4+QJQ==</latexit>x3
<latexit sha1_base64="xWkfXyDG9fI2NNm9gKOMXekx8Ns=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSUFN11WtA+opSTTaQ1NkzCZqKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9ZMwSKXjvOasufmFxaX8cmFldW19o7i51UjjTDBeZ3EYi5bvpTwMIl6XgQx5KxHcG/khb/rDMxVv3nCRBnF0KccJ74y8QRT0A+ZJoi7uugfdYskpO3rZs8A1oASzanHxBVfoIQZDhhE4IkjCITyk9LThwkFCXAcT4gShQMc57lEgbUZZnDI8Yof0HdCubdiI9soz1WpGp4T0ClLa2CNNTHmCsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VItHHia4hoJoSzajqmHHJdFfUze0vVUlySIhTuEdxQZhp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQeOg7B6V3fPDUuXUjDqPHexin+Z5jAqqqKFO3gM84gnPVtWKrMy6/Uy1ckazjW/LevgAES+QJA==</latexit>x2

<latexit sha1_base64="NyR0aLhNLWgZTRhFhGFXMet/Un8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSUFN11WtA+opSTTaQ1NkzCZqKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9ZMwSKXjvOasufmFxaX8cmFldW19o7i51UjjTDBeZ3EYi5bvpTwMIl6XgQx5KxHcG/khb/rDMxVv3nCRBnF0KccJ74y8QRT0A+ZJoi7uuofdYskpO3rZs8A1oASzanHxBVfoIQZDhhE4IkjCITyk9LThwkFCXAcT4gShQMc57lEgbUZZnDI8Yof0HdCubdiI9soz1WpGp4T0ClLa2CNNTHmCsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VItHHia4hoJoSzajqmHHJdFfUze0vVUlySIhTuEdxQZhp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQeOg7B6V3fPDUuXUjDqPHexin+Z5jAqqqKFO3gM84gnPVtWKrMy6/Uy1ckazjW/LevgAFe+QJg==</latexit>x4
<latexit sha1_base64="5eYjXmlK51xSlYURc7AZI/9mRmY=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSVFN11WtA+opSTTaR1MkzCZqKUI/oBb/TTxD/QvvDOmoBbRCUnOnHvPmbn3+nEgEuU4rzlrZnZufiG/WFhaXlldK65vNJIolYzXWRREsuV7CQ9EyOtKqIC3Ysm9oR/wpn99quPNGy4TEYUXahTzztAbhKIvmKeIOr/rnnSLJafsmGVPAzcDJWSrFhVfcIkeIjCkGIIjhCIcwENCTxsuHMTEdTAmThISJs5xjwJpU8rilOERe03fAe3aGRvSXnsmRs3olIBeSUobO6SJKE8S1qfZJp4aZ83+5j02nvpuI/r7mdeQWIUrYv/STTL/q9O1KPRxZGoQVFNsGF0dy1xS0xV9c/tLVYocYuI07lFcEmZGOemzbTSJqV331jPxN5OpWb1nWW6Kd31LGrD7c5zToLFXdg/K7tl+qXKcjTqPLWxjl+Z5iAqqqKFO3gM84gnPVtUKrdS6/Uy1cplmE9+W9fABNy+QNA==</latexit>xB

<latexit sha1_base64="N511KzNRYgZfDqhv6VmU158qgR0=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdSUFN11WtA+opSTTaR1Mk5BM1FIEf8Ctfpr4B/oX3hmnoBbRCUnOnHvPmbn3+nEgUuk4rzlrZnZufiG/WFhaXlldK65vNNIoSxivsyiIkpbvpTwQIa9LIQPeihPuDf2AN/3rUxVv3vAkFVF4IUcx7wy9QSj6gnmSqPO77n63WHLKjl72NHANKMGsWlR8wSV6iMCQYQiOEJJwAA8pPW24cBAT18GYuISQ0HGOexRIm1EWpwyP2Gv6DmjXNmxIe+WZajWjUwJ6E1La2CFNRHkJYXWareOZdlbsb95j7anuNqK/b7yGxEpcEfuXbpL5X52qRaKPY12DoJpizajqmHHJdFfUze0vVUlyiIlTuEfxhDDTykmfba1Jde2qt56Ov+lMxao9M7kZ3tUtacDuz3FOg8Ze2T0su2cHpcqJGXUeW9jGLs3zCBVUUUOdvAd4xBOeraoVWpl1+5lq5YxmE9+W9fABE4+QJQ==</latexit>x3

<latexit sha1_base64="xWkfXyDG9fI2NNm9gKOMXekx8Ns=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSUFN11WtA+opSTTaQ1NkzCZqKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9ZMwSKXjvOasufmFxaX8cmFldW19o7i51UjjTDBeZ3EYi5bvpTwMIl6XgQx5KxHcG/khb/rDMxVv3nCRBnF0KccJ74y8QRT0A+ZJoi7uugfdYskpO3rZs8A1oASzanHxBVfoIQZDhhE4IkjCITyk9LThwkFCXAcT4gShQMc57lEgbUZZnDI8Yof0HdCubdiI9soz1WpGp4T0ClLa2CNNTHmCsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VItHHia4hoJoSzajqmHHJdFfUze0vVUlySIhTuEdxQZhp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQeOg7B6V3fPDUuXUjDqPHexin+Z5jAqqqKFO3gM84gnPVtWKrMy6/Uy1ckazjW/LevgAES+QJA==</latexit>x2
<latexit sha1_base64="NyR0aLhNLWgZTRhFhGFXMet/Un8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSUFN11WtA+opSTTaQ1NkzCZqKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9ZMwSKXjvOasufmFxaX8cmFldW19o7i51UjjTDBeZ3EYi5bvpTwMIl6XgQx5KxHcG/khb/rDMxVv3nCRBnF0KccJ74y8QRT0A+ZJoi7uuofdYskpO3rZs8A1oASzanHxBVfoIQZDhhE4IkjCITyk9LThwkFCXAcT4gShQMc57lEgbUZZnDI8Yof0HdCubdiI9soz1WpGp4T0ClLa2CNNTHmCsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VItHHia4hoJoSzajqmHHJdFfUze0vVUlySIhTuEdxQZhp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQeOg7B6V3fPDUuXUjDqPHexin+Z5jAqqqKFO3gM84gnPVtWKrMy6/Uy1ckazjW/LevgAFe+QJg==</latexit>x4

<latexit sha1_base64="5eYjXmlK51xSlYURc7AZI/9mRmY=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSVFN11WtA+opSTTaR1MkzCZqKUI/oBb/TTxD/QvvDOmoBbRCUnOnHvPmbn3+nEgEuU4rzlrZnZufiG/WFhaXlldK65vNJIolYzXWRREsuV7CQ9EyOtKqIC3Ysm9oR/wpn99quPNGy4TEYUXahTzztAbhKIvmKeIOr/rnnSLJafsmGVPAzcDJWSrFhVfcIkeIjCkGIIjhCIcwENCTxsuHMTEdTAmThISJs5xjwJpU8rilOERe03fAe3aGRvSXnsmRs3olIBeSUobO6SJKE8S1qfZJp4aZ83+5j02nvpuI/r7mdeQWIUrYv/STTL/q9O1KPRxZGoQVFNsGF0dy1xS0xV9c/tLVYocYuI07lFcEmZGOemzbTSJqV331jPxN5OpWb1nWW6Kd31LGrD7c5zToLFXdg/K7tl+qXKcjTqPLWxjl+Z5iAqqqKFO3gM84gnPVtUKrdS6/Uy1cplmE9+W9fABNy+QNA==</latexit>xB

<latexit sha1_base64="xWkfXyDG9fI2NNm9gKOMXekx8Ns=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSUFN11WtA+opSTTaQ1NkzCZqKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9ZMwSKXjvOasufmFxaX8cmFldW19o7i51UjjTDBeZ3EYi5bvpTwMIl6XgQx5KxHcG/khb/rDMxVv3nCRBnF0KccJ74y8QRT0A+ZJoi7uugfdYskpO3rZs8A1oASzanHxBVfoIQZDhhE4IkjCITyk9LThwkFCXAcT4gShQMc57lEgbUZZnDI8Yof0HdCubdiI9soz1WpGp4T0ClLa2CNNTHmCsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VItHHia4hoJoSzajqmHHJdFfUze0vVUlySIhTuEdxQZhp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQeOg7B6V3fPDUuXUjDqPHexin+Z5jAqqqKFO3gM84gnPVtWKrMy6/Uy1ckazjW/LevgAES+QJA==</latexit>x2

<latexit sha1_base64="N511KzNRYgZfDqhv6VmU158qgR0=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdSUFN11WtA+opSTTaR1Mk5BM1FIEf8Ctfpr4B/oX3hmnoBbRCUnOnHvPmbn3+nEgUuk4rzlrZnZufiG/WFhaXlldK65vNNIoSxivsyiIkpbvpTwQIa9LIQPeihPuDf2AN/3rUxVv3vAkFVF4IUcx7wy9QSj6gnmSqPO77n63WHLKjl72NHANKMGsWlR8wSV6iMCQYQiOEJJwAA8pPW24cBAT18GYuISQ0HGOexRIm1EWpwyP2Gv6DmjXNmxIe+WZajWjUwJ6E1La2CFNRHkJYXWareOZdlbsb95j7anuNqK/b7yGxEpcEfuXbpL5X52qRaKPY12DoJpizajqmHHJdFfUze0vVUlyiIlTuEfxhDDTykmfba1Jde2qt56Ov+lMxao9M7kZ3tUtacDuz3FOg8Ze2T0su2cHpcqJGXUeW9jGLs3zCBVUUUOdvAd4xBOeraoVWpl1+5lq5YxmE9+W9fABE4+QJQ==</latexit>x3

<latexit sha1_base64="NyR0aLhNLWgZTRhFhGFXMet/Un8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSUFN11WtA+opSTTaQ1NkzCZqKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9ZMwSKXjvOasufmFxaX8cmFldW19o7i51UjjTDBeZ3EYi5bvpTwMIl6XgQx5KxHcG/khb/rDMxVv3nCRBnF0KccJ74y8QRT0A+ZJoi7uuofdYskpO3rZs8A1oASzanHxBVfoIQZDhhE4IkjCITyk9LThwkFCXAcT4gShQMc57lEgbUZZnDI8Yof0HdCubdiI9soz1WpGp4T0ClLa2CNNTHmCsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VItHHia4hoJoSzajqmHHJdFfUze0vVUlySIhTuEdxQZhp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQeOg7B6V3fPDUuXUjDqPHexin+Z5jAqqqKFO3gM84gnPVtWKrMy6/Uy1ckazjW/LevgAFe+QJg==</latexit>x4

<latexit sha1_base64="GYP0nmxM+X4Vms26ub/wRjGuYyo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRKR6koKbrqsaB+gpSTTaR2aJmEyUUsR/AG3+mniH+hfeGdMQS2iE5KcOfeeM3Pv9eNAJMpxXnPW3PzC4lJ+ubCyura+UdzcaiZRKhlvsCiIZNv3Eh6IkDeUUAFvx5J7Iz/gLX94quOtGy4TEYUXahzzzsgbhKIvmKeIOr/rVrrFklN2zLJngZuBErJVj4ovuEIPERhSjMARQhEO4CGh5xIuHMTEdTAhThISJs5xjwJpU8rilOERO6TvgHaXGRvSXnsmRs3olIBeSUobe6SJKE8S1qfZJp4aZ83+5j0xnvpuY/r7mdeIWIVrYv/STTP/q9O1KPRxbGoQVFNsGF0dy1xS0xV9c/tLVYocYuI07lFcEmZGOe2zbTSJqV331jPxN5OpWb1nWW6Kd31LGrD7c5yzoHlQditl9+ywVD3JRp3HDnaxT/M8QhU11NEg7wEe8YRnq2aFVmrdfqZauUyzjW/LevgAGq+QKA==</latexit>x6

<latexit sha1_base64="N511KzNRYgZfDqhv6VmU158qgR0=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdSUFN11WtA+opSTTaR1Mk5BM1FIEf8Ctfpr4B/oX3hmnoBbRCUnOnHvPmbn3+nEgUuk4rzlrZnZufiG/WFhaXlldK65vNNIoSxivsyiIkpbvpTwQIa9LIQPeihPuDf2AN/3rUxVv3vAkFVF4IUcx7wy9QSj6gnmSqPO77n63WHLKjl72NHANKMGsWlR8wSV6iMCQYQiOEJJwAA8pPW24cBAT18GYuISQ0HGOexRIm1EWpwyP2Gv6DmjXNmxIe+WZajWjUwJ6E1La2CFNRHkJYXWareOZdlbsb95j7anuNqK/b7yGxEpcEfuXbpL5X52qRaKPY12DoJpizajqmHHJdFfUze0vVUlyiIlTuEfxhDDTykmfba1Jde2qt56Ov+lMxao9M7kZ3tUtacDuz3FOg8Ze2T0su2cHpcqJGXUeW9jGLs3zCBVUUUOdvAd4xBOeraoVWpl1+5lq5YxmE9+W9fABE4+QJQ==</latexit>x3
<latexit sha1_base64="NyR0aLhNLWgZTRhFhGFXMet/Un8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSUFN11WtA+opSTTaQ1NkzCZqKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9ZMwSKXjvOasufmFxaX8cmFldW19o7i51UjjTDBeZ3EYi5bvpTwMIl6XgQx5KxHcG/khb/rDMxVv3nCRBnF0KccJ74y8QRT0A+ZJoi7uuofdYskpO3rZs8A1oASzanHxBVfoIQZDhhE4IkjCITyk9LThwkFCXAcT4gShQMc57lEgbUZZnDI8Yof0HdCubdiI9soz1WpGp4T0ClLa2CNNTHmCsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VItHHia4hoJoSzajqmHHJdFfUze0vVUlySIhTuEdxQZhp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQeOg7B6V3fPDUuXUjDqPHexin+Z5jAqqqKFO3gM84gnPVtWKrMy6/Uy1ckazjW/LevgAFe+QJg==</latexit>x4 (,)<latexit sha1_base64="N511KzNRYgZfDqhv6VmU158qgR0=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdSUFN11WtA+opSTTaR1Mk5BM1FIEf8Ctfpr4B/oX3hmnoBbRCUnOnHvPmbn3+nEgUuk4rzlrZnZufiG/WFhaXlldK65vNNIoSxivsyiIkpbvpTwQIa9LIQPeihPuDf2AN/3rUxVv3vAkFVF4IUcx7wy9QSj6gnmSqPO77n63WHLKjl72NHANKMGsWlR8wSV6iMCQYQiOEJJwAA8pPW24cBAT18GYuISQ0HGOexRIm1EWpwyP2Gv6DmjXNmxIe+WZajWjUwJ6E1La2CFNRHkJYXWareOZdlbsb95j7anuNqK/b7yGxEpcEfuXbpL5X52qRaKPY12DoJpizajqmHHJdFfUze0vVUlyiIlTuEfxhDDTykmfba1Jde2qt56Ov+lMxao9M7kZ3tUtacDuz3FOg8Ze2T0su2cHpcqJGXUeW9jGLs3zCBVUUUOdvAd4xBOeraoVWpl1+5lq5YxmE9+W9fABE4+QJQ==</latexit>x3

<latexit sha1_base64="GYP0nmxM+X4Vms26ub/wRjGuYyo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRKR6koKbrqsaB+gpSTTaR2aJmEyUUsR/AG3+mniH+hfeGdMQS2iE5KcOfeeM3Pv9eNAJMpxXnPW3PzC4lJ+ubCyura+UdzcaiZRKhlvsCiIZNv3Eh6IkDeUUAFvx5J7Iz/gLX94quOtGy4TEYUXahzzzsgbhKIvmKeIOr/rVrrFklN2zLJngZuBErJVj4ovuEIPERhSjMARQhEO4CGh5xIuHMTEdTAhThISJs5xjwJpU8rilOERO6TvgHaXGRvSXnsmRs3olIBeSUobe6SJKE8S1qfZJp4aZ83+5j0xnvpuY/r7mdeIWIVrYv/STTP/q9O1KPRxbGoQVFNsGF0dy1xS0xV9c/tLVYocYuI07lFcEmZGOe2zbTSJqV331jPxN5OpWb1nWW6Kd31LGrD7c5yzoHlQditl9+ywVD3JRp3HDnaxT/M8QhU11NEg7wEe8YRnq2aFVmrdfqZauUyzjW/LevgAGq+QKA==</latexit>x6

(,)<latexit sha1_base64="xWkfXyDG9fI2NNm9gKOMXekx8Ns=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSUFN11WtA+opSTTaQ1NkzCZqKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9ZMwSKXjvOasufmFxaX8cmFldW19o7i51UjjTDBeZ3EYi5bvpTwMIl6XgQx5KxHcG/khb/rDMxVv3nCRBnF0KccJ74y8QRT0A+ZJoi7uugfdYskpO3rZs8A1oASzanHxBVfoIQZDhhE4IkjCITyk9LThwkFCXAcT4gShQMc57lEgbUZZnDI8Yof0HdCubdiI9soz1WpGp4T0ClLa2CNNTHmCsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VItHHia4hoJoSzajqmHHJdFfUze0vVUlySIhTuEdxQZhp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQeOg7B6V3fPDUuXUjDqPHexin+Z5jAqqqKFO3gM84gnPVtWKrMy6/Uy1ckazjW/LevgAES+QJA==</latexit>x2 (,)<latexit sha1_base64="NyR0aLhNLWgZTRhFhGFXMet/Un8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdSUFN11WtA+opSTTaQ1NkzCZqKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9ZMwSKXjvOasufmFxaX8cmFldW19o7i51UjjTDBeZ3EYi5bvpTwMIl6XgQx5KxHcG/khb/rDMxVv3nCRBnF0KccJ74y8QRT0A+ZJoi7uuofdYskpO3rZs8A1oASzanHxBVfoIQZDhhE4IkjCITyk9LThwkFCXAcT4gShQMc57lEgbUZZnDI8Yof0HdCubdiI9soz1WpGp4T0ClLa2CNNTHmCsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VItHHia4hoJoSzajqmHHJdFfUze0vVUlySIhTuEdxQZhp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQeOg7B6V3fPDUuXUjDqPHexin+Z5jAqqqKFO3gM84gnPVtWKrMy6/Uy1ckazjW/LevgAFe+QJg==</latexit>x4<latexit sha1_base64="P3Y/pG4mlvpLxrNf2GU9lhZocpk=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtZKCmy4r2gfUUpLptA6mSUgmaimCP+BWP038A/0L74xTUIvohCRnzr3nzNx7/TgQqXSc15w1Mzs3v5BfLCwtr6yuFdc3GmmUJYzXWRREScv3Uh6IkNelkAFvxQn3hn7Am/71qYo3b3iSiii8kKOYd4beIBR9wTxJ1Pld96BbLDllRy97GrgGlGBWLSq+4BI9RGDIMARHCEk4gIeUnjZcOIiJ62BMXEJI6DjHPQqkzSiLU4ZH7DV9B7RrGzakvfJMtZrRKQG9CSlt7JAmoryEsDrN1vFMOyv2N++x9lR3G9HfN15DYiWuiP1LN8n8r07VItHHsa5BUE2xZlR1zLhkuivq5vaXqiQ5xMQp3KN4Qphp5aTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zinQWOv7B6W3bP9UuXEjDqPLWxjl+Z5hAqqqKFO3gM84gnPVtUKrcy6/Uy1ckaziW/LevgAGE+QJw==</latexit>x5

<latexit sha1_base64="P3Y/pG4mlvpLxrNf2GU9lhZocpk=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtZKCmy4r2gfUUpLptA6mSUgmaimCP+BWP038A/0L74xTUIvohCRnzr3nzNx7/TgQqXSc15w1Mzs3v5BfLCwtr6yuFdc3GmmUJYzXWRREScv3Uh6IkNelkAFvxQn3hn7Am/71qYo3b3iSiii8kKOYd4beIBR9wTxJ1Pld96BbLDllRy97GrgGlGBWLSq+4BI9RGDIMARHCEk4gIeUnjZcOIiJ62BMXEJI6DjHPQqkzSiLU4ZH7DV9B7RrGzakvfJMtZrRKQG9CSlt7JAmoryEsDrN1vFMOyv2N++x9lR3G9HfN15DYiWuiP1LN8n8r07VItHHsa5BUE2xZlR1zLhkuivq5vaXqiQ5xMQp3KN4Qphp5aTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zinQWOv7B6W3bP9UuXEjDqPLWxjl+Z5hAqqqKFO3gM84gnPVtUKrcy6/Uy1ckaziW/LevgAGE+QJw==</latexit>x5

<latexit sha1_base64="P3Y/pG4mlvpLxrNf2GU9lhZocpk=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtZKCmy4r2gfUUpLptA6mSUgmaimCP+BWP038A/0L74xTUIvohCRnzr3nzNx7/TgQqXSc15w1Mzs3v5BfLCwtr6yuFdc3GmmUJYzXWRREScv3Uh6IkNelkAFvxQn3hn7Am/71qYo3b3iSiii8kKOYd4beIBR9wTxJ1Pld96BbLDllRy97GrgGlGBWLSq+4BI9RGDIMARHCEk4gIeUnjZcOIiJ62BMXEJI6DjHPQqkzSiLU4ZH7DV9B7RrGzakvfJMtZrRKQG9CSlt7JAmoryEsDrN1vFMOyv2N++x9lR3G9HfN15DYiWuiP1LN8n8r07VItHHsa5BUE2xZlR1zLhkuivq5vaXqiQ5xMQp3KN4Qphp5aTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zinQWOv7B6W3bP9UuXEjDqPLWxjl+Z5hAqqqKFO3gM84gnPVtUKrcy6/Uy1ckaziW/LevgAGE+QJw==</latexit>x5

<latexit sha1_base64="P3Y/pG4mlvpLxrNf2GU9lhZocpk=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtZKCmy4r2gfUUpLptA6mSUgmaimCP+BWP038A/0L74xTUIvohCRnzr3nzNx7/TgQqXSc15w1Mzs3v5BfLCwtr6yuFdc3GmmUJYzXWRREScv3Uh6IkNelkAFvxQn3hn7Am/71qYo3b3iSiii8kKOYd4beIBR9wTxJ1Pld96BbLDllRy97GrgGlGBWLSq+4BI9RGDIMARHCEk4gIeUnjZcOIiJ62BMXEJI6DjHPQqkzSiLU4ZH7DV9B7RrGzakvfJMtZrRKQG9CSlt7JAmoryEsDrN1vFMOyv2N++x9lR3G9HfN15DYiWuiP1LN8n8r07VItHHsa5BUE2xZlR1zLhkuivq5vaXqiQ5xMQp3KN4Qphp5aTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zinQWOv7B6W3bP9UuXEjDqPLWxjl+Z5hAqqqKFO3gM84gnPVtUKrcy6/Uy1ckaziW/LevgAGE+QJw==</latexit>x5

Figure 1: Technical comparison between Mini-Batch Sam-
pling, Pairwise Negative Sampling (NS), and In-Batch Nega-
tive Sampling. The blue nodes are hard negatives.

existing efforts have largely focused on designing better negative

sampling techniques after each mini-batch of instances is loaded.

Problem. In this work, we instead propose to globally sample

instances from the input data to form mini-batches. The goal is

to have mini-batches that naturally contain as many hard nega-

tives {𝑥−}—that have different (underlying) labels from 𝑥 (true

negatives) but similar representations with 𝑥—for each instance 𝑥

as possible. In this way, the discrimination between positive and

negative instances in each mini-batch can better inform contrastive

optimization.

Uniform & kNN Samplers. Traditionally, there are two ways

to form mini-batches (Cf. Figure 2 (a)). The common option is the

Uniform Sampler that sequentially loads or uniformly samples a

batch of instances for each training step[10, 16, 57]. However, the

Uniform Sampler neglects the effect of hard negatives [27, 38], and

the batches formed contain easy negatives with low gradients that

contribute little to optimization [50, 54]. In order to have hard

negatives, it is natural to cluster instances that are nearest to each

other in the representation space to form each batch, that is, the kNN
Sampler. Unfortunately, the instances with the same underlying

labels are also expected to cluster together [8, 10], resulting in high

percentages of false negatives in the batch (Cf. Figure 2 (c)).

Contributions: BatchSampler. We present BatchSampler to sam-

ple mini-batches of hard-to-distinguish instances for in-batch con-

trastive learning. Fundamentally, each mini-batch is required to

cover hard yet true negatives, thus addressing the issues faced by

Uniform and kNN Samplers. To achieve this, we design the proxim-

ity graph of randomly-selected instances in which each edge is used

to control the pairwise similarity of their representations—that is,

the hardness of negative samples. The false negative issue in the

kNN Sampler is mitigated when random instances are picked to

construct the graph. To form one batch, we leverage random walk

with restart on the proximity graph to draw instances. The premise

is that the local neighbors sampled by the walkers are similar, that

is, hard-to-distinguish.

BatchSampler is a simple and general technique that can be di-

rectly plugged into in-batch contrastive models in vision, language,

and graphs. The experimental results show that thewell-known con-

trastive learning models—SimCLR [10] and MoCo v3 [11] in vision,

SimCSE [16] in language, and GraphCL [57] and MVGRL [19] in

graphs—can benefit from the mini-batches formed by BatchSampler.

We also theoretically and empirically show that how BatchSampler

balances the challenges faced in the Uniform and kNN Samplers.

Differences from Pairwise Negative Sampling. The problem
of mini-batch sampling is different from the pairwise negative sam-

pling problem. As shown in Figure 1, the pairwise negative sampling

method samples negative instances for each positive pair, whereas

the mini-batch sampling methods focus on sampling mini-batches

that reuses other instances as negatives in the batch. Massive pre-

vious works in pairwise negative sampling [22, 23, 28, 50, 54] have

attempted to improve performance by globally selecting similar

negatives for a given anchor from the entire dataset. However, our

focus is on globally sampling mini-batches that contain many hard

negatives rather than only selecting hard negatives for each pair.

2 RELATEDWORK

Contrastive learning in differentmodalities. Contrastive learn-
ing follows a similar paradigm that contrasts similar and dissimilar

observations based on noise contrastive estimation (NCE) [18, 34].

The primary distinction between contrastive methods of different

modalities is how they augment the data. As for computer vision,

MoCo [20] and SimCLR [10] augment data with geometric transfor-

mation and appearance transformation. Besides simply using data

augmentation, WCL [62] additionally utilizes an affinity graph to

construct positive pairs for each example within the mini-batch.Wu

et al. [47] design a data replacement strategy to mine hard positive

instances for contrastive learning. As for language, CLEAR [48]

and COCO-LM [32] augment the text data through word deletion,

reordering, and substitution, while SimCSE [16] obtains the aug-

mented instances by applying the standard dropout twice. As for

graphs, DGI [36] and InfoGraph [41] treat the node representations

and corresponding graph representations as positive pairs. Besides,

InfoGCL[51], JOAO [56], GCA [65], GCC [37] and GraphCL [57]

augment the graph data by graph sampling or proximity-oriented

methods. MVGRL [19] proposes to compare the node representation

in one view with the graph representation in the other view. Zhu

et al. [64] compares different kinds of graph augmentation strate-

gies. Our proposed BatchSampler is a general mini-batch sampler

that can directly be applied to any in-batch contrastive learning

framework with different modalities.

Negative sampling in contrastive learning. Previous studies
about negative sampling in contrastive learning roughly fall into

two categories: (1) Memory-based negative sampling strategy,
such as MoCo [20], maintains a fixed-size memory bank to store

negatives which are updated regularly during the training process.

MoCHI [27] and m-mix [60] propose to mix the hard negative can-

didates at the feature level to generate more challenging negative

pairs. MoCoRing [46] samples hard negatives from a defined con-

ditional distribution which keeps a lower bound on the mutual

information. (2) In-batch negative sharing strategy, such as

SimCLR [10] and MoCo v3 [11], adopts different instances in the

3058

BatchSampler: Sampling Mini-Batches for Contrastive Learning in Vision, Language, and Graphs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Graphs

……

Language

YMCA in South Australia

1908 -1910 - H.S.

Stafford acting Secretary.

……
Virgo wrote his memoirs in 1939.

Encoder

Contrastive Loss

Positive In-Batch
 Negatives

Training Instances
Uniform Sampler

kNN Sampler

BatchSampler

(a) Mini-Batch Sampling (b) In-Batch Contrastive Learning (c) Results on CIFAR10 (d) Generalization

Easy Negatives

 Hard True Negatives

False Negatives

Dog

Representation Space

Vision

Figure 2: A motivating illustration of BatchSampler, using vision as an example. Uniform Sampler randomly samples a batch of

instances, which contains easy negatives. kNN Sampler selects the nearest instances to form a batch, resulting in so many false negatives.

BatchSampler samples a mini-batch with hard yet true negatives based on proximity graph.

current mini-batch as negatives. To mitigate the false negative is-

sue, DCL [12] modifies the original InfoNCE objective to reweight

the contrastive loss. Huynh et al. [24] identifies the false negatives

within a mini-batch by comparing the similarity between nega-

tives and the anchor image’s multiple support views. Additionally,

HCL [38] revises the original InfoNCE objective by assigning higher

weights for hard negatives among the mini-batch. Recently, Un-

ReMix [42] is proposed to sample hard negatives by effectively cap-

turing aspects of anchor similarity, representativeness, and model

uncertainty. However, such locally sampled hard negatives cannot

exploit hard negatives sufficiently from the dataset.

Global hard negative sampling methods on triplet loss have been

widely investigated, which aim to globally sample hard negatives

for a given positive pair. For example, Wang et al. [45] proposes

to take rank-k hard negatives from some randomly sampled neg-

atives. Xiong et al. [50] globally samples hard negatives by an

asynchronously-updated approximate nearest neighbor (ANN) in-

dex for dense text retrieval. Different from the abovemethods which

are applied to a triplet loss for a given pair, BatchSampler samples

mini-batches with hard negatives for InfoNCE loss.

3 PROBLEM: MINI-BATCH SAMPLING FOR
CONTRASTIVE LEARNING

In-Batch Contrastive Learning. In-batch contrastive learning
commonly follows or slightly updates the following objective [18,

34] across different domains, such as graphs [37, 57], vision [10, 11],

and language [16]:

min E{𝑥1 ... 𝑥𝐵 }⊂D

−
𝐵∑︁
𝑖=1

log

𝑒 𝑓 (𝑥𝑖)
𝑇 𝑓 (𝑥+

𝑖
)

𝑒
𝑓 (𝑥𝑖)𝑇 𝑓 (𝑥+

𝑖
) +∑𝑗≠𝑖 𝑒

𝑓 (𝑥𝑖)𝑇 𝑓 (𝑥 𝑗)

 , (1)

where {𝑥1 ... 𝑥𝐵} is a mini-batch of samples (usually) sequentially

loaded from the dataset D, and 𝑥+
𝑖
is an augmented version of

𝑥𝑖 . The encoder 𝑓 (·) learns to discriminate instances by mapping

different data-augmentation versions of the same instance (positive

pairs) to similar embeddings, and mapping different instances in

the mini-batch (negative pairs) to dissimilar embeddings.

Usually, the in-batch negative sharing strategy—every instance

serves as a negative to the other instances within the mini-batch—is

used to boost the training efficiency [10]. It is then natural to have

hard negatives in each mini-batch for improving contrastive learn-

ing. Straightforwardly, we could attempt to sample hard negatives

within the mini-batch [12, 28, 38]. However, the batch size of a mini-

batch is—by definition—far smaller than the size of the input dataset,

and existing studies show that sampling such a local sampling

method fails to effectively explore all the hard negatives [50, 61].

Problem: Mini-Batch Sampling. The goal of this work is to

have a general mini-batch sampling strategy to support different

modalities of data. Specifically, given a set of data instances D =

{𝑥1, · · · , 𝑥𝑁 }, the objective is to design a modality-independent

sampler to sample a mini-batch of instances where each pair of

instances are hard to distinguish across the dataset.

There are two existing strategies—Uniform Sampler and kNN

Sampler—adopted in contrastive learning.

Uniform Sampler is the most common strategy used in con-

trastive learning [10, 16, 57]. The pipeline is to first randomly sam-

ple a batch of instances for each training step, then feed them into

the model for optimization.

Though simple and model-independent, Uniform Sampler ne-

glects the effect of hard negatives [27, 38], and the batches formed

contain negatives with low gradients that contribute little to opti-

mization. Empirically, we show that Uniform Sampler results in a

low percentage of similar instance pairs in a mini-batch (Cf. Fig-

ure 4). Theoretically, Yang et al. [54] and Xiong et al. [50] also prove

that the sampled negative should be similar to the query instance

since it can provide a meaningful gradient to the model.

kNN Sampler globally samples a mini-batch with many hard

negatives. As its name indicates, it tries to pick an instance at

random and retrieve a set of nearest neighbors to construct a batch.

However, the instances of the same ‘class’ will be clustered to-

gether in the embedding space [8, 10]. Hence the negatives retrieved

by it are hard at first but would be replaced by false negatives (FNs)

as the training epochs increase, misguiding the model training.

3059

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zhen Yang et al.

In summary, Uniform Sampler leverages random negatives to

guide the optimization of the model; whereas the kNN one explicitly

samples hard negatives but suffers from false negatives. Thus, an

ideal negative sampler for in-batch contrastive learning should

balance between kNN and Uniform Samplers, ensuring both the

exploitation of hard negatives and the mitigation of the FN issue.

4 THE BATCHSAMPLER METHOD
To improve contrastive learning, we propose the BatchSampler

method with the goal of forming mini-batches with 1) hard-to-

distinguish instances while 2) avoiding false negatives. BatchSam-

pler is a simple and general strategy that can be directly plugged

into existing in-batch contrastive learning models in vision, lan-

guage, and graphs. Figure 3 shows the overview of BatchSampler.

The basic idea of BatchSampler is to form mini-batches by glob-
ally sampling instances based on the similarity between each pair

of them, which is significantly different from previous local sam-

pling methods in contrastive learning [12, 27, 38]. To achieve this,

the first step of BatchSampler is to construct the proximity graph

of instances with edges measuring the pairwise similarity. Second,

we perform mini-batch sampling as a walk by leveraging a simple

and commonly-used graph sampling technique, random walk with

restart, to sample instances (nodes) from the proximity graph.

4.1 Proximity Graph Construction
The goal of the proximity graph is to collect candidate instances

that alleviate the issues faced by Uniform and kNN Sampler by con-

necting similar instances while reducing the false negative pairs.

If neighbors of an instance are randomly chosen from the dataset,

sampling on the resulting graph resembles Uniform Sampler. Con-

versely, if the most similar instances are chosen as neighbors, it

resembles the behavior of kNN Sampler. In BatchSampler, we pro-

pose a simple strategy to construct the proximity graph as follows.

Given a training dataset, we have 𝑁 instances {𝑣𝑖 |𝑖 = 1, · · · , 𝑁 }
and their corresponding representations {e𝑖 |𝑖 = 1, · · · , 𝑁 } gener-
ated by the encoder 𝑓 (·). The proximity graph is formulated as:

𝐺 = (V, E), (2)

where the node set V = {𝑣1, · · · , 𝑣𝑁 } denotes the instances and
E ⊆ {(𝑣𝑖 , 𝑣 𝑗) |𝑣𝑖 , 𝑣 𝑗 ∈ V} is a set of node pairs. LetN𝑖 be the neigh-
bor set of 𝑣𝑖 in the proximity graph. To construct N𝑖 , we first form
a candidate set C𝑖 = {𝑣𝑚} for each instance 𝑣𝑖 by uniformly picking

𝑀 (𝑀 ≪ 𝑁) neighbor candidates. Each node and its neighbor form

an edge, resulting in the edge set E. Then we select the 𝐾 nearest

ones from the candidate set:

N𝑖 = TopK

𝑣𝑚∈C𝑖
(e𝑖 · e𝑚) , (3)

where · is the inner product operation. 𝑀 is used to control the

similarity between the center node and its immediate neighbor

nodes, which can be demonstrated by the following proposition:

Proposition 1. Given an instance 𝑣𝑖 with the corresponding rep-
resentation e𝑖 , assume that there are at least 𝑆 instances whose inner
product similarity with 𝑣𝑖 is larger than 𝑠 , i.e.,���{𝑣 𝑗 ∈ V | e𝑖 · e𝑗 > 𝑠}��� ≥ 𝑆. (4)

Then in the proximity graph 𝐺 , the similarity between 𝑣𝑖 and its
neighbors is larger than 𝑠 with proximate probability at least:

P
{
e𝑖 · e𝑘 > 𝑠,∀𝑣𝑘 ∈ N𝑖

}
⪆

(
1 − 𝑝𝑀

)𝐾
, (5)

where 𝑝 = 𝑁−𝑆
𝑁

, and 𝐾 is the number of neighbors.

Proof. Since 𝑀 ≪ 𝑁 , we can approximately assume that the

sampling is with replacement. In this case, we have

P
{
e𝑖 · e𝑘 > 𝑠,∀𝑣𝑘 ∈ N𝑖

}
= 1 −

𝐾−1∑︁
𝑘=0

(
𝑀

𝑘

)
𝑝𝑀−𝑘

(
1 − 𝑝

)𝑘
. (6)

Then let us prove (5) by induction. When 𝐾 = 1, the conclusion

clearly holds.

Assuming that the conclusion holds when 𝐾 = 𝐿 − 1, let us

consider the case when 𝐾 = 𝐿. We have

1 −
𝐿−1∑︁
𝑘=0

(
𝑀

𝑘

)
𝑝𝑀−𝑘 (1 − 𝑝)𝑘 ⪆

(
1 − 𝑝𝑀

)𝐿−1
−
(
𝑀

𝐿 − 1

)
𝑝𝑀−𝐿+1

(
1 − 𝑝

)𝐿−1
.

(7)

To prove the conclusion, we only need to show(
1 − 𝑝𝑀

)𝐿−1
𝑝𝑀 ⪆

(
𝑀

𝐿 − 1

)
𝑝𝑀−𝐿+1

(
1 − 𝑝

)𝐿−1
, (8)

or equivalently(
1 − 𝑝𝑀

)𝐿−1
𝑝𝐿−1 =

(
1 − 𝑝𝑀

)𝐿−1 (𝑁 − 𝑆
𝑁

)𝐿−1
⪆

(
𝑀

𝐿 − 1

) (
𝑆

𝑁

)𝐿−1
=

(
𝑀

𝐿 − 1

) (
1 − 𝑝

)𝐿−1
.

(9)

On the other hand, according to [29], we have(
𝑀

𝐿 − 1

)
≤

(
𝑒𝑀

𝐿 − 1

)𝐿−1
, (10)

where 𝑒 denotes the Euler’s number. Substituting (10) into (9), we

only need to show

(𝑁 − 𝑆) (𝐿 − 1)
(
1 − 𝑝𝑀

)
⪆ 𝑒𝑀𝑆. (11)

The above relation holds depending on the choices of𝑀 , 𝑆 and 𝐿,

which can be satisfied in our scenario in most cases. □

Proposition 1 suggests that the candidate set size𝑀 can control

the similarity between each center node and its immediate neighbor

nodes. A larger𝑀 indicates a greater probability that two adjacent

nodes are similar, and the proximity graph constructed would be

more like the graph of nodes clustered by kNN. If𝑀 is small and

close to 𝐾 , the instances in the proximity graph can be considered

as randomly-selected ones, that is, by Uniform Sampler.

4.2 Proximity Graph Sampling
We perform the mini-batch sampling as a walk in the proximity

graph, which collects the visited instances as sampling results from

a sourced node. Here we propose to apply Random Walk with

Restart (RWR), which offers a theoretically supported ability to

control the walker’s behavior.

As shown in Algorithm 3, starting from a node, the sampler

moves from one node to another by either teleporting back to the

start node with probability 𝛼 or moving to a neighboring node

3060

BatchSampler: Sampling Mini-Batches for Contrastive Learning in Vision, Language, and Graphs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

2

5

9

6

3

1

4

8

7

10

Proximity Graph Sampling

2

5

9

6

3

1

4

8

7

10

……

RWR
Batch

Update proximity graph XVing new representations

Proximity Graph Construction
Step t a

In-Batch Contrastive Learning

b

<latexit sha1_base64="f5w0av1p96bMiZvHCjrN4DH5FtQ=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVkUxGUL9gG1SJJOa2hezEzEUvQH3Oq3iX+gf+GdcQpqEZ2Q5My595yZe6+fRaGQjvNasObmFxaXisulldW19Y3y5lZLpDkPWDNIo5R3fE+wKExYU4YyYp2MMy/2I9b2R2cq3r5lXIRpcinHGevF3jAJB2HgSaIad9flilN19LJngWtABWbV0/ILrtBHigA5YjAkkIQjeBD0dOHCQUZcDxPiOKFQxxnuUSJtTlmMMjxiR/Qd0q5r2IT2ylNodUCnRPRyUtrYI01KeZywOs3W8Vw7K/Y374n2VHcb0983XjGxEjfE/qWbZv5Xp2qRGOBE1xBSTZlmVHWBccl1V9TN7S9VSXLIiFO4T3FOONDKaZ9trRG6dtVbT8ffdKZi1T4wuTne1S1pwO7Pcc6C1kHVPaq6jcNK7dSMuogd7GKf5nmMGi5QR1N7P+IJz9a5FVnCyj9TrYLRbOPbsh4+AG0Uj4M=</latexit>x
Input

ViewsRepresentations
<latexit sha1_base64="9JPprEm6JUphUbgsW62YWavPmdc=">AAACznicjVHLTsJAFD3UF+ILdemmkZi4Iq0x6pLoxiUmAiZASDsMOKG0zXRKJIS49Qfc6mcZ/0D/wjtjSVRidJq2Z849587ce/04EIlynNectbC4tLySXy2srW9sbhW3d+pJlErGaywKInnjewkPRMhrSqiA38SSe0M/4A1/cKHjjRGXiYjCazWOeXvo9UPRE8xTRDVbSgRdPrmbdkSnWHLKjln2PHAzUEK2qlHxBS10EYEhxRAcIRThAB4Seppw4SAmro0JcZKQMHGOKQrkTUnFSeERO6Bvn3bNjA1pr3Mmxs3olIBeSU4bB+SJSCcJ69NsE09NZs3+lnticuq7jenvZ7mGxCrcEvuXb6b8r0/XotDDmalBUE2xYXR1LMuSmq7om9tfqlKUISZO4y7FJWFmnLM+28aTmNp1bz0TfzNKzeo9y7Qp3vUtacDuz3HOg/pR2T0pu1fHpcp5Nuo89rCPQ5rnKSq4RBU10/FHPOHZqloja2rdf0qtXObZxbdlPXwA67mUFQ==</latexit>

x̃i

<latexit sha1_base64="/joh2qOuBAO9P6W9jJZThj0x4bc=">AAACznicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl047KCfUBbSpJO69i8SCbFUopbf8Ctfpb4B/oX3hmnoBbRCUnOnHvOnbn3urHPU2FZrzljYXFpeSW/Wlhb39jcKm7v1NMoSzxW8yI/SpqukzKfh6wmuPBZM06YE7g+a7jDCxlvjFiS8ii8FuOYdQJnEPI+9xxBVKstuN9jk7tp97ZbLFllSy1zHtgalKBXNSq+oI0eInjIEIAhhCDsw0FKTws2LMTEdTAhLiHEVZxhigJ5M1IxUjjEDuk7oF1LsyHtZc5UuT06xac3IaeJA/JEpEsIy9NMFc9UZsn+lnuicsq7jenv6lwBsQI3xP7lmyn/65O1CPRxpmrgVFOsGFmdp7Nkqivy5uaXqgRliImTuEfxhLCnnLM+m8qTqtplbx0Vf1NKycq9p7UZ3uUtacD2z3HOg/pR2T4p21fHpcq5HnUee9jHIc3zFBVcooqa6vgjnvBsVI2RMTXuP6VGTnt28W0ZDx/uGZQW</latexit>

x̃j

<latexit sha1_base64="0N80wFRysxEMXq224HhqaW4iEAc=">AAACz3icjVHLSsNAFD3GV62vqks3wSK4KomIuiy6cdmCfUBbSpJO69C8mEzUUipu/QG3+lfiH+hfeGdMQS2iE5KcOfeeM3PvdWOfJ9KyXueM+YXFpeXcSn51bX1js7C1XU+iVHis5kV+JJqukzCfh6wmufRZMxbMCVyfNdzhuYo3rplIeBReylHMOoEzCHmfe44kqt2W7Fa6/TGbdHm3ULRKll7mLLAzUES2KlHhBW30EMFDigAMISRhHw4SelqwYSEmroMxcYIQ13GGCfKkTSmLUYZD7JC+A9q1MjakvfJMtNqjU3x6BSlN7JMmojxBWJ1m6niqnRX7m/dYe6q7jejvZl4BsRJXxP6lm2b+V6dqkejjVNfAqaZYM6o6L3NJdVfUzc0vVUlyiIlTuEdxQdjTymmfTa1JdO2qt46Ov+lMxaq9l+WmeFe3pAHbP8c5C+qHJfu4ZFePiuWzbNQ57GIPBzTPE5RxgQpq5B3jEU94NqrGjXFn3H+mGnOZZgfflvHwAQ14lIc=</latexit>ei

<latexit sha1_base64="kJFn3Ym7nk6/yqLL+uSXkWHFdzI=">AAACz3icjVHLTsJAFD3UF+ILdemmkZi4Iq0x6pLoxiUk8kiAkHYYsFLapp2qhGDc+gNu9a+Mf6B/4Z1xSFRidJq2Z86958zce93I9xJhWa8ZY25+YXEpu5xbWV1b38hvbtWSMI0Zr7LQD+OG6yTc9wJeFZ7weSOKuTN0fV53B2cyXr/mceKFwYUYRbw9dPqB1/OYI4hqtQS/FW5vzCedq06+YBUttcxZYGtQgF7lMP+CFroIwZBiCI4AgrAPBwk9TdiwEBHXxpi4mJCn4hwT5EibUhanDIfYAX37tGtqNqC99EyUmtEpPr0xKU3skSakvJiwPM1U8VQ5S/Y377HylHcb0d/VXkNiBS6J/Us3zfyvTtYi0MOJqsGjmiLFyOqYdklVV+TNzS9VCXKIiJO4S/GYMFPKaZ9NpUlU7bK3joq/qUzJyj3TuSne5S1pwPbPcc6C2kHRPiralcNC6VSPOosd7GKf5nmMEs5RRpW8IzziCc9Gxbgx7oz7z1QjozXb+LaMhw8P2JSI</latexit>ej

Contrastive
Loss

<latexit sha1_base64="ymbPSV1QlrfslKD8yM5OZQH8q/g=">AAACy3icjVHLSsNAFD3GV62vqks3wSLUTUlE1GXRjRuhgn1AWySZTuvQNBOSiVCrS3/Arf6X+Af6F94ZU1CL6IQkZ849587ce/0oEIlynNcZa3ZufmExt5RfXlldWy9sbNYTmcaM15gMZNz0vYQHIuQ1JVTAm1HMvaEf8IY/ONXxxg2PEyHDSzWKeGfo9UPRE8xTRDV7pTbrSrV3VSg6Zccsexq4GSgiW1VZeEEbXUgwpBiCI4QiHMBDQk8LLhxExHUwJi4mJEyc4x558qak4qTwiB3Qt0+7VsaGtNc5E+NmdEpAb0xOG7vkkaSLCevTbBNPTWbN/pZ7bHLqu43o72e5hsQqXBP7l2+i/K9P16LQw7GpQVBNkWF0dSzLkpqu6JvbX6pSlCEiTuMuxWPCzDgnfbaNJzG16956Jv5mlJrVe5ZpU7zrW9KA3Z/jnAb1/bJ7WHYvDoqVk2zUOWxjByWa5xEqOEMVNTPHRzzh2Tq3EuvWuvuUWjOZZwvflvXwAeNIkg4=</latexit>

f(·)

<latexit sha1_base64="ymbPSV1QlrfslKD8yM5OZQH8q/g=">AAACy3icjVHLSsNAFD3GV62vqks3wSLUTUlE1GXRjRuhgn1AWySZTuvQNBOSiVCrS3/Arf6X+Af6F94ZU1CL6IQkZ849587ce/0oEIlynNcZa3ZufmExt5RfXlldWy9sbNYTmcaM15gMZNz0vYQHIuQ1JVTAm1HMvaEf8IY/ONXxxg2PEyHDSzWKeGfo9UPRE8xTRDV7pTbrSrV3VSg6Zccsexq4GSgiW1VZeEEbXUgwpBiCI4QiHMBDQk8LLhxExHUwJi4mJEyc4x558qak4qTwiB3Qt0+7VsaGtNc5E+NmdEpAb0xOG7vkkaSLCevTbBNPTWbN/pZ7bHLqu43o72e5hsQqXBP7l2+i/K9P16LQw7GpQVBNkWF0dSzLkpqu6JvbX6pSlCEiTuMuxWPCzDgnfbaNJzG16956Jv5mlJrVe5ZpU7zrW9KA3Z/jnAb1/bJ7WHYvDoqVk2zUOWxjByWa5xEqOEMVNTPHRzzh2Tq3EuvWuvuUWjOZZwvflvXwAeNIkg4=</latexit>

f(·)

c

d

New
Representations

2

5

9

6

3

1

4

8

7

10

<latexit sha1_base64="iCd/TIV0TuluP20RL7oL3Mv9ObY=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIR7bLgpsuK9gG1lGQ6raFpEiYTtRTBH3Crnyb+gf6Fd8YpqEV0QpIz595zZu69fhIGqXSc15y1sLi0vJJfLaytb2xuFbd3mmmcCcYbLA5j0fa9lIdBxBsykCFvJ4J7Yz/kLX90puKtGy7SII4u5STh3bE3jIJBwDxJ1MVdr9Irlpyyo5c9D1wDSjCrHhdfcIU+YjBkGIMjgiQcwkNKTwcuHCTEdTElThAKdJzjHgXSZpTFKcMjdkTfIe06ho1orzxTrWZ0SkivIKWNA9LElCcIq9NsHc+0s2J/855qT3W3Cf194zUmVuKa2L90s8z/6lQtEgNUdA0B1ZRoRlXHjEumu6Jubn+pSpJDQpzCfYoLwkwrZ322tSbVtaveejr+pjMVq/bM5GZ4V7ekAbs/xzkPmkdl96Tsnh+XqjUz6jz2sI9DmucpqqihjgZ5D/GIJzxbNSuyMuv2M9XKGc0uvi3r4QMicZA0</latexit>x8

<latexit sha1_base64="UN7gp2bcnIfqAIW282gKAI/R1oM=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVRIR67Lgpu4q2AfUUpLptA1NMiGZlJbiwh9wq38m/oH+hXfGFNQiOiHJmXPvOTP3XjfyvURa1mvOWFldW9/Ibxa2tnd294r7B81EpDHjDSZ8EbddJ+G+F/KG9KTP21HMncD1ecsdX6l4a8LjxBPhrZxFvBs4w9AbeMyRipr2KoVesWSVLb3MZWBnoIRs1UXxBXfoQ4AhRQCOEJKwDwcJPR3YsBAR18WcuJiQp+Mc9yiQNqUsThkOsWP6DmnXydiQ9soz0WpGp/j0xqQ0cUIaQXkxYXWaqeOpdlbsb95z7anuNqO/m3kFxEqMiP1Lt8j8r07VIjHApa7Bo5oizajqWOaS6q6om5tfqpLkEBGncJ/iMWGmlYs+m1qT6NpVbx0df9OZilV7luWmeFe3pAHbP8e5DJpnZfuibN+cl6q1bNR5HOEYpzTPCqqooY4GeY/wiCc8G9eGMCbG9DPVyGWaQ3xbxsMHXqOQRw==</latexit>x7<latexit sha1_base64="xSemlz3woRsTPuCq7WOWRUZYEtQ=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVlw02VF2wq1lGQ6raF5MZmopQj+gFv9NPEP9C+8M05BLaITkpw5954zc+/10zDIpOO8Fqy5+YXFpeJyaWV1bX2jvLnVypJcMN5kSZiIS9/LeBjEvCkDGfLLVHAv8kPe9kenKt6+4SILkvhCjlPejbxhHAwC5kmizu96bq9ccaqOXvYscA2owKxGUn7BFfpIwJAjAkcMSTiEh4yeDlw4SInrYkKcIBToOMc9SqTNKYtThkfsiL5D2nUMG9NeeWZazeiUkF5BSht7pEkoTxBWp9k6nmtnxf7mPdGe6m5j+vvGKyJW4prYv3TTzP/qVC0SA5zoGgKqKdWMqo4Zl1x3Rd3c/lKVJIeUOIX7FBeEmVZO+2xrTaZrV731dPxNZypW7ZnJzfGubkkDdn+Ocxa0DqruUdU9O6zU6mbURexgF/s0z2PUUEcDTfIe4hFPeLbqVmzl1u1nqlUwmm18W9bDBxHRkC0=</latexit>x1

<latexit sha1_base64="86ihBKa7kMR9mOAeJve1CQykha0=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy46bKifUAtJZlO69A0CZOJWorgD7jVTxP/QP/CO2MKahGdkOTMufecmXuvHwciUY7zmrPm5hcWl/LLhZXVtfWN4uZWI4lSyXidRUEkW76X8ECEvK6ECngrltwb+QFv+sMzHW/ecJmIKLxU45h3Rt4gFH3BPEXUxV33qFssOWXHLHsWuBkoIVu1qPiCK/QQgSHFCBwhFOEAHhJ62nDhICaugwlxkpAwcY57FEibUhanDI/YIX0HtGtnbEh77ZkYNaNTAnolKW3skSaiPElYn2abeGqcNfub98R46ruN6e9nXiNiFa6J/Us3zfyvTtei0MepqUFQTbFhdHUsc0lNV/TN7S9VKXKIidO4R3FJmBnltM+20SSmdt1bz8TfTKZm9Z5luSne9S1pwO7Pcc6CxkHZPS6754elSjUbdR472MU+zfMEFVRRQ528B3jEE56tqhVaqXX7mWrlMs02vi3r4QMbUZAx</latexit>x5

<latexit sha1_base64="NWJc9inPPIlVzIadMvt+F40X4wI=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVlw02VF+4BaSjKd1qFpEiYTtRTBH3Crnyb+gf6Fd8YU1CI6IcmZc+85M/dePw5EohznNWfNzS8sLuWXCyura+sbxc2tRhKlkvE6i4JItnwv4YEIeV0JFfBWLLk38gPe9IdnOt684TIRUXipxjHvjLxBKPqCeYqoi7vuYbdYcsqOWfYscDNQQrZqUfEFV+ghAkOKEThCKMIBPCT0tOHCQUxcBxPiJCFh4hz3KJA2pSxOGR6xQ/oOaNfO2JD22jMxakanBPRKUtrYI01EeZKwPs028dQ4a/Y374nx1Hcb09/PvEbEKlwT+5dumvlfna5FoY9TU4OgmmLD6OpY5pKaruib21+qUuQQE6dxj+KSMDPKaZ9to0lM7bq3nom/mUzN6j3LclO861vSgN2f45wFjYOye1x2z49KlWo26jx2sIt9mucJKqiihjp5D/CIJzxbVSu0Uuv2M9XKZZptfFvWwwcWkZAv</latexit>x3

<latexit sha1_base64="ZVvnJgFOGevEYytZ0i+9thX9i+Q=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRKR6rLgpsuK9gG1lGQ6raFpEiYTtRTBH3Crnyb+gf6Fd8YpqEV0QpIz595zZu69fhIGqXSc15y1sLi0vJJfLaytb2xuFbd3mmmcCcYbLA5j0fa9lIdBxBsykCFvJ4J7Yz/kLX90puKtGy7SII4u5STh3bE3jIJBwDxJ1MVdr9Irlpyyo5c9D1wDSjCrHhdfcIU+YjBkGIMjgiQcwkNKTwcuHCTEdTElThAKdJzjHgXSZpTFKcMjdkTfIe06ho1orzxTrWZ0SkivIKWNA9LElCcIq9NsHc+0s2J/855qT3W3Cf194zUmVuKa2L90s8z/6lQtEgOc6hoCqinRjKqOGZdMd0Xd3P5SlSSHhDiF+xQXhJlWzvpsa02qa1e99XT8TWcqVu2Zyc3wrm5JA3Z/jnMeNI/KbqXsnh+XqjUz6jz2sI9DmucJqqihjgZ5D/GIJzxbNSuyMuv2M9XKGc0uvi3r4QMdsZAy</latexit>x6

<latexit sha1_base64="BOiFsjMCmeooakM8/W2+WXUUTMU=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIi6rLgpsuK9gG1lGQ6raFpEiYTtRTBH3Crnyb+gf6Fd8YpqEV0QpIz595zZu69fhIGqXSc15y1sLi0vJJfLaytb2xuFbd3mmmcCcYbLA5j0fa9lIdBxBsykCFvJ4J7Yz/kLX90puKtGy7SII4u5STh3bE3jIJBwDxJ1MVdr9Irlpyyo5c9D1wDSjCrHhdfcIU+YjBkGIMjgiQcwkNKTwcuHCTEdTElThAKdJzjHgXSZpTFKcMjdkTfIe06ho1orzxTrWZ0SkivIKWNA9LElCcIq9NsHc+0s2J/855qT3W3Cf194zUmVuKa2L90s8z/6lQtEgOc6hoCqinRjKqOGZdMd0Xd3P5SlSSHhDiF+xQXhJlWzvpsa02qa1e99XT8TWcqVu2Zyc3wrm5JA3Z/jnMeNCtl97jsnh+VqjUz6jz2sI9DmucJqqihjgZ5D/GIJzxbNSuyMuv2M9XKGc0uvi3r4QMUMZAu</latexit>x2

<latexit sha1_base64="cbHuTsB+TCKQtfUQol7Rekmc6Jo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRH7uCmy4r2gfUUpLptA5NkzCZqKUI/oBb/TTxD/QvvDOmoBbRCUnOnHvPmbn3+nEgEuU4rzlrbn5hcSm/XFhZXVvfKG5uNZIolYzXWRREsuV7CQ9EyOtKqIC3Ysm9kR/wpj880/HmDZeJiMJLNY55Z+QNQtEXzFNEXdx1T7vFklN2zLJngZuBErJVi4ovuEIPERhSjMARQhEO4CGhpw0XDmLiOpgQJwkJE+e4R4G0KWVxyvCIHdJ3QLt2xoa0156JUTM6JaBXktLGHmkiypOE9Wm2iafGWbO/eU+Mp77bmP5+5jUiVuGa2L9008z/6nQtCn2cmBoE1RQbRlfHMpfUdEXf3P5SlSKHmDiNexSXhJlRTvtsG01iate99Uz8zWRqVu9ZlpviXd+SBuz+HOcsaByU3aOye35YqlSzUeexg13s0zyPUUEVNdTJe4BHPOHZqlqhlVq3n6lWLtNs49uyHj4AJNGQNQ==</latexit>x9

<latexit sha1_base64="JtBHKiaSZvl32sPkvg4hf/6He2I=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6rLgpsuK9gG1lGQ6raFpEiYTtRTBH3Crnyb+gf6Fd8YpqEV0QpIz595zZu69fhIGqXSc15y1sLi0vJJfLaytb2xuFbd3mmmcCcYbLA5j0fa9lIdBxBsykCFvJ4J7Yz/kLX90puKtGy7SII4u5STh3bE3jIJBwDxJ1MVdr9Irlpyyo5c9D1wDSjCrHhdfcIU+YjBkGIMjgiQcwkNKTwcuHCTEdTElThAKdJzjHgXSZpTFKcMjdkTfIe06ho1orzxTrWZ0SkivIKWNA9LElCcIq9NsHc+0s2J/855qT3W3Cf194zUmVuKa2L90s8z/6lQtEgOc6hoCqinRjKqOGZdMd0Xd3P5SlSSHhDiF+xQXhJlWzvpsa02qa1e99XT8TWcqVu2Zyc3wrm5JA3Z/jnMeNI/K7nHZPa+UqjUz6jz2sI9DmucJqqihjgZ5D/GIJzxbNSuyMuv2M9XKGc0uvi3r4QMY8ZAw</latexit>x4

Step 1 Step 2

……1 5 10 4 … 4 8 1 5 … 6 2 9 1 …

Figure 3: The framework of BatchSampler, using the vision modality as an example. The proximity graph is first constructed based

on generated image representations and will be updated every 𝑡 training step. Next, a proximity graph-based negative sampler is applied to

generate a batch with hard negatives for in-batch contrastive learning.

proportional to the edge weight. The process continues until a fixed

number of nodes are collected and taken as the mini-batch. The

effectiveness of RWR lies in its ability to modulate the probability

of sampling within a neighborhood by adjusting 𝛼 , as demonstrated

by Proposition 2:

Proposition 2. For all 0 < 𝛼 ≤ 1 and S ⊂ V , the probability
that a Lazy Random Walk with Restart starting from a node 𝑢 ∈ S
escapes S satisfies

∑
𝑣∈ (V−S) p𝑢 (𝑣) ≤ 1−𝛼

2𝛼 Φ(S), where p𝑢 is the
stationary distribution, and Φ(S) is the graph conductance of S.

Proof. Wefirst introduce the definition of graph conductance [66]

and Lazy Random Walk [40]:

Graph Conductance. For an undirected graph𝐺 = (V, E), the graph
volume of a node set S ⊂ V is defined as vol(S) = ∑

𝑣∈S 𝑑 (𝑣),
where 𝑑 (𝑣) is the degree of node 𝑣 . The edge boundary of a node set
is defined to be 𝜕(S) = {(𝑥,𝑦) ∈ E|𝑥 ∈ S, 𝑦 ∉ S}. The conductance
of S is calculated as followed:

Φ(S) = |𝜕(S)|
min(vol(S), vol(V − S)) (12)

Lazy Random Walk. Lazy Random Walk (LRW) is a variant of Ran-

dom Walk, which first starts at a node, then stays at the current

position with a probability of 1/2 or travels to a neighbor. The tran-

sition matrix of a lazy random walk isM ≜ (I + AD−1)/2, where
the I denotes the identity matrix, A is the adjacent matrix, and D is

the degree matrix. The 𝐾-th step Lazy Random Walk distribution

starting from a node 𝑢 is defined as q(𝐾) ← M𝐾1𝑢 .
We then present a theorem that relates the Lazy RandomWalk to

graph conductance, which has been proved in Spielman and Teng

[40]:

Theorem 1. For all 𝐾 ≥ 0 and S ⊂ V , the probability that a
𝐾-step Lazy Random Walk starting at 𝑢 ∈ S escapes S satisfies
q(𝐾) (V − S) ≤ 𝐾Φ(S)/2.

Theorem 1 guarantees that given a non-empty node set S ⊂ V
and a start node 𝑢 ∈ S, the Lazy Random Walker will be more

likely stuck at S. Here we extend the LRW to Lazy Random Walk

with Restart (LRWR) which will return to the start node with prob-

ability 𝛼 or perform Lazy Random Walk. According to the previous

studies [7, 14, 35, 44], we can obtain a stationary distribution p𝑢
by recursively performing Lazy Random Walk with Restart, which

can be formulated as a linear system:

p𝑢 = 𝛼1𝑢 + (1 − 𝛼)Mp𝑢 (13)

where 𝛼 denotes the restart probability. p𝑢 can be expressed as a

geometric sum of Lazy Random Walk [13]:

p𝑢 = 𝛼

∞∑︁
𝑙=0

(1 − 𝛼)𝑙M𝑙1𝑢 = 𝛼

∞∑︁
𝑙=0

(1 − 𝛼)𝑙q(𝑙)𝑢 (14)

Applying Theorem 1, we have:∑︁
𝑣∈ (V−S)

p𝑢 (𝑣) = 𝛼
∞∑︁
𝑙=0

∑︁
𝑣∈ (V−S)

(1 − 𝛼)𝑙q(𝑙)𝑢 (𝑣)

≤ 𝛼
∞∑︁
𝑙=0

𝑙 (1 − 𝛼)𝑙Φ(S)/2

=
1 − 𝛼
2𝛼

Φ(S)

(15)

where the element p𝑢 (𝑣) represents the probability of the walker

starting at 𝑢 and ending at 𝑣 . The desired result is obtained by

comparing two sides of (15). □

The only difference between Lazy Random with Restart and

Random Walk with Restart is that the former has a probability of

remaining in the current position without taking action. They are

equivalent when sampling a predetermined number of nodes.

3061

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zhen Yang et al.

Algorithm 1: Constrative Learning with BatchSampler

Input: Dataset D = {𝑥𝑖 |𝑖 = 1, · · · , 𝑁 }, Encoder 𝑓 (·),
Batchsize 𝐵, Graph update interval 𝑡 , Modality-specific

augmentation functions T .
for iter← 0, 1, · · · do

// BatchSampler

if iter%𝑡 == 0 then
// Proximity Graph Construction

Build the proximity graph𝐺 by Algorithm 2.

end
// Proximity Graph Sampling

Perform sampling in 𝐺 by Algorithm 3.

// Standard Contrastive Pipeline in Different Modalities

Load the mini-batch {𝑥𝑖 }𝐵 .
Obtain positive pairs {(𝑥𝑖 , 𝑥+𝑖)}𝐵 by augmentations T .
Generate representations {(e𝑖 , e+𝑖)}𝐵 by Encoder 𝑓 (·).
Compute the loss by treating {(e𝑖 , e𝑗)}𝑖≠𝑗 as negatives.
Update the parameters of 𝑓 (·).

end

Overall, Proposition 2 indicates that the probability of RWR

escaping from a local cluster [6, 40] can be bounded by the graph

conductance [66] and the restart probability 𝛼 . Besides, RWR can

exhibit a mixture of two straightforward samplingmethods Breadth-

first Sampling (BFS) and Depth-first Sampling (DFS) [17]:

• BFS collects all of the current node’s immediate neighbors, then

moves to its neighbors and repeats the procedure until the num-

ber of collected instances reaches batch size.

• DFS randomly explores the node branch as far as possible before

the number of visited nodes reaches batch size.

Specifically, higher 𝛼 indicates that the walker will approximate

BFS behavior and sample within a small locality, while a lower 𝛼

encourages the walker to explore nodes further away, like in DFS.

4.3 Discussion on BatchSampler
As shown in Algorithm 1, BatchSampler serves as a mini-batch sam-

pler and can be easily plugged into any in-batch contrastive learning

methods. Specifically, during the training process, BatchSampler

first constructs the proximity graph, which will be updated after 𝑡

training steps, then selects a start node at random and samples a

mini-batch on proximity graph by RWR.

Connects to the Uniform and kNN Samplers. As shown in

Figure 4, the number of candidates𝑀 and the restart probability 𝛼

are the key to flexibly controlling the hardness of a sampled batch.

When we set𝑀 as the size of dataset and 𝛼 as 1, proximity graph

is equivalent to kNN graph and graph sampler will only collect

the immediate neighbors around a central node, which behaves

similarly to a kNN Sampler. On the other hand, if𝑀 is set to 1 and

𝛼 is set to 0, the RWR degenerates into the DFS and chooses the

neighbors that are linked at random, which indicates that Batch-

Sampler performs as a Uniform Sampler. We provide an empirical

criterion of choosing𝑀 and 𝛼 in Section 5.3.

Complexity. The time complexity of building a proximity graph is

𝑂 (𝑁𝑀𝑑) where 𝑁 is the dataset size,𝑀 is the candidate set size and

𝑑 denotes the embedding size. It is practically efficient since usually

𝑀 is much smaller than 𝑁 , and the process can be accelerated by

embedding retrieval libraries such as Faiss [26]. The space cost of

BatchSampler mainly comes from graph construction and graph

storage. The total space complexity of BatchSampler is𝑂 (𝑁𝑑+𝑁𝐾)
where 𝐾 is the number of neighbors in the proximity graph.

5 EXPERIMENTS
We plug BatchSampler into popular contrastive learning algorithms

on three modalities, including vision, language, and graphs. Exten-

sive experiments are conducted with 5 algorithms and 19 datasets,

a total of 31 experimental settings. Additional experiments are re-

ported in Appendix A.2, including batchsize 𝐵, neighbor number

𝐾 , proximity graph update interval 𝑡 .

5.1 Results

Results in Computer Vision. We first adopt SimCLR [10] and

MoCo v3 [11] as the backbone based on ResNet-50 [21]. We start

with training the model for 800 epochs with a batch size of 2048

for SimCLR and 4096 for MoCo v3, respectively. We then use linear

probing to evaluate the representations on ImageNet. As shown in

Table 1, our proposed model can consistently boost the performance

of original SimCLR and MoCo v3, demonstrating the superiority

of BatchSampler. Besides, we evaluate BatchSampler on the other

benchmark datasets: two small-scale (CIFAR10, CIFAR100) and

two medium-scale (STL10, ImageNet-100), which can be found in

Appendix A.2.1.

Results in Language Model. We evaluate BatchSampler on learn-

ing the sentence representations by SimCSE [16] framework with

pretrained BERT [15] as the backbone. The results of Table 2 sug-

gest that BatchSampler consistently improves the baseline models

with an absolute gain of 1.09%∼2.91% on 7 semantic textual similar-

ities (STS) tasks [1–5, 31, 43]. Specifically, we observe that when

applying DCL and HCL, the performance of the self-supervised

language model averagely drops by 2.45% and 3.08% respectively.

As shown in Zhou et al. [63], the pretrained language model offers

a prior distribution over the sentences, leading to a high cosine

similarity of both positive pairs and negative pairs. So DCL and

HCL, which leverage the similarity of positive and negative scores

to tune the weight of negatives, are inapplicable because the high

similarity scores of positives and negatives will result in homoge-

neous weighting. However, the hard negatives explicitly sampled

by our proposed BatchSampler can alleviate it, with an absolute

improvement of 1.64% on DCL and 2.64% on HCL. The results of

RoBERTa [30] are reported in Appendix A.2.2.

Results in Graph Learning. We test BatchSampler on graph-level

classification task usingGraphCL [57] andMVGRL [19] frameworks.

Similar to language modality, we replace the original InfoNCE

loss function in GraphCL with the DCL and HCL. Table 3 reports

the detailed performance comparison on 7 benchmark datasets:

IMDB-B, IMDB-M, COLLAB, REDDIT-B, PROTEINS, MUTAG, and

NCI1 [58, 59]. We can observe that BatchSampler consistently

3062

BatchSampler: Sampling Mini-Batches for Contrastive Learning in Vision, Language, and Graphs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 1: Top-1 accuracy under the
linear evaluation with the ResNet-50
backbone on ImageNet.

Method 100 ep 400 ep 800 ep

SimCLR 64.0 68.1 68.7

w/ BatchSampler 64.7 68.6 69.2

MoCo v3 68.9 73.3 73.8

w/ BatchSampler 69.5 73.7 74.2
*
Only conduct experiments on BatchSampler.

Table 2: Overall performance comparison with the BERT backbone on STS tasks.

Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SimCSE-BERT𝑏𝑎𝑠𝑒 68.62 80.89 73.74 80.88 77.66 77.79 69.64 75.60

w/ kNN Sampler 63.62 74.86 69.79 79.17 76.24 74.73 67.74 72.31

w/ BatchSampler 72.37 82.08 75.24 83.10 78.43 77.54 68.05 76.69

DCL-BERT𝑏𝑎𝑠𝑒 65.22 77.89 68.94 79.88 76.72 73.89 69.54 73.15

w/ kNN Sampler 66.34 76.66 72.60 78.30 74.86 73.65 67.92 72.90

w/ BatchSampler 69.55 82.66 73.37 80.40 75.37 75.43 66.76 74.79

HCL-BERT𝑏𝑎𝑠𝑒 62.57 79.12 69.70 78.00 75.11 73.38 69.74 72.52

w/ kNN Sampler 61.12 75.73 68.43 76.64 74.78 71.22 68.04 70.85

w/ BatchSampler 66.87 81.38 72.96 80.11 77.99 75.95 70.89 75.16

Table 3: Accuracy on graph classification task under LIBSVM [9] classifier.

Method IMDB-B IMDB-M COLLAB REDDIT-B PROTEINS MUTAG NCI1

GraphCL 70.90±0.53 48.48±0.38 70.62±0.23 90.54±0.25 74.39±0.45 86.80±1.34 77.87±0.41
w/ kNN Sampler 70.72±0.35 47.97±0.97 70.59±0.14 90.21±.74 74.17±0.41 86.46±0.82 77.27±0.37
w/ BatchSampler 71.90±0.46 48.93±0.28 71.48±0.28 90.88±0.16 75.04±0.67 87.78±0.93 78.93±0.38

DCL 71.07±0.36 48.93±0.32 71.06±0.51 90.66±0.29 74.64±0.48 88.09±0.93 78.49±0.48
w/ kNN Sampler 70.94±0.19 48.47±0.35 70.49±0.37 90.26±1.03 74.28±0.17 87.13±1.40 78.13±0.52
w/ BatchSampler 71.32±0.17 48.96±0.25 70.44±0.35 90.73±0.34 75.02±0.61 89.47±1.43 79.03±0.32

HCL 71.24±0.36 48.54±0.51 71.03±0.45 90.40±0.42 74.69±0.42 87.79±1.10 78.83±0.67
w/ kNN Sampler 71.14±0.44 48.36±0.93 70.86±0.74 90.64±0.51 74.06±0.44 87.53±1.37 78.66±0.48
w/ BatchSampler 71.20±0.38 48.76±0.39 71.70±0.35 91.25±0.25 75.11±0.63 88.31±1.29 79.17±0.27

MVGRL 74.20±0.70 51.20±0.50 - 84.50±0.60 - 89.70±1.10 -

w/ kNN Sampler 73.30±0.34 50.70±0.36 - 82.70±0.67 - 85.08±0.66 -

w/ BatchSampler 76.70±0.35 52.40±0.39 - 87.47±0.79 - 91.13±0.81 -

*
The results not reported are due to the unavailable code or out-of-memory caused by the backbone model itself.

boosts the performance of GraphCL and MVGRL, with an abso-

lute improvement of 0.4% ∼ 2.9% across all the datasets. Besides,

equipped with BatchSampler, DCL and HCL can achieve better per-

formance in 12 out of 14 cases. It can also be found that BatchSam-

pler can reduce variance in most cases, showing that the exploited

hard negatives can enforce the model to learn more robust represen-

tations. We also compare BatchSampler with 11 graph classification

models including the unsupervised graph learning methods [52, 55],

graph kernel methods [39, 53], and self-supervised graph learning

methods [19, 33, 37, 41, 51, 56, 57] (See Appendix A.2.3).

5.2 Why does BatchSampler Perform Better?
In this section, we conduct experiments to investigate why Batch-

Sampler performs better, using the example of vision modality. We

evaluate SimCLR on CIFAR10 and CIFAR100, comparing the per-

formance and false negatives of Uniform Sampler, kNN Sampler,

and BatchSampler to gain a deeper understanding of BatchSampler.

Figure 4 presents the histogram of cosine similarity for all pairs

within a sampled batch, and the corresponding percentage of false

negatives during training.

The results indicate that although kNN Sampler can explicitly

draw a data batch with similar pairs, it also leads to a substantially

higher number of false negatives, resulting in a notable degradation

of performance. Uniform Sampler is independent of the model so

the percentage of false negatives within the sampled batch remains

consistent during training, but it fails to effectively sample the

hard negatives. BatchSampler can modulate𝑀 and 𝛼 to control the

hardness of the sampled batch, which brings about the best balance

between these two sampling methods, resulting in a mini-batch of

hard-to-distinguish instances with fewer false negatives compared

to the kNN Sampler. Specifically, BatchSampler can sample hard

mini-batch but only exhibits a slightly higher percentage of false

negatives than Uniform Sampler with optimal parameter setting,

which enables BatchSampler to achieve the best performance. A

similar phenomenon can also be found in CIFAR100.

5.3 Empirical Criterion for BatchSampler
BatchSampler modulates the hardness of the sampled batch by two

important parameters𝑀 and 𝛼 to achieve better performance on

three modalities. To analyze the impact of these, we vary the𝑀 and

𝛼 in the range of {500, 1000, 2000, 4000, 6000} and {0.1, 0.3, 0.5, 0.7}
respectively, and apply SimCLR, SimCSE and GraphCL as backones.

We summarize the performance of BatchSampler with different 𝑀

and 𝛼 in Table 4. It shows that in most cases, the performance of the

model peaks when𝑀 = 1000 but plumbs quickly with the increase

of𝑀 . Such phenomena are consistent with the intuition that higher

𝑀 raises the probability of selecting similar instances as neighbors,

3063

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zhen Yang et al.

Table 4: Empirical criterion for BatchSampler on neighbor candidate size 𝑀 and restart probability 𝛼 .

Modality Dataset

Neighbor Candidate Size 𝑀 Restart Probability 𝛼

500 1000 2000 4000 6000 0.1 0.3 0.5 0.7 0.2∼0.05

Image

CIFAR10 92.54 92.49 91.83 91.72 91.43 92.41 92.26 92.12 92.06 92.54
CIFAR100 67.92 68.68 67.05 66.19 65.55 68.31 67.98 68.20 68.00 68.68
STL10 84.16 84.38 82.80 81.91 80.92 83.01 80.69 83.93 82.56 84.38

ImageNet-100 59.6 60.8 60.1 59.1 58.4 60.8 59.6 58.1 57.7 60.8
Text Wikipedia 71.36 76.69 76.09 75.76 75.11 71.74 72.13 72.41 76.69 –

Graph

IMDB-B 71.90±.46 71.28±.51 71.13±.48 70.86±.56 70.68±.59 71.26±.29 71.00±.46 71.06±.21 70.78±.58 71.90±.46
IMDB-M 48.93±.28 48.68±.35 48.88±.94 48.71±.93 48.12±.75 48.48±1.07 48.27±.67 48.72±.41 48.78±.60 48.93±.28
COLLAB 70.47±.33 71.48±.28 70.93±.50 70.46±.28 70.24±.56 70.36±.28 70.63±.53 70.63±.54 70.31±.37 71.48±.28
REDDIT-B 90.88±.16 89.45±.99 90.64±.38 89.92±.75 90.37±.89 90.22±.38 89.51±.61 90.44±.48 90.28±.89 90.88±.16

Figure 4: Cosine similarity and percentage of false negatives
among various mini-batch sampling methods on CIFAR10.

but the sampler will be more likely to draw the mini-batch with

false negatives, degrading the performance.

Besides, to better understand the effect of 𝛼 , we visualize the

histograms of cosine similarity for all pairs from a sampled batch

after training and plot the corresponding percentage of false nega-

tives during training on CIFAR10 (See Figure 5). We can observe

that 𝛼 moving from 0.1 to 0.7 causes cosine similarities to gradually

skew left, but introduces more false negatives in the batch, creat-

ing a trade-off. This phenomenon indicates that the sampler with

a higher 𝛼 sample more frequently within a local neighborhood,

which is more likely to yield similar pairs. A similar phenomenon

can also be found on CIFAR100. However, as training progresses,

the instances of the same class tend to group together, increasing

the probability of collecting false negatives. To find the best balance,

we linearly decay 𝛼 from 0.2 to 0.05 as the training epoch increases,

which is presented as 0.2 ∼ 0.05 in Table 4. It can be found that this

dynamic strategy achieves the best performance in all cases except

SimCSE which only trains for one epoch. Interestingly, SimCSE

achieves the best performance by a large margin when 𝛼 = 0.7

since hard negatives can alleviate the distribution issue brought

by the pre-trained language model. More analysis can be found in

Section 5.1.

Criterion. From the above analysis, the suggested 𝑀 would be

500 for the small-scale dataset, and 1000 for the larger dataset. The

suggested 𝛼 should be relatively high, e.g., 0.7, for the pre-trained

language model-based method. Besides, dynamic decay 𝛼 , e.g., 0.2

to 0.05, is the best strategy for the other methods. Such an empirical

criterion provides critical suggestions for selecting the appropriate

𝑀 and 𝛼 to modulate the hardness of the sampled batch.

Figure 5: Cosine similarity and percentage of false negatives
among various restart probabilities on CIFAR10.

5.4 Efficiency Analysis
To further investigate the efficiency of BatchSampler, we analyze

the wall-clock time performance. Here, we introduce three met-

rics to analyze the time cost of mini-batch sampling by BatchSam-

pler: (1) Batch Sampling Cost (Cost𝑆) is the average time of RWR

taken to sample a mini-batch from a proximity graph; (2) Proximity

Graph Construction Cost (Cost𝐺) refers to the time consumption of

BatchSampler for constructing a proximity graph; (3) Batch Train-

ing Cost (Cost𝑇) is the average time taken by the encoder to for-

ward and backward; (4) Proximity Graph Construction Amortized

Cost (Cost𝐺/𝑡) is the ratio of Cost𝐺 to the graph update interval 𝑡 .

The time cost of BatchSampler is shown in Table 5, from which we

can make the following observations: (1) Sampling a mini-batch

Cost𝑆 takes an order of magnitude less time than training with a

batch Cost𝑇 at most cases. (2) Although it takes 100𝑠 for BatchSam-

pler to construct a proximity graph in ImageNet, the cost shares

across 𝑡 training steps, which take only Cost𝐺/𝑡 = 0.2 per batch.

A similar phenomenon can be found in other datasets as well. In

particular, SimCSE trains for one epoch, and proximity graph is

built once.

3064

BatchSampler: Sampling Mini-Batches for Contrastive Learning in Vision, Language, and Graphs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 5: The time cost of mini-batch sampling by BatchSam-
pler on an NVIDIA V100 GPU.

Metric STL10 ImageNet-100 Wikipedia ImageNet

Cost𝑆 0.013s 0.015s 0.005 0.15s

Cost𝐺 2s 3s 79s 100s

Cost𝑇 0.55s 1.1s 0.08s 1.1s

Cost𝐺/𝑡 0.02(𝑡 = 100) 0.03(𝑡 = 100) 0.005(𝑡 = 15625) 0.2(𝑡 = 500)

Table 6: Overall performance comparison with different
graph sampling methods.

Method

Vision Language Graphs

CIFAR10 CIFAR100 STL10 Wikipedia IMDB-B COLLAB

BFS 91.03 65.15 77.08 74.39 70.48 69.98

DFS 92.14 68.29 83.05 73.40 71.12 70.60

RW 92.28 68.33 83.54 75.56 71.26 70.72

RWR 92.54 68.68 84.38 76.69 71.90 71.48

5.5 Further Analysis

Strategies of Proximity Graph Sampling. We conduct experi-

ments to explore different choices of graph sampling methods, in-

cluding (1) Depth First Search (DFS); (2) Breadth First Search (BFS);

(3) Random Walk (RW); (4) Random Walk with Restart (RWR). Ta-

ble 6 presents an overall performance comparison with different

graph sampling methods. As expected, RWR consistently achieves

better performance since it samples hard yet true negatives within

a local cluster on proximity graph. Besides, we illustrate the his-

tograms of cosine similarity for all pairs from a sampled batch and

plot the corresponding percentage of false negatives during training

in Figure 6. It can be observed that although BFS brings the most

similar pairs in the mini-batch, it performs worse than the origi-

nal SimCLR since it introduces substantial false negatives. While

having a slightly lower percentage of false negatives than RWR,

DFS, and RW do not exhibit higher performance since they are

unable to collect the hard negatives in the mini-batch. The restart

property allows RWR to exhibit a mixture of DFS and BFS, which

can flexibly modulate the hardness of the sampled batch and find

the best balance between hard negatives and false negatives.

Figure 6: Histograms of cosine similarity and percentage of
false negatives in a batch using different sampling methods.

Proximity Graph vs. kNN Graph. To demonstrate the effec-

tiveness of proximity graph, we do an ablation study by replacing

proximity graph with kNN graph which directly selects 𝑘 neighbors

with the highest scores for each instance from the whole dataset.

The neighbor number 𝑘 is 100 by default. The comparison results

are shown in Table 7, from which we can observe that proxim-

ity graph outperforms the kNN graph by a margin. BatchSampler

with kNN graph even performs worse than the original contrastive

learning method because of the false negatives.

Table 7: Performance comparison of different graph construc-
tion methods.

Method

Vision Language Graphs

CIFAR10 CIFAR100 Wikipedia IMDB-B COLLAB

Default 92.13 68.14 75.60 70.90 70.62

kNN graph 90.47 62.67 75.13 70.10 69.96

proximity graph 92.54 68.68 76.69 71.90 71.48

To develop an intuitive understanding of how proximity graph

alleviates the false negative issue, Figure 7 plots the changing curve

of false negative ratio in a batch. The results show that the proximity

graph could discard the false negative significantly: by the end of

the training, kNN will introduce more than 22% false negatives in a

batch, while the proximity graph brings about 13% on CIFAR10. A

similar phenomenon can also be found on CIFAR100.

(a) CIFAR10 (b) CIFAR100

Figure 7: Percentage of false negatives using different graph
building methods over the training step.

6 CONCLUSION
In this paper, we study the problem of mini-batch sampling for

in-batch contrastive learning, which aims to globally sample mini-

batches of hard-to-distinguish instances. To achieve this, we pro-

pose BatchSampler to perform mini-batch sampling as a walk on

the constructed proximity graph. Specifically, we design the prox-

imity graph to control the pairwise similarity among instances

and leverage random walk with restart (RWR) on the proximity

graph to form a batch. We theoretically and experimentally demon-

strate that BatchSampler can balance kNN Sampler and Uniform

Sampler. Besides, we conduct experiments with 5 representative

contrastive learning algorithms on 3 modalities (e.g. vision, lan-

guage, and graphs) to evaluate our proposed BatchSampler, demon-

strating that BatchSampler can consistently achieve performance

improvements.

3065

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zhen Yang et al.

Acknowledgments. This work was supported by Technology and
Innovation Major Project of the Ministry of Science and Technology

of China under Grant 2020AAA0108400 and 2020AAA0108402, NSF

of China for Distinguished Young Scholars (61825602), NSF of China

(62276148), and a research fund from Zhipu.AI.

REFERENCES
[1] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor

Gonzalez-Agirre, Weiwei Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada

Mihalcea, et al. 2015. Semeval-2015 task 2: Semantic textual similarity, english,

spanish and pilot on interpretability. In SemEval’15. 252–263.
[2] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M Cer, Mona T Diab, Aitor

Gonzalez-Agirre, Weiwei Guo, Rada Mihalcea, German Rigau, and Janyce Wiebe.

2014. SemEval-2014 Task 10: Multilingual Semantic Textual Similarity. In Se-
mEval’14. 81–91.

[3] Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez Agirre,

Rada Mihalcea, German Rigau Claramunt, and Janyce Wiebe. 2016. Semeval-2016

task 1: Semantic textual similarity, monolingual and cross-lingual evaluation. In

SemEval’16.
[4] Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre. 2012. Semeval-

2012 task 6: A pilot on semantic textual similarity. In SemEval’12. 385–393.
[5] Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo.

2013. * SEM 2013 shared task: Semantic textual similarity. In SemEval’13. 32–43.
[6] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning using

pagerank vectors. FOCS’06.
[7] Konstantin Avrachenkov, Remco van der Hofstad, and Marina Sokol. 2014. Per-

sonalized pagerank with node-dependent restart. InWAW’14. 23–33.
[8] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and

Armand Joulin. 2020. Unsupervised learning of visual features by contrasting

cluster assignments. In NIPS’20. 9912–9924.
[9] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector.

TIST’11 (2011), 1–27.
[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A

simple framework for contrastive learning of visual representations. In ICML’20.
PMLR, 1597–1607.

[11] Xinlei Chen, Saining Xie, and Kaiming He. 2021. An empirical study of training

self-supervised vision transformers. In ICCV’21. 9640–9649.
[12] Ching-Yao Chuang, Joshua Robinson, Lin Yen-Chen Antonio Torralba, and Ste-

fanie Jegelka. 2020. Debiased Contrastive Learning. In NIPS’20.
[13] Fan Chung and Alexander Tsiatas. 2010. Finding and visualizing graph clusters

using pagerank optimization. InWAW’10. 86–97.
[14] Fan Chung and Wenbo Zhao. 2010. PageRank and random walks on graphs. In

Fete of combinatorics and computer science. 43–62.
[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

NAACL’19. 4171–4186.
[16] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive

learning of sentence embeddings. EMNLP’21 (2021).
[17] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In KDD’16. 855–864.
[18] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-Contrastive Estimation:

A new estimation principle for unnormalized statistical models. In AISTATS’10.
297–304.

[19] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view

representation learning on graphs. In International conference onmachine learning.
PMLR, 4116–4126.

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-

mentum contrast for unsupervised visual representation learning. In CVPR’20.
[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In CVPR’16. 770–778.
[22] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,

Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-

based retrieval in facebook search. In KDD’20. 2553–2561.
[23] Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu

Wang, and Jie Tang. 2021. MixGCF: An Improved Training Method for Graph

Neural Network-based Recommender Systems. In KDD’21. 665–674.
[24] Tri Huynh, Simon Kornblith, Matthew R Walter, Michael Maire, and Maryam

Khademi. 2022. Boosting contrastive self-supervised learning with false negative

cancellation. InWACV’22. 2785–2795.
[25] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Baner-

jee, and Fillia Makedon. 2020. A survey on contrastive self-supervised learning.

Technologies 9, 1 (2020), 2.
[26] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity

search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[27] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and

Diane Larlus. 2020. Hard Negative Mixing for Contrastive Learning. In NIPS’20.
[28] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for open-

domain question answering. In EMNLP’20.
[29] Donald Ervin Knuth. 1997. The art of computer programming: Fundamental

Algorithms. Vol. 1. Pearson Education.

[30] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A

robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[31] MarcoMarelli, StefanoMenini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi,

and Roberto Zamparelli. 2014. A SICK cure for the evaluation of compositional

distributional semantic models. In LREC’14. 216–223.
[32] Yu Meng, Chenyan Xiong, Payal Bajaj, Paul Bennett, Jiawei Han, and Xia Song.

2021. Coco-lm: Correcting and contrasting text sequences for language model

pretraining. In NIPS’21.
[33] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui

Chen, Yang Liu, and Shantanu Jaiswal. 2017. graph2vec: Learning distributed

representations of graphs. In MLG’17.
[34] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
[35] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: Bringing order to the web. Stanford University Tech-
nical Report, (1999).

[36] Veličković Petar, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,

and R. Devon Hjelm. 2018. Deep graph infomax. In ICLR’19.
[37] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,

Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph

neural network pre-training. In KDD’20. 1150–1160.
[38] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. 2021.

Contrastive Learning with Hard Negative Samples. In ICLR’21.
[39] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,

and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

[40] Daniel A Spielman and Shang-Hua Teng. 2013. A local clustering algorithm for

massive graphs and its application to nearly linear time graph partitioning. SIAM
Journal on computing (2013).

[41] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: Un-

supervised and semi-supervised graph-level representation learning via mutual

information maximization. In ICLR’20.
[42] Afrina Tabassum, Muntasir Wahed, Hoda Eldardiry, and Ismini Lourentzou. 2022.

Hard negative sampling strategies for contrastive representation learning. arXiv
preprint arXiv:2206.01197 (2022).

[43] Junfeng Tian, Zhiheng Zhou, Man Lan, and Yuanbin Wu. 2017. Ecnu at semeval-

2017 task 1: Leverage kernel-based traditional nlp features and neural networks

to build a universal model for multilingual and cross-lingual semantic textual

similarity. In SemEval’17. 191–197.
[44] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast random walk

with restart and its applications. In ICDM’06.
[45] Guangrun Wang, Keze Wang, Guangcong Wang, Philip HS Torr, and Liang Lin.

2021. Solving inefficiency of self-supervised representation learning. In ICCV’21.
9505–9515.

[46] Mike Wu, Milan Mosse, Chengxu Zhuang, Daniel Yamins, and Noah Goodman.

2020. Conditional negative sampling for contrastive learning of visual represen-

tations. In ICLR’21.
[47] Yawen Wu, Zhepeng Wang, Dewen Zeng, Yiyu Shi, and Jingtong Hu. 2021. En-

abling on-device self-supervised contrastive learning with selective data contrast.

In 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 655–660.
[48] Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa, Fei Sun, and Hao Ma.

2020. Clear: Contrastive learning for sentence representation. arXiv preprint
arXiv:2012.15466 (2020).

[49] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. 2018. Unsupervised

feature learning via non-parametric instance discrimination. In CVPR’18. 3733–
3742.

[50] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,

Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor

negative contrastive learning for dense text retrieval. In ICLR’21.
[51] Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang.

2021. Infogcl: Information-aware graph contrastive learning. In NIPS’21, Vol. 34.
30414–30425.

[52] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks?. In ICLR’19.
[53] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In KDD’15.

1365–1374.

[54] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang.

2020. Understanding negative sampling in graph representation learning. In

KDD’20. 1666–1676.

3066

BatchSampler: Sampling Mini-Batches for Contrastive Learning in Vision, Language, and Graphs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

[55] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure

Leskovec. 2018. Hierarchical graph representation learning with differentiable

pooling. In NIPS’18, Vol. 31.
[56] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph

contrastive learning automated. In International Conference on Machine Learning.
PMLR, 12121–12132.

[57] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph Contrastive Learning with Augmentations. In NIPS’20.
5812–5823.

[58] Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. 2020.

Graph information bottleneck for subgraph recognition. In ICLR’21.
[59] Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. 2021.

Recognizing predictive substructures with subgraph information bottleneck. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2021).

[60] Shaofeng Zhang, Meng Liu, Junchi Yan, Hengrui Zhang, Lingxiao Huang, Xi-

aokang Yang, and Pinyan Lu. 2022. M-Mix: Generating Hard Negatives via

Multi-sample Mixing for Contrastive Learning. In Proceedings of the 28th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining. 2461–2470.
[61] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-n

collaborative filtering via dynamic negative item sampling. In SIGIR’13. 785–788.
[62] Mingkai Zheng, Fei Wang, Shan You, Chen Qian, Changshui Zhang, Xiaogang

Wang, and Chang Xu. 2021. Weakly supervised contrastive learning. In ICCV’21.
10042–10051.

[63] Kun Zhou, Beichen Zhang, Wayne Xin Zhao, and Ji-Rong Wen. 2022. Debiased

Contrastive Learning of Unsupervised Sentence Representations. In ACL’22.
[64] Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. 2021. An empirical study of

graph contrastive learning. arXiv preprint arXiv:2109.01116 (2021).
[65] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.

Graph contrastive learning with adaptive augmentation. In Proceedings of the
Web Conference 2021. 2069–2080.

[66] Jiří Šíma and Satu Elisa Schaeffer. 2006. On the np-completeness of some graph

cluster measures. In International Conference on Current Trends in Theory and
Practice of Computer Science.

3067

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zhen Yang et al.

A APPENDICES
A.1 Algorithm Details

Algorithm 2: Proximity Graph Construction

Input: Dataset D = {𝑥𝑖 }, Candidate set size𝑀 , Neighbor

number 𝐾 ;

Output: A proximity graph 𝐺 ;

for 𝑣 in D do
Randomly select𝑀 neighbor candidates from D;

Select the 𝐾 closest candidates N𝑣 by Eq. 3;

𝐺 [𝑣] ← N𝑣 ;
end
return 𝐺

Algorithm 3: Random Walk with Restart(RWR)

Input: Proximity graph 𝐺 = {V, E}, seed node 𝑢, restart

probability 𝛼 , number of sampled node 𝐵;

Output: A sampled node set S;
S ← {}, 𝑣 ← 𝑢;

while len(S) < 𝐵 do
if 𝑣 not in S then
S.insert(𝑣)

end
Sample 𝑟 from Uniform distribution 𝑈 (0, 1);
if 𝑟 < 𝛼 then

𝑣 ← 𝑢;

end
else

Randomly sample 𝑣 from 𝑣 ’s neighbors;

𝑣 ← 𝑣 ;

end
end
return S

A.2 Additional Experiments
A.2.1 Extensive studies on Vision. Here we evaluate the Batch-
Sampler on two small-scale (CIFAR10, CIFAR100) and two medium-

scale (STL10, ImageNet-100) benchmark datasets, and equipDCL [12]

andHCL [38] with BatchSampler to investigate its generality. Exper-

imental results in Table 8 show that BatchSampler can consistently

improve SimCLR and its variants on all the datasets, with an abso-

lute gain of 0.3%∼2.5%. We also can observe that the improvement

is greater on medium-scale datasets than on small-scale datasets.

A.2.2 Experiments with Roberta on Language. We also apply

BatchSampler to the SimCSE with the pretrained RoBERTa [30],

and present the results in Table 9. Similar to the results of BERT,

BatchSampler can consistently improve the performance of the

baseline model. Besides, as discussed in Section 5.1, the hard neg-

ative sampled by BatchSampler explicitly can alleviate the low

distribution gap between positive score and negative score distri-

bution caused by the pretrained language model, alleviating the

performance degradation of DCL and HCL.

Table 8: Overall performance comparison on image classifi-
cation task in terms of Top-1 Accuracy.

Method CIFAR10 CIFAR100 STL10 ImageNet-100

SimCLR 92.13 68.14 83.26 59.30

w/ kNN Sampler 90.16 62.30 79.25 57.70

w/ BatchSampler 92.54 68.68 84.38 60.80

DCL 92.28 68.52 84.92 59.90

w/ BatchSampler 92.74 68.91 86.39 60.14

HCL 92.39 68.92 88.20 60.60

w/ BatchSampler 92.41 69.13 89.49 61.50

Table 9: Performance comparison for sentence embedding
learning based on RoBERTa.

Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SimCSE-RoBERTa𝑏𝑎𝑠𝑒 67.90 80.91 73.14 80.58 80.74 80.26 69.87 76.20

w/ kNN Sampler 68.78 79.49 73.34 81.05 80.15 77.09 67.18 75.30

w/ BatchSampler 68.29 81.96 73.86 82.16 80.94 80.77 69.30 76.75
DCL-RoBERTa𝑏𝑎𝑠𝑒 66.60 79.16 71.05 80.40 77.76 77.94 67.57 74.35

w/ kNN Sampler 65.39 79.04 69.71 78.37 75.98 74.72 64.39 72.51

w/ BatchSampler 65.53 80.09 71.00 80.64 78.35 77.75 67.52 74.41
HCL-RoBETa𝑏𝑎𝑠𝑒 67.20 80.47 72.44 80.88 80.57 78.79 67.98 75.49

w/ kNN Sampler 65.99 77.32 73.71 80.59 79.78 77.70 65.40 74.36

w/ BatchSampler 66.01 80.79 73.58 81.25 80.66 79.22 68.52 75.72

A.2.3 Comparison with baselines on Graphs. In Table 10, we

compare different kinds of baselines on graph classification tasks,

including the unsupervised graph learning methods [52, 55], graph

kernel methods [39, 53], and self-supervised graph learning meth-

ods [19, 33, 37, 41, 51, 56, 57]. BatchSampler can consistently im-

prove the performance of both GraphCL and MVGRL on all the

datasets, demonstrating the effectiveness of global hard negatives.

Benefiting from the performance gain brought by BatchSampler,

MVGRL achieves the best performance on 4 datasets, outperforming

InfoGCL and supervised methods.

A.2.4 Impact of Sampling Method on CIFAR100. We conduct

different strategies of proximity graph sampling on CIFAR100 to

investigate the impact of sampling methods. As shown in Figure 8,

BFS achieves more similar pairs in the sampled batch but it in-

troduces a higher percentage of false negatives, which obviously

degrades the downstream performance. Conversely, DFS explores

paths far away from the selected central node, which can not guar-

antee that the sampled path (i.e. batch) is within a local cluster. Thus,

we theoretically leverage RWR to flexibly modulate the hardness of

the sampled batch and achieve a balance between hard negatives

and false negatives.

A.3 Parameter Analysis
A.3.1 Batchsize 𝐵. To analyze the impact of the batchsize 𝐵, we

vary 𝐵 in the range of {16, 32, 64, 128, 256} and summarize the

results in Table 12. In vision, a larger batchsize leads to better

3068

BatchSampler: Sampling Mini-Batches for Contrastive Learning in Vision, Language, and Graphs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 10: Experiment results for graph classification task under LIBSVM [9] classifier.

Method Dataset IMDB-B IMDB-M COLLAB REDDIT-B PROTEINS MUTAG NCI1

Supervised

GIN 75.1±5.1 52.3±2.8 80.2±1.9 92.4±2.5 76.2±2.8 89.4±5.6 82.7±1.7
DiffPool 72.6±3.9 - 78.9±2.3 92.1±2.6 75.1±3.5 85.0±10.3 -

Graph Kernels

WL 72.30±3.44 46.95±0.46 - 68.82±0.41 72.92±0.56 80.72±3.00 80.31±0.46
DGK 66.96±0.56 44.55±0.52 - 78.04±0.39 73.30±0.82 87.44±2.72 80.31±0.46

Self-supervised

graph2vec 71.10±0.54 50.44±0.87 - 75.78±1.03 73.30±2.05 83.15±9.25 73.22±1.81
infograph 73.03±0.87 49.69±0.53 70.65±1.13 82.50±1.42 74.44±0.31 89.01±1.13 76.20±1.06
JOAO 70.21±3.08 49.20±0.77 69.50±0.36 85.29±1.35 74.55±0.41 87.35±1.02 78.07±0.47
GCC 72.0 49.4 78.9 89.9 - - -

InfoGCL 75.10±0.90 51.40±0.80 - - - 91.20±1.30 -

GraphCL 70.90±0.53 48.48±0.38 70.62±0.23 90.54±0.25 74.39±0.45 86.80±1.34 77.87±0.41
GraphCL + BatchSampler 71.90±0.46 48.93±0.28 71.48±0.28 90.88±0.16 75.04±0.67 87.78±0.93 78.93±0.38

MVGRL 74.20±0.70 51.20±0.50 - 84.50±0.60 - 89.70±1.10 -

MVGRL + BatchSampler 76.70±0.35 52.40±0.39 - 87.47±0.79 - 91.13±0.81 -

Figure 8: Histograms of cosine similarity and Percentage of
false negative of all pairs in a batch.

Table 11: Performance comparison with different 𝑡 .

Update Interval 𝑡 50 100 200 400

Vision

CIFAR10 92.29 92.54 92.34 92.26

CIFAR100 68.37 68.68 67.83 68.59

Update Interval 𝑡 10 25 50 100

Graphs

IMDB-B 71.30 71.90 71.40 71.10

COLLAB 71.06 70.36 71.48 70.62

results, which is consistent with the previous studies [10, 20, 27].

In language domain, BatchSampler reaches its optimum at 𝐵 =

64, which aligns with the results in SimCSE [16]. For graphs, the

performance improves slightly with increasing batch size.

A.3.2 Impact of Neighbor Number 𝐾 . In Figure 9, we investi-

gate the impact of the neighbor number 𝐾 on ImageNet-100 dataset

with the default BatchSampler setting. We observe an absolute

improvement of 1.1% with the increasing size of neighbors. Specifi-

cally, model achieves an absolute performance gain of 0.9% from

𝐾 = 100 to 𝐾 = 300, while only obtaining 0.2% from 𝐾 = 300 to

𝐾 = 500, demonstrating that sampling more neighbors increases

the scale of proximity graph and urges BatchSampler to explore

smaller-scope local clusters, leading to a significant improvement

100 200 300 400 500 600
Neighbor Number K

59.0

59.5

60.0

60.5

61.0

To
p-

1
Ac

cu
ra

cy
59.7

59.8

60.6
60.8 60.8

60.5

Figure 9: Impact of neighbor number 𝐾 .

Table 12: Performance comparison of different batchsize 𝐵.

𝐵
Vision Language Graphs

CIFAR10 CIFAR100 STL10 Wikipedia IMDB-B COLLAB

16 79.93 46.69 56.31 76.26 71.50 71.32

32 84.64 56.24 68.61 74.16 71.60 71.40

64 89.09 61.30 74.24 76.69 71.65 71.42

128 91.03 65.96 82.56 76.64 71.83 71.48
256 92.54 68.68 84.38 76.11 71.90 71.35

in performance. However, performance degrades after reaching the

optimum, because larger 𝐾 introduces more easy negatives.

A.3.3 Proximity Graph Update Interval 𝑡 . To analyze the im-

pact of update interval 𝑡 , we vary 𝑡 in the range of {50,100,200,400}

for vision and {10,25,50,100} for graphs respectively. Table 11 sum-

marizes the experimental results on different 𝑡 . Update intervals

that are too short or too long will degrade the performance. One rea-

son is that sampling on a proximity graph that is frequently updated

results in unstable learning of the model. Besides, the distribution

of instances in the embedding space will change during the training

process, resulting in a shift in hard negatives. As a result, after a

few iterations, the lazy-updated graph cannot adequately capture

the similarity relationship.

3069

	Abstract
	1 Introduction
	2 Related Work
	3 PROBLEM: Mini-Batch Sampling for Contrastive Learning
	4 The BatchSampler Method
	4.1 Proximity Graph Construction
	4.2 Proximity Graph Sampling
	4.3 Discussion on BatchSampler

	5 Experiments
	5.1 Results
	5.2 Why does BatchSampler Perform Better?
	5.3 Empirical Criterion for BatchSampler
	5.4 Efficiency Analysis
	5.5 Further Analysis

	6 Conclusion
	References
	A Appendices
	A.1 Algorithm Details
	A.2 Additional Experiments
	A.3 Parameter Analysis

