
WinGNN: Dynamic Graph Neural Networks with Random
Gradient Aggregation Window

Yifan Zhu
Tsinghua University

zhuyifan@tsinghua.edu.cn

Fangpeng Cong
Yanshan University

pnp@stumail.ysu.edu.cn

Dan Zhang
Tsinghua University

zd21@mails.tsinghua.edu.cn

Wenwen Gong
Tsinghua University

wenweng@mail.tsinghua.edu.cn

Qika Lin
Xi’an Jiaotong University
qikalin@foxmail.com

Wenzheng Feng
Tsinghua University

wenzhengfeng96@gmail.com

Yuxiao Dong
Tsinghua University

yuxiaod@tsinghua.edu.cn

Jie Tang∗
Tsinghua University

jietang@tsinghua.edu.cn

ABSTRACT
Modeling the dynamics into graph neural networks (GNNs) con-
tributes to the understanding of evolution in dynamic graphs, which
helps optimize temporal-spatial representations for real-world dy-
namic network problems. Empirically, dynamic GNN embedding
requires additional temporal encoders, which inevitably introduces
additional learning parameters to make dynamic GNNs oversized
and inefficient. Furthermore, previous dynamic GNNmodels are un-
der the same fixed temporal term, which causes the short-temporal
optimum. To address these issues, we propose the WinGNN frame-
work to model dynamic graphs, which is realized by a simple GNN
model with the meta-learning strategy and a novel mechanism of
random gradient aggregation. WinGNN calculates the frame-wise
loss of the current snapshot and passes the loss gradient to the
next to model graph dynamics without temporal encoders. Then it
introduces the randomized sliding-window to acquire the window-
aware gradienton consecutive snapshots, and the calculated two
types of gradient are aggregated to update the GNN, thereby reduc-
ing the parameter size and improving the robustness. Experiments
on six public datasets show the advantage of our WinGNN com-
pared with existing baselines, where it has reached the optimum in
twenty-two out of twenty-four performance metrics.

CCS CONCEPTS
• Information systems→ Data mining; • Theory of computa-
tion→ Dynamic graph algorithms.

KEYWORDS
Temporal encoder-free GNN, multi gradient aggregation, dynamic
graph neural networks, dynamic graph representation learning.

∗Corresponding author.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0103-0/23/08.
https://doi.org/10.1145/3580305.3599551

ACM Reference Format:
Yifan Zhu, Fangpeng Cong, Dan Zhang,Wenwen Gong, Qika Lin,Wenzheng
Feng, Yuxiao Dong, and Jie Tang. 2023. WinGNN: Dynamic Graph Neural
Networks with Random Gradient Aggregation Window. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3580305.3599551

1 INTRODUCTION
Most graphs in real-world scenarios are essentially dynamic net-
works, such as social networks, traffic networks, online behaviors,
etc., which characterize the variation of entities and relations in
the network over time [12, 30]. Capturing and modeling such dy-
namics provides a unique temporal view of the network variability
to better understand network evolution, which has been studied
extensively in decades [1, 42]. Recently, graph neural networks
(GNNs) have produced rapid progress in representing the graph by
propagating nodal information via edges to obtain low-dimensional
embedding [7, 14, 35]. Under these circumstances, incorporating
graph evolution information into GNNs (i.e., dynamic GNNs) shows
a prominent prospect and has attracted considerable attention in
very recent years [16, 44]. Despite the great success, there are still
two following limitations.

Figure 1: Comparison between WinGNN and recent dy-
namic GNNs. (a) Categorization comparison. TE-Free denotes
temporal-free design, LSTS denotes the model considers long
and short temporal scale feature explicitly, Meta denotes the
model adapts a meta-learning strategy, and LG denotes the
model is capable of large dynamic graph with more than 50
million edges (△ denotes extremely poor performance). (b)
MRR performance improved by WinGNN on Bitcoin-Alpha.

3650

https://orcid.org/0000-0002-7695-1633
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3580305.3599551
https://doi.org/10.1145/3580305.3599551
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599551&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yifan Zhu et al.

Figure 2: Propagation of loss gradient between static GNN, ROLAND [44], and the proposed WinGNN. The black dotted arrows
and blue dotted arrows in (c) denote the frame-wise and window-aware loss gradient, respectively.

Limitation 1: the temporal encoder-dependent issue. It indi-
cates that many existing dynamic methods first utilize the GNN to
model the internal information of the static subgraph at a specific
time (noted as a snapshot). Then the dynamics among consecu-
tive snapshots are acquired by previous GNN embeddings using
some temporal sequence encoders, e.g., long short-term memory
(LSTM) [24] and Transformer [26]. Although these methods are
simple and intuitive, they inevitably introduce additional learning
parameters to the whole model and have the risk of an over-fitting
problem. Therefore, realizing a temporal encoder-free model to re-
move the use of these temporal encoders can improve the parameter
efficiency of the model, thus resulting in performance increment.
However, it is challenging because the direct removal of the tempo-
ral encoder will cause the intractable modeling of graph dynamics.
Limitation 2: the short-temporal optimum issue. Meta-learning,
as a transfer learning method, is able to model the temporal dynam-
ics as proved from both theoretical and experimental perspectives
[22, 23]. The idea of meta-learning provides a new perspective to
reduce the extra temporal encoding cost of model parameters. For
example, MetaDyGNN [43] updates its global parameter for each
temporal interval via hierarchical adaptions. ROLAND [44] utilizes
a hybrid framework that forwards the learned embedding and loss
on the snapshot to the next one as Figure 2-(b) shows. It only inte-
grates the information of two adjacent time steps. Generally, these
models neglect temporal information with long-term dependence,
which could lead to the short-temporal optimum and cause poor
performance. Therefore, it is essential to design a robust dynamic
GNN model with a more comprehensive meta-learning strategy.

Taking the above limitations together, we study the key research
question Is there a temporal encoder-free GNN design that can
learn representations from dynamic graphs efficiently and
robustly? In this paper, as illustrated in Figure 2-(c), we propose
a novel dynamic GNN framework called WinGNN (abbreviation
of window GNN) to establish efficient and robust dynamic graph
representation learning. First, we incorporate a meta-learning strat-
egy into a simple GNN structure, where the frame-wise loss is
calculated on the current snapshot and then the loss gradient is
passed to the next snapshot. Thus WinGNN establishes a represen-
tation association between two adjacent snapshots and removes all
temporal-specific encoders, thereby improving the generalization
and parameter efficiency. Second, we propose a novel mechanism
of random gradient aggregation to model the temporal information

with long-term dependence. It introduces the randomized sliding-
window to fuse the gradient of long-term consecutive snapshots,
where an adaptive gradient aggregation is proposed to determine
which snapshot to keep or ignore, and acquire the window-aware
gradient. Meanwhile, the randomness of these sliding-windows
brings different temporal scales, making WinGNN robustly fine-
tune its parameters for graph dynamics. Finally, the frame-wise and
window-aware gradients are integrated together to optimize the
GNN of the next snapshot, forming an iterative calculation process
with time increasing. We compare WinGNN with other dynamic
GNN studies from four categorized aspects in Figure 1-(a), which
intuitively shows the advantages of our WinGNN.

We summarize the main contribution in our study as follows:
• A unified framework WinGNN is proposed that realizes a tempo-
ral encoder-free GNN design efficiently and robustly. It utilizes
the meta-learning strategy to model the association of snapshots
that are adjacent and consecutive in a sliding-window.

• To acquire robust representations, a novel mechanism of random
gradient aggregation is proposed by introducing the random-
ized sliding-window and adaptive gradient aggregation. We also
reveal the significance of modeling different temporal scales in
temporal encoder-free meta-learning for dynamic GNNs.

• Extensive experiments on six public datasets are performed, and
the superiority of WinGNN is demonstrated by the results, which
can achieve the maximum improvement of 153% on MRR metric
as Figure 1-(b) shows. Meanwhile, WinGNN can outperform the
state-of-the-art baseline ROLAND even on a very large dynamic
graph with more than 60 million edges.

2 PRELIMINARIES
2.1 Problem Formulation
Let G = {𝐺𝑡 }𝑇𝑡=1 denote a dynamic graph that contains a list of
graph snapshots.V = {𝑣1, ...𝑣𝑛} is a finite set of nodes and E ⊆ V×
V is the set of edges. Each snapshot is a static graph 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡)
where 𝑉𝑡 and 𝐸𝑡 are the node set and edge set of the snapshot.
They form V =

⋃𝑇
𝑡=1𝑉𝑡 and E =

⋃𝑇
𝑡=1 𝐸𝑡 . The adjacent matrix

of a snapshot at the time 𝑡 is denoted as 𝐴𝑡 ∈ R𝑛×𝑛 . If 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉𝑡
and (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸𝑡 , then 𝐴𝑡𝑖, 𝑗 = 1 and otherwise it is 0. A feature
matrix 𝑿 ∈ R𝑛×𝑘 = {𝒙𝑣 |𝑣 ∈ V} is usually provided for nodes,
where 𝑘 is the feature dimension. Similar to many graph learning

3651

WinGNN: Dynamic Graph Neural Networks with Random Gradient Aggregation Window KDD ’23, August 6–10, 2023, Long Beach, CA, USA

studies, link prediction is an ideal task for evaluating dynamic graph
representation learning. It requires the model to learn a binary
classification function 𝑓 to predict whether there is an unobserved
edge at time 𝑡 + 1 by giving two nodes at previous snapshots:

𝑓 : (𝐺1:𝑡 ,𝑿) −→ 𝐸𝑡+1 . (1)

2.2 Graph Neural Networks
The essence of GNNs is to learn the node representations via itera-
tively aggregating information from neighbor nodes. By applying
a 𝑙-layer GNN, we denote the representation (also known as the
embedding) of node 𝑢 as 𝒉𝑢 , which is calculated by:

𝒉(𝑙)𝑢 = UPDATE(𝒉(𝑙−1)𝑢 ,AGG({𝒉(𝑙−1)𝑣 ,∀𝑣 ∈ N𝑢 })), (2)

where𝒉(𝑙)𝑢 is the node representation after a 𝑙-layer GNN,𝒉(0)𝑢 = 𝒙𝑢 ,
N𝑢 is the direct neighbors of 𝑢. AGG(·) and UPDATE(·) stand for
aggregation and update functions which can have different designs
in different studies. Take GCN [14] as an example, this process is
defined in a matrix form:

𝑯 (𝑙) = 𝜎 (�̂�𝑯 (𝑙−1)𝑾 (𝑙)), (3)

where 𝑯 (𝑙) ∈ R𝑛×𝑑 is the representation of the nodes derived
at 𝑙-th layer, �̂� = 𝑫−1/2𝑨𝑫−1/2 denotes the normalized adjacent
matrix given that 𝑨 is the adjacent matrix with self-loops and 𝑫
is the corresponding diagonal degree matrix.𝑾 (𝑙) is a learnable
parameter matrix at 𝑙-th layer and 𝜎 denotes a non-linear activa-
tion function. Additional weighets could also be added durting the
propagation, such as attention and diffusion [46]. However, this
coupled operation could cause over-smoothing issues and redun-
dant training costs. Thus, decoupling this process would further
improve parameter efficiency [2, 39]. Generally, a decoupled GCN
could be expressed as:

𝑯 = 𝑔𝜃1 (𝑯
(0) , ...,𝑯 (𝑙)), 𝑯 (𝑙) = �̂�𝑯 (𝑙−1) , 𝑯 (0) = 𝑔𝜃2 (𝑿), (4)

where 𝑔𝜃1 and 𝑔𝜃2 are parameter-learnable neural networks, and 𝒁
is the model outputted representation.

Tgeneralizing to dynamic graphs, dynamic GNNs need to learn
the graph structure under different time units through different
information propagation (𝑨1,𝑨2, ...,𝑨𝑇), and finally generate node
representations under different time units (𝑯 1,𝑯 2, ...,𝑯𝑇). There-
fore, dynamic GNNs require additional operations and components
to be capable of the loss calculated by Eq. (1).

2.3 Meta-Learning
Inspired by the idea of learning to learn, the goal of meta-learning is
to train a model that is able to be quickly adapted to novel tasks by
using a few new data records and training iterations. Typically, the
model or learner is preliminarily trained on a set of specific tasks
to derive the initial embedding and model parameters. Then, facing
a new task that has similar informative embedding requirements to
the preliminary tasks, the meta-learning model only needs to fine-
tune its parameters by using a small number of samples. Formally,
each task T = {L(𝑥1, 𝑎1, . . . , 𝑥𝐻 , 𝑎𝐻), 𝑞(𝑥1), 𝑞(𝑥𝑡+1 |𝑥𝑡 , 𝑎𝑡), 𝐻 } con-
sists of loss function L. The distribution on the initial observation
𝑞(𝑥1), transition distribution 𝑞(𝑥𝑡+1 |𝑥𝑡 , 𝑎𝑡), and event length 𝐻 .
Meta-learning defines a two-stage learning paradigm, namely in-
ner loop and outer loop. In the inner loop phase, the model is

trained based on each task to produce a list of parameters 𝜃0:𝑙 ≡
{𝜃0, · · · , 𝜃𝑙−1}. Then, the parameter is tuned by comprehensively
optimizing all tasks 𝑃𝜃0:𝑙 ,𝑤 in the outer loop, such as 𝑃𝜃0:𝑙 ,𝑤 (·) =∑𝑙
𝑗=0 𝜔 𝑗𝑃𝜃 𝑗 ,𝑤 (·).
The tasks in meta-learning can also be regarded as states at

different times. Under this setting, the model learns embedding at
each temporal unit as an inner loop stage with preliminarily trained
parameters, and updates it by fine-tuning the model’s parameters as
an outer loop stage according to the optimization on all following
temporal units.

3 THEWinGNN MODEL
3.1 Overview of WinGNN
We introduce the proposed WinGNN model in this section, as the
overall framework is presented in Figure 3. Inspired by the observa-
tion that current dynamic GNN models suffer from short-temporal
optimum, we take the advantage of meta-learning to jointly opti-
mize parameters based on multi-snapshot gradients. In particular,
WinGNN has removed all temporal-specific encoders to learn from
the evolution of dynamic graphs. Then, we incorporate randomized
window gradient propagation and adaptive gradient aggregation
strategy into sliding-window-based multi-snapshot gradient ag-
gregation, thereby establishing both effective and robust dynamic
graph representation learning.

3.2 The Frame-Wise Dynamic GNN Unit

Revisiting loss gradient propagation. We revisit the propaga-
tion of loss gradient in static GNNs and existing dynamic GNNs.
Illustrated in Figure 2-(a), a static GNN learns data on a single graph,
and the model loss is generated from the label and prediction. The
generated loss is then back-propagated to update the parameters of
the GNN layer and other parameter-learnable modules. It is obvious
that such a design makes the GNN only learn from the intrinsic
graph structure without any dynamic information, and therefore it
cannot be directly applied to a dynamic graph without considering
the dynamics of graphs.

As an intuitive solution, early dynamic GNNs added temporal
encoders before or after aggregatingmultiple graph encoders to cap-
ture the graph dynamics [17, 21]. However, such a process usually
incorporates temporal encoders such as LSTM [24] and Transformer
[26], and therefore has much more model parameters to aggravate
the training difficulty and over-fitting risk. Recent studies have
designed more efficient strategies to relieve such problems. Take
ROLAND [44] for example, as illustrated in Figure 2-(b), it intro-
duces a more dynamics-compatible GNN design with BatchNorm
[10] as well as residual connection, and incorporates two length-
limited GRU layers to enhance the parameter efficiency. From the
view of the loss gradient, it generates loss on each snapshot, and
back-propagates to update model parameters for the next snap-
shot. However, as we show in Section 1, this snapshot-by-snapshot
design could still mislead the optimization into short-temporal opti-
mum, which will degrade the performance when edge distribution
changes dramatically over the snapshots.

3652

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yifan Zhu et al.

Figure 3: The pipeline ofWinGNN. (a)WinGNNuses a sliding-
window strategy with random starting position 𝑡 and window
size 𝑙𝑤 to capture graph dynamics under different temporal
scales and then tunes themodel parameter through the aggre-
gation of window-aware loss gradients. (b) For each random
sliding-window, WinGNN back-propagates the frame-wise
loss gradient snapshot-by-snapshot and collects window-
aware loss gradients for aggregation. When the iteration on
this window is finished, the aggregated loss gradient is used
to update the model parameter for the next sliding-window.

Temporal encoder-free dynamic GNN unit. Inspired by the
meta-learning on multiple tasks [3], this study introduces a random-
ized sliding-window-based multi-snapshot gradient optimization
strategy. Correspondingly, we design a simple but effective dy-
namic GNN architecture that removes the heavy temporal encoder.
Generally, for snapshot 𝐺𝑡 during the training process, the basic
WinGNN unit is trained on the current snapshot 𝐺𝑡 , and directly
conducts prediction on the next snapshot 𝐺𝑡+1 without loss back-
propagation. There are two types of loss, namely frame-aware loss
(black arrow in Figure 2) and window-aware loss (blue arrow in
Figure 2), which are generated for each learning step. Then, we
back-propagate the gradient of frame-aware loss to update model
parameters for the next training step on 𝐺𝑡+1 and collect window-
aware loss for a long-term window-aware gradient optimization.
When all window-aware losses are collected from the beginning to
the end snapshot in a sliding-window, a such window-aware gradi-
ent is optimized and back-propagated to the model parameters for
the next window. Formally, given a snapshot𝐺𝑡 , WinGNN encodes
it via a 𝑙-layer decoupled GCN:

𝒉(𝑙)𝑢,𝑡 = �̂�𝒉𝑙−1𝑾 (𝑙)
ℎ
. (5)

Then, WinGNN predicts the probability of edge from node 𝑢 to
node 𝑣 through a multi-layer perceptron (MLP):

𝑦𝑡𝑢,𝑣 = MLP(𝒉(𝑙)𝑢,𝑡 | |𝒉
(𝑙)
𝑣,𝑡), (6)

where | | denotes the concatenation operation. Based on the label
data 𝒀 𝑡 , we can obtain the train loss via cross-entropy loss:

L𝑤𝑖

𝐺𝑡
= −

∑︁
(𝑢,𝑣) ∈E𝑡

𝑦𝑡𝑢,𝑣 log𝑦
𝑡
𝑢,𝑣 + (1 − 𝑦𝑡𝑢,𝑣) log(1 − 𝑦𝑡𝑢,𝑣), (7)

where L𝑤𝑖

𝐺𝑡
denotes the train loss at snapshot under the sliding-

window𝑤𝑖 which is introduced in the Section 3.3 in detail. Note that
such loss can also be replaced by other loss functions depending on
the down-streaming tasks. Here, at each training step, we denote
the model parameter as 𝜃𝑤𝑖

𝑡 , and the frame-wise loss gradient is
formulated as the following approximation:

∇L𝑤𝑖

𝐺𝑡
≃
𝜕L𝑤𝑖

𝐺𝑡

𝜕𝜃
𝑤𝑖

𝑡

. (8)

This gradient is then utilized to update the model parameters in
the next snapshot with the general learning rate 𝜏 :

𝜃
𝑤𝑖

𝑡+1 ←− (∇L
𝑤𝑖

𝐺𝑡
)𝜏 + 𝜃𝑤𝑖

𝑡 . (9)

3.3 Randomized Sliding-window Based
Multi-snapshot Gradient Optimization

Multi-snapshot loss gradient. Furthermore, we make the model
comprehensively learn from different periodical graph dynamics in
a robust way. To achieve this, we define a random sliding-window
strategy inspired by MAML [50], where each window is defined as
a consecutive sub-list of snapshots with a random window size 𝑙𝑤
as well as step length 𝑙𝑠 . Note that the starting position of the next
randomwindow should always be within the previous window, and
the ending position should be outside after the previous window.
The size of the random window should also not exceed one-tenth of
the total number of snapshots to preserve as much as possible short-
term changes in the dynamic graphs [29]. We refer the 𝑖-th window
from snapshot𝐺𝑡 to𝐺𝑡+𝑙𝑤 as𝑤𝑖 . For each snapshot in this window,
the window-aware loss is collected based on the prediction on the
edges of the next snapshot, that is, the GNN unit uses training
loss on the current snapshot 𝐺𝑡 to update parameters to the next
snapshot, and generates an additional loss on the next snapshot
𝐺𝑡+1 for the periodical multi-snapshot gradient optimization. Thus,
we have:

∇L̂𝑤𝑖

𝐺𝑡
≃
𝜕L𝑤𝑖

𝐺𝑡+1

𝜕𝜃
𝑤𝑖

𝑡

. (10)

Adaptive loss gradient aggregation. After the dynamic GNN
unit finishes the training from the first to the last snapshot in the
sliding-window 𝑤𝑖 , we totally collected 𝑙𝑤 loss gradients. These
gradients are aggregated together to be optimized for a more com-
prehensive model parameter tuning than using gradients from
single snapshots. Such process is denoted as 𝜙 (·):

∇L̂𝑤𝑖 = 𝜙 (∇L̂𝑤𝑖

𝐺𝑡
, ...,∇L̂𝑤𝑖

𝐺𝑡+𝑙𝑤
), (11)

where∇L̂𝑤𝑖 is the aggregated gradient of the entire sliding-windows.
The simplest way is to sum all gradients together (i.e.,

∑𝑡+𝑙𝑤
𝑗=𝑡 ∇L̂

𝑤𝑖

𝐺 𝑗
).

However, simply using a sum would be inevitably vulnerable
to local optimum in short temporal terms. To overcome this, we
design an adaptive loss gradient aggregation layer to enhance the
robustness of dynamics learning. As presented in Figure 4, the

3653

WinGNN: Dynamic Graph Neural Networks with Random Gradient Aggregation Window KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Figure 4: Illustration of adaptive loss gradient aggregation at
window𝑤𝑖 , where the window size is set to 5.

loss gradients of snapshots in the same sliding-window are first
gathered. Assume there are 𝑙𝑤 snapshots in the window which are
numbered as 1, ..., 𝑡, ..., 𝑙𝑤 , and then we assign adaptive decay 𝐷𝑡
to each gradient, which is calculated by:

∇L̂′𝑤𝑖

𝐺𝑡
= 𝐷𝑡 ⊙ ∇L̂𝑤𝑖

𝐺𝑡
, (12)

𝐷𝑡 = −
𝜏

√
𝛿 + 𝒓𝑡

, (13)

where 𝜏 is the general learning rate of the model training, 𝛿 is a
small constant, ⊙ is the element-wise dot production, and 𝒓𝒕 is the
accumulated gradient which is calculated as:

𝒓𝑡 = 𝜌𝒓𝑡−1 + (1 − 𝜌)∇L̂𝑤𝑖

𝐺𝑡
⊙ ∇L̂𝑤𝑖

𝐺𝑡
, 𝒓0 = 0, (14)

where 𝜌 determines the trade-off between the previously accumu-
lated gradient and the current loss gradient.

Afterward, to further reduce the effects from the local optimum,
we introduce a snapshot-wise random loss drop called Snapshot-
Drop. To implement this, a binary random mask vector is generated
to perform element-wise product with adaptively adjusted loss gra-
dients, and then all results are summed as the final window-aware
loss gradient of the current sliding-window:

∇L̂𝑤𝑖 =

𝑙𝑤∑︁
𝑡=1

𝑀𝑡∇L̂′
𝑤𝑖

𝐺𝑡
, (15)

where𝑀 is the SnapshotDrop mask. With this approach, WinGNN
can randomly select batches of snapshots in a dynamic graph and
adaptively aggregate all loss gradients of snapshots on the batch
into one comprehensive loss gradient.

For the next sliding-window, we refine the Eq.(9) by combin-
ing the window-aware multi-snapshot gradient from the previous
window and frame-wise single gradient from the previous snapshot:

𝜃
𝑤𝑖+1
𝑡+1 ←− (∇L

𝑤𝑖

𝐺𝑡
)𝜏 + (∇L̂𝑤𝑖)𝜏 + 𝜃𝑤𝑖+1

𝑡+1 . (16)

Then the parameters of WinGNN are iteratively updated with time
increasing. Finally, we utilize the learned node representations to
calculate the logits of the dynamic link prediction through an extra
MLP layer in the inference stage.

3.4 Training and Evaluation
We implement the WinGNN and summarize the training algorithm
in Appendix A.1. The source code of implemented WinGNN is pub-
licly available1, and the experimental setup is presented in Appen-
dix A.5. The evaluation of effectiveness in this study is performed
by measuring the performance of link prediction on the 𝑡 + 1 snap-
shot by giving the first 𝑡 snapshots. We split the first 70% snapshots
of each dataset as the training set, and then regard the rest 30%
data as the test set. In particular, the dynamic link prediction task
can be evaluated with two settings, which are classification and
ranking[32]. Under the classification setting, the model is evaluated
to predict whether there exists an edge between the given head
and tail nodes. We randomly sample one negative edge sample for
every single edge in the test snapshots and then measure the av-
erage accuracy and macro-AUC for evaluation. Under the ranking
setting, the dynamic graph model is evaluated to predict which
node is the tail node with a given head node. We randomly sample
1, 000 negative nodes as candidates for each positive tail node in
all test snapshots. However, for the large dynamic graph such as
Stack Overflow which has more than 60 million edges, we only
sampled 100 negative edges due to memory constraints. To avoid
data leakage problems, the randomized sliding-window mechanism
is only used in the training stage, and we also follow the live update
setting of ROLAND [44].

4 EXPERIMENT
4.1 Datasets
We perform the experiment on six typical public datasets which are
widely evaluated by existing dynamic graph representation learning
studies. The datasets are selected with different edge densities and
distributions, including Bitcoin-Alpha, Bitcoin-OTC, DBLP, Reddit-
title, Stack Overflow and UCI. Detailed descriptions are presented
in Appendix A.2. The Stack Overflow dataset includes a very large
dynamic graph with more than 60 million edges, so the efficiency
and performance on it can better reflect the application potential of
the model. To make a fair comparison of reproducible results, we
adopt the standard partition of snapshots generated by GraphGym
[45]. We show the basic statistics of these six datasets in Table 1.

Table 1: The basic statistics of six datasets in the experiment.

Dataset # Nodes # Edges # Snapshots Avg. Density

Bitcoin-Alpha 3,783 24,186 226 2.5890 × 10−3
Bitcoin-OTC 5,881 35,592 262 1.7396 × 10−4

DBLP 28,086 162,451 27 9.5423 × 10−5
Reddit-title 54,075 571,927 178 1.9592 × 10−5

Stack Overflow 2,601,977 63,497,050 92 2.5503 × 10−6
UCI 1,899 59,835 28 1.1191 × 10−3

4.2 Baselines and Evaluation Metrics
We evaluate our proposed WinGNN by comparing the performance
with various dynamic GNN baselines, including EvolveGCN [24],
DGNN [21], dyngraph2vec [6], and ROLAND [44]. The detailed
description of these baselines could be found in the Appendix A.3.
1https://github.com/thudm/WinGNN

3654

https://github.com/thudm/WinGNN

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yifan Zhu et al.

We apply four commonly-used metrics, namely accuracy, macro-
AUC, MRR, and recall@𝐾 to testify the superiority of WinGNN
againest other baselines, and describe these metrics in Appendix
A.4.

4.3 Main Results
The overall dynamic link prediction performance results of the
proposed WinGNN and other baseline models are presented in
Table 2. The improvement (%Improv.) is calculated according to the
relative improvement of sub-optimal models. The model efficiency
is also illustrated in Figure 5.

Dynamic link prediction under the classification setting. The
classification setting evaluates the performance of dynamic link
prediction via accuracy and AUC. The results show that many ex-
isting baselines, such as EvolveGCN, DGNN, and dyngraph2vec
vary greatly on dynamic graph datasets with different density dis-
tributions. In other words, these methods are not effective in fully
encoding spatiotemporal features when using embedded represen-
tations of the past to predict links that will occur in the future. The
result shows that our proposed WinGNN model outperforms all
baselines in terms of accuracy with a maximum improvement of
22.59% (Bitcoin-Alpha). It also shows similar results on AUC among
all datasets. WinGNN outperforms all baselines by improving AUC
from 0.1% to 2.43%. Additionally, ROLAND shows the second-best
performance on most datasets, only lagging behind EvolevGCN by
about 4 percent measured by accuracy on the DBLP dataset.

It is worth mentioning that when evaluating the performance
on large dynamic graphs (i.e., Stack Overflow), we found that all
models except WinGNN and ROLAND had out-of-memory failures,
which demonstrates the importance of parameter efficiency for the
generalization of dynamic graph representation learning. Further-
more, ROLAND’s performance on the Stack Overflow is somehow
unstable, where the results from multiple runs vary dramatically,
thereby resulting in non-statistical significance between ROLAND
and WinGNN. Thus, taking the above aspects together, we derive
the observation that WinGNN has a better ability in classifying
dynamic edges compared to the existing baselines.

Dynamic link prediction under the ranking setting. For the
ranking setting, the result also shows that the proposed WinGNN
outperforms all baselines in most datasets (Bitcoin-Alpha, Bitcoin-
OTC, DBLP, and UCI). Especially in the dataset withmore snapshots
such as Bitcoin-Alpha and Bitcoin-OTC, WinGNN can significantly
improve the MRR and recall@10 metric values by up to 153.03% and
106.56% (On Bitcoin-Alpha), respectively. This result shows that
the graph in the long-term evolution process has adequate long-
term and short-term temporal information, with more snapshots
leading to the local optimum. Therefore, the randomized sliding-
window-based gradient aggregation can reduce the impact of a
single snapshot by randomly dropping loss gradient on unspecific
snapshots. Additionally, on the large graph, similar results to the
classification setting are observed as well. WinGNN shows better
stability and predictive performance than ROLAND.

However, when the evolution length of the dynamic graph de-
creases and sparsity increases, the performance advantage brought
by WinGNN falls. When the average density was reduced to the

Figure 5: Model parameter size of WinGNN and other base-
lines. Note that the dimension size is determined by the
model with the best performance.

level of 10−5, the WinGNN model only increased by 13.03% and
23.26% compared with the second-best model in the DBLP dataset
in terms of MRR and recall@10. It is also worth mentioning that
ROLAND achieves the best performance among the baselines in
the majority of scenarios (Bitcoin-Alpha, DBLP, Reddit-title), but
on smaller datasets, such as UCI, the dyngraph2vec model achieves
even better performance with a thousand times more model pa-
rameters. For the Reddit-tittle dataset, WinGNN performs even
worse than ROLAND does. This result is also related to the dis-
tribution of edges in dynamic graphs. The long evolution and the
relatively dense connection make the dynamic graph itself have
certain redundancy so that the randomized sliding-window can
support robust learning without losing too much key information.
Additionally, the gradient aggregation of multiple snapshots can
also provide stable long-term evolution information. Taking these
aspects together, we summarize that the proposed WinGNN has a
very competitive ability in ranking potential tail nodes by giving
the head nodes in dynamic graphs.

Comparison on model parameter size. In addition to the pre-
diction performance, we also show the advantage of WinGNN in
model efficiency. In particular, we compare the parameter size of
the model, which directly reflects the efficiency of encoding and
prediction when the trained model is applied in real-world applica-
tions, such as online recommendation and anomaly detection. As
we discussed, the parameter size of the dynamic GNNmodel should
be an important indicator to evaluate the model’s efficiency during
inference. Empirically, a larger model with more parameters can
have more space for encoding information, but at the same time,
it increases training difficulty and time, so as to break away from
the requirement of practical applications. By using our proposed
temporal encoder-free strategy, we markedly reduce parameter
spaces as shown in Figure 5. WinGNN significantly reduces the
number of parameters in the model compared to all baselines with
the same embedding dimension setting.

3655

WinGNN: Dynamic Graph Neural Networks with Random Gradient Aggregation Window KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 2: Overall performance comparison on six datasets (% is omitted). The best results and second best are highlighted in
bold and underline, respectively. We repeat the experiment with 10 random seeds (3 seeds for Stack Overflow) and report the
average metrics with standard deviation, note that * denotes the statistical significance (𝑝-value < 0.05) between WinGNN and
the second-best baseline, and OOM. denotes the out-of-memory error when we tried to run the model on our environment.

Dataset Metric EvloveGCN-H EvloveGCN-O DGNN dyngraph2vec ROLAND WinGNN %Improv.

Bitcoin-Alpha

Accuracy 51.99±0.2546 57.44±0.4096 OOM. OOM. 66.21±2.7566 *81.17±0.5058 22.59%
AUC 63.71±1.0318 68.93±0.9144 OOM. OOM. 90.21±1.1762 91.43±0.3259 1.35%
MRR 3.28±0.2845 2.52±0.1014 OOM. OOM. 14.52±0.6506 *36.74±3.9389 153.03%

Recall@10 7.06±1.1900 5.27±0.5093 OOM. OOM. 31.25±2.2782 *64.55±3.6126 106.56%

Bitcoin-OTC

Accuracy 50.48±0.0321 50.56±1.5719 54.08±0.6755 58.29±4.5547 86.60±0.5233 87.14±1.2408 0.62%
AUC 55.38±1.6617 59.82±2.5744 59.13±6.4914 62.12±10.7457 90.07±1.2998 91.64±0.6178 1.74%
MRR 11.27±0.5793 11.44±0.4986 15.16±0.5773 35.39±2.5046 16.54±1.2191 *37.94±1.7019 7.21%

Recall@10 20.58±1.6515 26.40±2.1204 31.09±2.1594 58.29±6.7410 41.77±3.3926 *73.96±1.4569 26.88%

DBLP

Accuracy 63.17±0.4138 65.24±0.5294 OOM. OOM. 62.87±0.5908 *68.43±0.4135 4.88%
AUC 70.91±0.3823 72.64±0.4697 OOM. OOM. 77.79±0.1689 77.87±0.3050 0.10%
MRR 2.55±0.0032 2.48±0.0038 OOM. OOM. 6.60±0.0047 * 7.46±0.0020 13.03%

Recall@10 5.12±0.0310 4.84±0.0023 OOM. OOM. 13.48±0.0132 *16.63±0.0299 23.36%

Reddit-title

Accuracy 85.85±0.0164 77.46±1.2696 OOM. OOM. 93.42±0.0073 *99.55±0.0009 6.56%
AUC 93.87±0.0054 97.17±0.2683 OOM. OOM. 97.90±0.0001 *99.87±0.0002 2.01%
MRR 3.28±0.0198 1.31±0.0213 OOM. OOM. 35.11±0.0928 29.91±0.0829 –

Recall@10 5.05±0.6796 1.81±0.2453 OOM. OOM. 61.13±0.0970 60.46±0.2910 –

Stack Overflow

Accuracy OOM. OOM. OOM. OOM. 62.94±18.3068 96.91±0.1423 53.97%
AUC OOM. OOM. OOM. OOM. 74.56±17.9382 99.63±0.0176 33.62%
MRR OOM. OOM. OOM. OOM. 27.55±21.0300 32.51±1.5775 18.00%

Recall@10 OOM. OOM. OOM. OOM. 41.46±32.3883 64.71±1.7591 56.08%

UCI

Accuracy 59.85±2.5388 49.91±1.4492 50.91±0.0510 50.88±3.1146 81.83±0.6433 *86.70±1.1867 5.95%
AUC 71.99±1.8252 62.05±3.8124 52.19±0.5604 54.30±1.1352 91.81±0.3052 94.05±0.4679 2.43%
MRR 8.17±0.2284 10.81±0.5327 1.52±0.0016 17.84±0.4917 11.84±0.2561 *21.69±0.3383 21.58%

Recall@10 14.37±0.4915 16.94±0.9584 4.56±0.7313 36.22±1.6716 25.14±0.9237 *40.62±0.9364 12.14%

Figure 6: Performance of WinGNN on UCI dataset with different hyper-parameter settings, including the general learning rate,
drop rate, embedding size and window size.

In actual training, the GPU needs to load the model itself (includ-
ing parameter matrices) and the snapshot (including adjacency and
embedding matrices). The parameter matrices of the dynamic GNN
are directly related to its own structural design and the dimension
of embedding space, but not to the scale of the graph. The scale
of the graph affects the size of adjacency matrices and embedding
matrices. However, different models need to load different numbers
of snapshots according to training strategies. For example, although

the DGNN model only requires 12M spaces, it still meets the out-
of-memory error since the temporal feature passing mechanism
in its model design requires all snapshot data to be inputted into
the model at the same time. WinGNN needs to load snapshots into
GPU memory each time due to its sliding window design, and its
video memory occupancy has a certain randomness. Therefore, we
do not compare the GPU usage of each model in this paper.

3656

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yifan Zhu et al.

Table 3: Ablation performance of WinGNN on UCI dataset,
where S.D. and G.A. denote the SnapshotDrop and gradient
aggregation, respectively.

Model Accuracy AUC MRR Recall@10

WinGNN 86.70±1.1867 94.05±0.4679 21.69±0.3383 40.62±0.9364
-Decay 81.44±1.2862 93.42±0.3205 23.87±0.2911 44.05±0.8395
-S.D. 85.86±1.6178 93.49±0.9019 20.70±0.4617 40.44±1.1575
-Window 58.06±2.4384 61.06±3.3366 5.01±0.7599 9.80±3.1910
-G.A. 51.55±0.0515 55.35±1.0041 1.36±0.0050 1.63±0.0186

Considering the model parameter size and dynamic link pre-
diction performance, we show that the proposed WinGNN model
has addressed the research question discussed in the Introduction
section, that is, the proposed WinGNN can learn representations in
dynamic graphs robustly and parameter-efficiently without using
temporal encoders.

4.4 Exploration of WinGNN
After verifying the effectiveness of the proposed WinGNN, we
perform the exploration study to figure out the necessity of its
various components and parameter settings on the performance.
Due to space limitation, we selected UCI as the standard dataset,
and conduct analysis from two aspects: ablation experiment and
hyper-parameter setting.

Model ablation study. As presented in Table 3, we explored
the contribution of four key components in WinGNN to the final
performance. In particular, “-Decay” denotes the model without
the adaptive decay (i.e., 𝐷𝑡 = 1 in Eq.12). “-S.D.” stands for the
model by removing the random drop mask (i.e., 𝑀𝑡 = 1 in Eq.15).
The “-Window” variant directly fixes the window size to the single
evolution frame for the entire dynamic graph. It should be noted
that the performance with fixed window size is further analyzed in
hyper-parameter analysis, which is equivalent to WinGNN without
a random window size setting. The “-G.A.” variant removes the
entire multi-snapshot gradient optimization strategy, which only
keeps the simple GNN structure.

Based on the results, it is observed that the adaptive loss gradi-
ent aggregation has made a significant contribution to WinGNN.
When we remove the whole module, the performance of WinGNN
is reduced by almost half in both accuracy and AUC, and reduced
by more than 90% in MRR and Recall@10. The gradient aggregation
strategy without the sliding-window can provide a few perfor-
mance improvements with the help of the adaptive loss gradient,
from 1.36% to 5.01% in terms of the MRR metric, but still under-
performs most dynamic GNN models. This observation has shown
that both capturing temporal information in a term-based approach
and comprehensively aggregating them are vital to the temporal-
encoder-free dynamic GNN models. In addition, after we removed
the adaptive decay or random SnapshotDrop, WinGNN would en-
counter a slight performance loss in accuracy and AUC, which
also suggests the robustness brought by these two mechanisms.
However, there is also a slight increment after we remove the adap-
tive decay of WinGNN and this phenomenon may be caused by
the density distribution of the UCI dataset changing dramatically.

Therefore, future dynamic GNN designs need to further consider
the behavior change patterns of nodes and edges in dynamic graphs.

Hyper-parameter sensitivity analysis. In the WinGNN model,
there are four major hyper-parameters which are the general learn-
ing rate 𝜏 , the drop rate of SnapshotDrop, embedding size, and
window size. To verify the degree to which the model is affected by
these four hyper-parameters, different settings are used to observe
changes in performance, and the result is shown in Figure 6.

In Figure 6-(a), the learning rate 𝜏 determines how aggressively
the model updates its existing parameters and embeddings with
the incoming new loss gradient. We observe that when 𝜏 is not
set to an extreme value, the performance of WinGNN is not very
sensitive, and the performance of the WinGNN is relatively stable.
When 𝜏 reaches 0.9, which means that the model extremely focuses
on preserving the information of the current snapshot, the perfor-
mance declines rapidly, which is consistent with the phenomenon
that the window reduction significantly reduces the performance
observed in the ablation study.

The drop rate of SnapshotDrop decides the ratio of snapshot loss
to be discarded in a window. As shown in Figure 6-(b), the optimal
performance is derived when the drop rate is set to 0.3. As the drop
rate further increases, key dynamic information in a window can
be lost, resulting in a downward trend in performance.

The effect of node embedding dimensions is also studied. As
shown in Figure 6-(c), the model achieves optimal performance
when the embedding dimension is selected as 64. This result also
suggests that too small dimension could lead to insufficient repre-
sentation for both dynamic and structural information, while too
large dimension could cause over-fitting issues.

Although WinGNN uses randomized window size and step size,
Figure 6-(d) shows the impact of using a fixed time window of
different sizes on predicting performance. Surprisingly, when the
window length is less than half of the total length (i.e., 14), the per-
formance of WinGNN fluctuates but does not decrease significantly.
However, as the window length increases further, the performance
will show a decreasing trend. Thus, when there are too many snap-
shots in the same window compared to the entire dynamic graph,
the aggregated global loss gradient could lose specificity. To sum-
marize, we have examined the effectiveness of each component in
WinGNN through the ablation study, and also shown the influence
on performance caused by the hyper-parameters.

5 RELATEDWORKS
5.1 Dynamic GNNs
Incorporating temporal information and graph dynamics into graph
representation learning has drawn more and more attention which
is motivated by the massive requirements of analyzing real-world
dynamically generated graphs [36, 47]. Based on the types of tem-
poral information to be encoded, dynamic GNN models are de-
signed for either discrete-time or continuous-time [12]. Discrete-
time dynamic graphs usually consist of discrete snapshots which
reflects the periodic changes of the dynamic network, while may
lose the connection information between two different snapshots
[40]. Continuous-time dynamic graphs keep all edges in one graph

3657

WinGNN: Dynamic Graph Neural Networks with Random Gradient Aggregation Window KDD ’23, August 6–10, 2023, Long Beach, CA, USA

with a timestamp label, which can store the whole dynamic net-
work efficiently and completely, but it brings high requirements
for continuous temporal information encoding [25]. However, the
essence of both dynamic GNNs is to encode the temporal dynamics
of the graph into updatable vector representations of nodes, which
is also known as dynamic node embeddings [33], and the learned
embedding can be directly used for many down-streaming tasks
such as recommendation [36] and link prediction [25]. To achieve
such node embedding on dynamic graphs, the most intuitive ap-
proach is using a time-aware encoder to capture graph dynamics
and encode them into node embeddings [15]. These time-aware
encoders could be designed to synthesize node representations at
different times along with the GNN modules. For example, DGNN
[21] introduces an LSTM layer after the graph convolution layer to
directly pass the nodal feature in a sequential manner. EvolveGCN
[24] uses LSTM and GRU to dynamically update weights of internal
GNNs structure, and similar designs of synthesizing feature infor-
mation could also be found in GCRN [28] and T-GCN [48]. Not only
limited to recurrent neural networks (RNNs) including LSTM and
GRU [24], it has also been proved that other time-aware encoders
such as Transformer [26] and autoencoder [6, 31] are also useful in
dynamic node embedding learning.

Modifying the mechanism of message-passing in GNNs is an-
other feasible approach to learning graph dynamics. Instead of
stacking multiple GNN layers after aggregating and propagating
information through multi-hop nodes, message-passing in the dy-
namic graph is designed to propagate stationary distribution over
dynamic path variation [34]. And such message-passing modifi-
cation is also diverse, such as changing the process of propaga-
tion [4], constructing collaborative loss [37], and adjusting the
scale of local structures [11]. However, capturing graph dynamics
with temporal-specific encoders is a resource-consuming opera-
tion. These encoders significantly increase the parameter size of
the model. Because of the changes in the temporal dimension, the
number of edges in dynamic graphs is usually much larger than
that in static graphs with the same scale of nodes. This problem
once again exacerbates the scalability and efficiency shortcomings
introduced by these temporal-specific encoders. Additionally, self-
supervised contrastive learning is also a useful paradigm to learn
dynamic node embedding by considering more appropriate relative
distribution in the temporal dimension, such as DDGCL [33] and
DySubC [11]. However, these methods are difficult to run on large
dynamic graphs due to the high overhead of sampling strategies.

5.2 Meta-Learning on GNNs
Although GNNs have proved to be very powerful for a variety of
graph mining tasks, it still faces the challenge of tasks with very
limited labels. Meta-learning, based on the idea of model transfer,
utilizes the learning experience in previous tasks to quickly adapt
to a new task, which has the potential to solve the problem of
label shortage faced by GNNs [20]. The purpose of the early meta-
learning-based GNN was to use a graph neural network to transmit
label information to unlabeled samples by message-passing through
graph inference [27]. Meta-learning-based GNNs mainly focus on
how to determine the representation type shared across tasks and
how to design effective transfer training strategies. It has been

reported that such designs improve the overall performance under
limited sample size in graphs, such as node classification [49], node
embedding [18], link prediction [9], and graph classification [19].
Specifically, following the general design of Model-Agnostic Meta-
Learning(MAML) [3], the meta-learning-based GNN usually has
an inner-loop strategy to perform task-specific parameter update,
and then shares its partial parameters as common knowledge to
the outer-loop for task transfer learning [8, 38].

Recent meta-learning-based studies have been devoted to model
temporal factors [22, 23]. In this setting, the meta-learning-based
approach regards the data on the existing temporal sequence as the
preliminary task to learn the initial embedding. When the new time
data arrives, the meta-learning model adjusts the model param-
eters quickly according to the fine-tuning strategy. Furthermore,
recently, meta-learning is used to capture dynamic topological
information on graphs [41]. ROLAND framework [44] adopts hier-
archically update modules to update node embedding produced by
the GNN layer through meta live-update. MetaDyGNN [43] utilizes
a meta-learner to model hierarchical time with interval- as well as
node-wise adaptions, extract knowledge for link prediction, and
regard the dynamic networks as few-shot learning task. However,
it should be noted that current studies update model embedding in
a snapshot-by-snapshot manner, which still neglects dynamic in-
formation under different temporal scales and face the over-fitting
issue caused by local optimum.

6 CONCLUSION AND FUTUREWORK
In this study, we propose a simple but effective dynamic GNN
model, WinGNN, by removing parameters for temporal encoding.
Particularly, WinGNN utilizes a randomized sliding-window strat-
egy to learn the graph dynamics at different periodical terms and
uses multi-snapshot gradient optimization to adaptively propagate
periodical loss gradients among dynamic GNN parameters. Then
the frame-wise and window-aware loss gradients are aggregated
to update the GNN, thereby establishing comprehensive dynamic
representation learning of nodes. Based on experiments with six
public dynamic link prediction datasets, we show the proposed
WinGNN achieves state-of-the-art performance by significantly
reducing model parameters compared to existing baselines. Further
exploration study also suggests the effectiveness and robustness
of introducing random sliding window and adaptive loss gradi-
ent aggregation strategy to overcome local optimum caused by
single snapshots in dynamic graphs. Future research directions
are twofold. First, periodic patterns including "far-away" times-
tamps needs to be further extracted. Second, WinGNN’s strategy
also needs to be further applied in continuous-time dynamic graph
modeling.

Acknowledgments. This work was supported by Technology and
Innovation Major Project of the Ministry of Science and Technology
of China under Grant 2020AAA0108400 and 2020AAA0108402, NSF
of China for Distinguished Young Scholars (61825602), NSF of China
(62276148), China Postdoctoral Science Foundation (2022M711814),
Tsinghua-Bosch JointMLCenter, and a research fund fromZhipu.AI.

3658

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yifan Zhu et al.

REFERENCES
[1] Charu C. Aggarwal and Karthik Subbian. 2014. Evolutionary Network Analysis:

A Survey. Comput. Surveys 47, 1 (2014), 10:1–10:36.
[2] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal

Generalized PageRank Graph Neural Network. In 9th International Conference on
Learning Representations, ICLR 2021.

[3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML 2017, Vol. 70. PMLR, 1126–1135.

[4] Dongqi Fu and Jingrui He. 2021. SDG: A Simplified and Dynamic Graph Neu-
ral Network. In The 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2021. ACM, 2273–2277.

[5] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2010, Vol. 9. JMLR.org,
249–256.

[6] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec:
Capturing network dynamics using dynamic graph representation learning.
Knowledge-Based Systems 187 (2020), 104816.

[7] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017.
1024–1034.

[8] KexinHuang andMarinka Zitnik. 2020. GraphMeta Learning via Local Subgraphs.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020.

[9] Dasol Hwang, Jinyoung Park, Sunyoung Kwon, Kyung-Min Kim, Jung-Woo Ha,
and Hyunwoo J. Kim. 2021. Self-supervised Auxiliary Learning for Graph Neural
Networks via Meta-Learning. CoRR abs/2103.00771 (2021). arXiv:2103.00771
https://arxiv.org/abs/2103.00771

[10] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015,, Vol. 37. JMLR,
448–456.

[11] Linpu Jiang, Ke-Jia Chen, and Jingqiang Chen. 2021. Self-Supervised Dy-
namic Graph Representation Learning via Temporal Subgraph Contrast. CoRR
abs/2112.08733 (2021). arXiv:2112.08733 https://arxiv.org/abs/2112.08733

[12] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. 2020. Representation Learning for Dynamic
Graphs: A Survey. Journal of Machine Learning Research 21 (2020), 70:1–70:73.

[13] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Op-
timization. In 3rd International Conference on Learning Representations, ICLR
2015.

[14] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017.

[15] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Em-
bedding Trajectory in Temporal Interaction Networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD 2019. ACM, 1269–1278.

[16] Haoyang Li and Lei Chen. 2021. Cache-based GNN System for Dynamic Graphs.
In The 30th ACM International Conference on Information and Knowledge Man-
agement, CIKM 2021. ACM, 937–946.

[17] Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and
Lujia Pan. 2019. Predicting Path Failure In Time-Evolving Graphs. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2019. ACM, 1279–1289.

[18] Zemin Liu, Wentao Zhang, Yuan Fang, Xinming Zhang, and Steven C. H. Hoi.
2020. Towards Locality-Aware Meta-Learning of Tail Node Embeddings on Net-
works. In The 29th ACM International Conference on Information and Knowledge
Management, CIKM 2020. ACM, 975–984.

[19] Ning Ma, Jiajun Bu, Jieyu Yang, Zhen Zhang, Chengwei Yao, Zhi Yu, Sheng
Zhou, and Xifeng Yan. 2020. Adaptive-Step Graph Meta-Learner for Few-Shot
Graph Classification. In The 29th ACM International Conference on Information
and Knowledge Management, CIKM 2020. ACM, 1055–1064.

[20] Debmalya Mandal, Sourav Medya, Brian Uzzi, and Charu Aggarwal. 2021. Meta-
Learning with Graph Neural Networks: Methods and Applications. CoRR
abs/2103.00137 (2021). arXiv:2103.00137 https://arxiv.org/abs/2103.00137

[21] Franco Manessi, Alessandro Rozza, and Mario Manzo. 2020. Dynamic graph
convolutional networks. Pattern Recognition 97 (2020).

[22] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2020. N-
BEATS: Neural basis expansion analysis for interpretable time series forecasting.
In 8th International Conference on Learning Representations, ICLR 2020.

[23] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2021.
Meta-Learning Framework with Applications to Zero-Shot Time-Series Forecast-
ing. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021. AAAI
Press, 9242–9250.

[24] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020. AAAI
Press, 5363–5370.

[25] Liang Qu, Huaisheng Zhu, Qiqi Duan, and Yuhui Shi. 2020. Continuous-Time
Link Prediction via Temporal Dependent Graph Neural Network. In The Web
Conference 2020, WWW’20. 3026–3032.

[26] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.
DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-
Attention Networks. In The Thirteenth ACM International Conference on Web
Search and Data Mining, WSDM 2020. ACM, 519–527.

[27] Victor Garcia Satorras and Joan Bruna Estrach. 2018. Few-Shot Learning with
Graph Neural Networks. In 6th International Conference on Learning Representa-
tions, ICLR 2018.

[28] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.
2018. Structured Sequence Modeling with Graph Convolutional Recurrent Net-
works. In Neural Information Processing - 25th International Conference, ICONIP
2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part I, Vol. 11301.
Springer, 362–373.

[29] Sadia Shakil, Chin-Hui Lee, and Shella Dawn Keilholz. 2016. Evaluation of
sliding window correlation performance for characterizing dynamic functional
connectivity and brain states. NeuroImage 133 (2016), 111–128.

[30] Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. 2021. Foundations
and Modeling of Dynamic Networks Using Dynamic Graph Neural Networks: A
Survey. IEEE Access 9 (2021), 79143–79168.

[31] Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Hao Peng, Sen Su, and
Philip S. Yu. 2021. Hyperbolic Variational Graph Neural Network for Modeling
Dynamic Graphs. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021. AAAI Press, 4375–4383.

[32] Komal K. Teru, Etienne G. Denis, and William L. Hamilton. 2020. Inductive
Relation Prediction by Subgraph Reasoning. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
Vol. 119. PMLR, 9448–9457.

[33] Sheng Tian, Ruofan Wu, Leilei Shi, Liang Zhu, and Tao Xiong. 2021. Self-
supervised Representation Learning on Dynamic Graphs. In The 30th ACM In-
ternational Conference on Information and Knowledge Management, CIKM 2021.
ACM, 1814–1823.

[34] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019.
DyRep: Learning Representations over Dynamic Graphs. In 7th International
Conference on Learning Representations, ICLR 2019.

[35] Xiyuan Wang and Muhan Zhang. 2022. How Powerful are Spectral Graph Neural
Networks. In International Conference on Machine Learning, ICML 2022, Vol. 162.
PMLR, 23341–23362.

[36] Yifan Wang, Yifang Qin, Fang Sun, Bo Zhang, Xuyang Hou, Ke Hu, Jia Cheng,
Jun Lei, and Ming Zhang. 2022. DisenCTR: Dynamic Graph-based Disentangled
Representation for Click-Through Rate Prediction. In The 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR
2022. ACM, 2314–2318.

[37] Zhihao Wen and Yuan Fang. 2022. TREND: TempoRal Event and Node Dynamics
for Graph Representation Learning. In The ACM Web Conference 2022, WWW
2022. ACM, 1159–1169.

[38] ZhihaoWen, Yuan Fang, and Zemin Liu. 2021. Meta-Inductive Node Classification
across Graphs. In The 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2021. ACM, 1219–1228.

[39] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In
Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
Vol. 97. PMLR, 6861–6871.

[40] Jiayun Wu, Tao Jia, Yansong Wang, and Li Tao. 2022. Significant Ties Graph
Neural Networks for Continuous-Time Temporal Networks Modeling. CoRR
abs/2211.06590 (2022). arXiv:2211.06590

[41] Xintao Xiang, Tiancheng Huang, and Donglin Wang. 2022. Learning to Evolve
on Dynamic Graphs. In Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2022. AAAI Press, 13091–13092.

[42] Yu Xie, Chunyi Li, Bin Yu, Chen Zhang, and Zhouhua Tang. 2020. A Survey on
Dynamic Network Embedding. CoRR abs/2006.08093 (2020). arXiv:2006.08093
https://arxiv.org/abs/2006.08093

[43] Cheng Yang, Chunchen Wang, Yuanfu Lu, Xumeng Gong, Chuan Shi, Wei Wang,
and Xu Zhang. 2022. Few-shot Link Prediction in Dynamic Networks. In The
Fifteenth ACM International Conference on Web Search and Data Mining, WSDM
2022. ACM, 1245–1255.

[44] Jiaxuan You, Tianyu Du, and Jure Leskovec. 2022. ROLAND: Graph Learning
Framework for Dynamic Graphs. In The 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD 2022:. ACM, 2358–2366.

[45] Jiaxuan You, Rex Ying, and Jure Leskovec. 2020. Design Space for Graph Neu-
ral Networks. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020.

3659

https://arxiv.org/abs/2103.00771
https://arxiv.org/abs/2103.00771
https://arxiv.org/abs/2112.08733
https://arxiv.org/abs/2112.08733
https://arxiv.org/abs/2103.00137
https://arxiv.org/abs/2103.00137
https://arxiv.org/abs/2211.06590
https://arxiv.org/abs/2006.08093
https://arxiv.org/abs/2006.08093

WinGNN: Dynamic Graph Neural Networks with Random Gradient Aggregation Window KDD ’23, August 6–10, 2023, Long Beach, CA, USA

[46] Dan Zhang, Yifan Zhu, Yuxiao Dong, Yuandong Wang, Wenzheng Feng, Evgeny
Kharlamov, and Jie Tang. 2023. ApeGNN: Node-Wise Adaptive Aggregation
in GNNs for Recommendation. In Proceedings of the ACM Web Conference 2023,
WWW 2023. 759–769.

[47] Zhaoli Zhang, Zhifei Li, Hai Liu, and Neal N. Xiong. 2022. Multi-Scale Dynamic
Convolutional Network for Knowledge Graph Embedding. IEEE Transactions on
Knowledge and Data Engineering 34, 5 (2022), 2335–2347.

[48] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2020. T-GCN: A Temporal Graph Convolutional Network for Traffic
Prediction. IEEE Transactions on Intelligent Transpartation Systems 21, 9 (2020),

3848–3858.
[49] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and

Ji Geng. 2019. Meta-GNN: On Few-shot Node Classification in Graph Meta-
learning. In The 28th ACM International Conference on Information and Knowledge
Management, CIKM 2019. ACM, 2357–2360.

[50] Yifan Zhu, Xuesong Li, Yufei Qiao, Ruihong Shang, Gen Shi, Yingying Shang,
and Hua Guo. 2021. Widespread plasticity of cognition-related brain networks in
single-sided deafness revealed by randomized window-based dynamic functional
connectivity. Medical Image Analysis 73 (2021), 102163.

3660

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yifan Zhu et al.

Algorithm 1: WinGNN training algorithm
Input :Dynamic graph𝐺 , Node feature 𝑋
Output :Optimized model parameters Θ

1 Initialize Θ ;
2 while Θ does not converge do
3 Randomly generate𝑚 sliding-windows on𝐺 with different

window size 𝑙𝑤 and step size 𝑙𝑠 ;
4 for 𝑖 : 1→𝑚 do
5 for 𝑡 : 𝑖𝑑𝑥 (𝑖) + 1→ 𝑖𝑑𝑥 (𝑖) + 𝑙𝑤 do

// GNN propagation with Θ
6 Calculate the prediction loss: L𝑤𝑖

𝐺𝑡
← Eq. (5)-(7) ;

// Frame-wise parameter update

7 Obtain frame-wise gradient: ∇L𝑤𝑖
𝐺𝑡
← Eq. (8) ;

8 Update on the next snapshot: 𝜃𝑤𝑖
𝑡+1 ← Eq. (9) ;

// Multi-snapshot gradient collection

within sliding-window

9 Obtain window-aware gradient: ∇L̂𝑤𝑖
𝐺𝑡
← Eq. (10) ;

// Multi-snapshot gradient aggregation

10 Aggregate window-aware gradient: ∇L̂𝑤𝑖 ← Eq.(15) ;
11 Update WinGNN: Θ = 𝜃

𝑤𝑖+1
𝑡+1 ← Eq. (16) ;

12 Return Θ.

A IMPLEMENTATION DETAILS
A.1 Training algorithm
The training process of WinGNN is summarized as Algorithm 1,
where 𝑖𝑑𝑥 (𝑖) is a function that returns the index of the 𝑖-th window.

Complexity analysis. The time complexity of WinGNN is at the
same level as existing dynamic GNN models. Suppose |𝑈 | and |E |
are the total number of nodes and edges in the dynamic graph,
𝑑 denotes the dimension of the input embedding of nodes, 𝐹 de-
notes the dimension of node’s embedding, 𝐿 denotes the layers
of GNN, |𝑆 | is the average size of the sliding window, and |𝑇 | is
the total amount of snapshots. Here we only consider the worst
situation. During the training process, the time complexity is the
complexity of GCN (𝑂 (E|𝐹𝐿)) multiplied by the length of windows
as well as the number of windows, i.e., 𝑂 (|E |𝐹𝐿 |𝑆 | |𝑇 |). In contrast,
EvolveGCN uses RNN to learn the evolution of GCN parameters,
thus the complexity is 𝑂 (|𝑇 | |E |𝐹𝐿 + |𝑇 | (𝑑𝐹 + 𝑑2 + 𝑑)). In terms of
ROLAND, the time complexity is the 𝑂 (|𝑇 | |E |𝐹𝐿 + |𝑇 |𝐿𝑃), where
𝑃 depends on the selection of the embedding update module. Addi-
tionally, the running time of WinGNN is observed to be markedly
smaller than EvolveGCN and slightly larger than ROLAND. For
example, the running time of WinGNN on the UCI dataset is 4m26s,
which is between the EvolveGCN (15m37s) and ROLAND (3m3s).
However, it should be noted that running time is a volatile number
that can be affected by a variety of environmental factors.

A.2 Dataset Description
In this paper, we conduct the experiment on six typical public
datasets to perform a comparison between WinGNN and other
baselines. All of these datasets can be obtained from the SNAP
website (https://snap.stanford.edu/) A brief description of these six
datasets is as follows:

• Bitcoin-Alpha and Bitcoin-OTC: These datasets describe di-
rected graphs on anonymous bitcoin transaction platform OTC
and Alpha, where nodes represent user accounts and edges are
the ratings made between users.

• DBLP: The DBLP dataset provides a directed graph to describe
an academic collaboration network, where the nodes are authors
and edges represent co-authored papers.

• Reddit-title: This dataset denotes a directed graph on the Reddit
platform where the node represents the subreddit and the edges
are set according to the items that add hyperlinks linking two
subreddits. The hyperlink in Reddit-title is presented in the title
of the post.

• Stack Overflow: This dataset describes the interactions on Stack
Overflow platform. In this dataset, the nodes represent users
and directed edges denote the answer activity from one user to
another.

• UCI: This dataset presents a directed graph describing message
flow on an online social network at the University of California,
Irvine. In the UCI dataset, nodes denote users and edges are
messages sent between users.

In particular, since different dynamic graphs have different density
distributions on the list snapshots, we show the density variation
of the datasets used in the experiment through Figure 7.

Figure 7: The density of each snapshot on the six datasets.

A.3 Description of Baselines
We performn experiments by comparing the performance with the
following dynamic GNN baselines,

• EvolveGCN [24]: uses an RNN to update internal GNN parame-
ters between snapshots, thereby endowing GNN with the ability
to encode partial temporal information. In this experiment, we
select both versions with different temporal encoders (i.e. LSTM
vs. GRU) and denote them as EvloveGCN-O and EvloveGCN-H.

• DGNN [21]: utilizes a stacked encoder to capture the dynamics of
nodes through LSTM over the encoded representation by GNNs.

• dyngraph2vec [6]: learns the temporal transitions in a dynamic
graph by using an auto-encoder architecture composed of dense
and recurrent layers.

3661

https://snap.stanford.edu/

WinGNN: Dynamic Graph Neural Networks with Random Gradient Aggregation Window KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 4: Comparison of recall@1 and recall@3 on six datasets (% is omitted). The best results and second best are highlighted in
bold and underline, respectively. We repeat the experiment with 10 random seeds and report the average metrics with standard
deviation, noting that OOM. denotes the out-of-memory error when we tried to run the model on our environment.

Dataset Metric EvloveGCN-H EvloveGCN-O DGNN dyngraph2vec ROLAND WinGNN

Bitcoin-Alpha Recall@1 1.20±0.0985 0.79±0.0326 OOM. OOM. 6.89±0.4815 23.26±4.2389
Recall@3 3.13±0.4014 2.11±0.1310 OOM. OOM. 14.78±1.1743 43.21±6.4565

Bitcoin-OTC Recall@1 6.39±0.4020 4.88±0.3454 7.32±0.1588 23.55±1.9817 10.67±0.9296 21.70±0.2256
Recall@3 14.65±0.8830 15.07±1.1589 20.72±1.1342 44.17±4.1239 23.91±2.0352 49.96±3.1181

DBLP Recall@1 0.35±0.0001 0.56±0.0005 OOM. OOM. 2.60±0.0002 2.60±0.0003
Recall@3 1.23±0.0001 1.59±0.0004 OOM. OOM. 6.02±0.0006 6.68±0.0012

Reddit-title Recall@1 0.01±0.0000 0.00±0.0000 OOM. OOM. 22.36±0.0960 16.13±0.0016
Recall@3 0.30±0.0006 0.02±0.0000 OOM. OOM. 40.34±0.1271 33.11±0.1689

Stack Overflow Recall@1 OOM. OOM. OOM. OOM. 19.01±15.1597 18.42±1.3139
Recall@3 OOM. OOM. OOM. OOM. 33.31±26.4391 36.05±2.1176

UCI Recall@1 3.82±0.2325 6.90±0.4602 0.28±0.0002 10.05±0.3551 5.21±1.1867 12.49±0.3434
Recall@3 6.90±0.4603 10.57±0.6043 0.95±0.0005 18.40±0.6450 10.60±0.4220 22.20±0.5227

• ROLAND [44]: stacks an update module (such as MLP and GRU)
with live update mechanism on the traditional GNN layer which
is shown in Figure 2-(B), thereby achieving the SOTA perfor-
mance.

A.4 Evaluation Metrics
We testify the performance of WinGNN and other baselines by
using four metrics with both classification and ranking. A brief
description of these metrics is as follows:

• Accuracy indicates the basic classification ability of the model
by predicting whether there is a link (i.e. edge) between the two
given nodes.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑇 (E ′±) ∩ 𝑅(E

′
±) |

|𝑇 (E ′±) |
, (17)

where 𝑇 (E ′±) denotes all edges (including both positive and neg-
ative) in the test set and 𝑅(E ′±) is the predicted positive and
negative edges by given the head and tail nodes.

• Area Under Curve (AUC) uses the area of receiver operating
characteristic curve (ROC) to evaluate the classification quality.

• Mean Reciprocal Rank (MRR) is a measure of predicting list
which counts reciprocal ranks of the correctly-predicted node in
the whole list.

𝑀𝑅𝑅@𝐾 =
1
𝑁

∑︁
𝑖≤𝐾

1
𝑅𝑎𝑛𝑘 (𝑖) , (18)

where 𝑁 is the node’s number in the test set, and 𝑅𝑎𝑛𝑘 (𝑖) indi-
cates the position of the correct tail node in the list ordered by
the predicting logits.

• Recall measures the extent to which top-K link prediction accu-
rately identifies true nodes.

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =
1
|N |

∑︁
𝑢𝑖 ∈ N

|𝑇 (𝑢𝑖) | ∩ |𝑅(𝑢𝑖) |
|𝑇 (𝑢𝑖) |

, 𝑠 .𝑡 .|𝑅(𝑢𝑖) | = 𝐾, (19)

where𝑇 (𝑢𝑖) and 𝑅(𝑢𝑖) are the labeled and predicted tail node set
by given the head node 𝑢𝑖 , respectively.

A.5 Experiment Setup

RunningEnvironment. Weperform our comparsions on aUbuntu
18.04.2 LTS server with AMD EPYC 7642 48-Core Processor, 1008
GB RAM, and an NVIDIA A100 Tensor Core GPU. WinGNN is
implemented with Python 3.9.7. WinGNN by using the PyTorch
1.9.1 and DGL 0.9.1 framework. We also utilize the modules for data
processing as well as evaluation from GraphGym [45].

Hyper-parameter Settings. There are fourmajor hyper-parameters
in the WinGNN model, which are: the selection of 𝜏 , snapshot
drop rate, embedding size, and sliding-window size. We derive
the optimal performance by searching different parameter set-
ting as follows: 𝜏 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}; snapshot drop rate ∈
{0.1, 0.3, 0.5, 0.7, 0.9}; embedding size ∈ {32, 64, 128, 256}; window
size ∈ {𝑙𝑤 ∈ N|4 ≤ 𝑙𝑤 ≤ 19}. Additionally, the Adam opti-
mizer [13] is used as the optimizer for gradient descent and the
Xavier [5] is utilized as the basic initializer for each parameter
matrix.

B ADDITIONAL RESULTS
We also show the comparison in terms of recall@1 and recall@3
betweenWinGNN and other baselines, and the results are presented
in Table 4.

3662

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Graph Neural Networks
	2.3 Meta-Learning

	3 The WinGNN Model
	3.1 Overview of WinGNN
	3.2 The Frame-Wise Dynamic GNN Unit
	3.3 Randomized Sliding-window Based Multi-snapshot Gradient Optimization
	3.4 Training and Evaluation

	4 Experiment
	4.1 Datasets
	4.2 Baselines and Evaluation Metrics
	4.3 Main Results
	4.4 Exploration of WinGNN

	5 Related Works
	5.1 Dynamic GNNs
	5.2 Meta-Learning on GNNs

	6 Conclusion and Future Work
	References
	A Implementation Details
	A.1 Training algorithm
	A.2 Dataset Description
	A.3 Description of Baselines
	A.4 Evaluation Metrics
	A.5 Experiment Setup

	B Additional Results

