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Abstract

We study the problem of semi-supervised learning on graphs, for which graph
neural networks (GNNs) have been extensively explored. However, most existing
GNNs inherently suffer from the limitations of over-smoothing [6, 23, 24, 30],
non-robustness [48, 45], and weak-generalization when labeled nodes are scarce.
In this paper, we propose a simple yet effective framework—GRAPH RANDOM
NEURAL NETWORKS (GRAND)—to address these issues. In GRAND, we first
design a random propagation strategy to perform graph data augmentation. Then
we leverage consistency regularization to optimize the prediction consistency of
unlabeled nodes across different data augmentations. Extensive experiments on
graph benchmark datasets suggest that GRAND significantly outperforms state-of-
the-art GNN baselines on semi-supervised node classification. Finally, we show
that GRAND mitigates the issues of over-smoothing and non-robustness, exhibiting
better generalization behavior than existing GNNs. The source code of GRAND is
publicly available at https://github.com/Grand20/grand.

1 Introduction

Graphs serve as a common language for modeling structured and relational data [22], such as social
networks, knowledge graphs, and the World Wide Web. Mining and learning graphs can benefit
various real-world problems and applications. The focus of this work is on the problem of semi-
supervised learning on graphs [46, 20, 10], which aims to predict the categories of unlabeled nodes
of a given graph with only a small proportion of labeled nodes. Among its solutions, graph neural
networks (GNNs) [20, 17, 35, 1] have recently emerged as powerful approaches. The main idea of
GNNs lies in a deterministic feature propagation process to learn expressive node representations.

However, recent studies show that such propagation procedure brings some inherent issues: First,
most GNNs suffer from over-smoothing [23, 6, 24, 30]. Li et al. show that the graph convolution
operation is a special form of Laplacian smoothing [23], and consequently, stacking many GNN layers
tends to make nodes’ features indistinguishable. In addition, a very recent work [30] suggests that
the coupled non-linear transformation in the propagation procedure can further aggravate this issue.
Second, GNNs are often not robust to graph attacks [48, 45], due to the deterministic propagation
adopted in most of them. Naturally, the deterministic propagation makes each node highly dependent
with its (multi-hop) neighborhoods, leaving the nodes to be easily misguided by potential data noise
and susceptible to adversarial perturbations.
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The third issue lies in the general setting of semi-supervised learning, wherein standard training
methods (for GNNs) can easily overfit the scarce label information [5]. Most efforts to addressing
this broad issue are focused on how to fully leverage the large amount of unlabeled data. In computer
vision, recent attempts, e.g. MixMatch [3], UDA [40], have been proposed to solve this problem
by designing data augmentation methods for consistency regularized training, which have achieved
great success in the semi-supervised image classification task. This inspires us to apply this idea into
GNNs to facilitate semi-supervised learning on graphs.

In this work, we address these issues by designing graph data augmentation and consistency regulariza-
tion strategies for semi-supervised learning. Specifically, we present the GRAPH RANDOM NEURAL
NETWORKS (GRAND), a simple yet powerful graph-based semi-supervised learning framework.

To effectively augment graph data, we propose random propagation in GRAND, wherein each node’s
features can be randomly dropped either partially (dropout) or entirely, after which the perturbed
feature matrix is propagated over the graph. As a result, each node is enabled to be insensitive
to specific neighborhoods, increasing the robustness of GRAND. Further, the design of random
propagation can naturally separate feature propagation and transformation, which are commonly
coupled with each other in most GNNs. This empowers GRAND to safely perform higher-order feature
propagation without increasing the complexity, reducing the risk of over-smoothing for GRAND. More
importantly, random propagation enables each node to randomly pass messages to its neighborhoods.
Under the assumption of homophily of graph data [26], we are able to stochastically generate different
augmented representations for each node. We then utilize consistency regularization to enforce the
prediction model, e.g., a simple Multilayer Perception (MLP), to output similar predictions on
different augmentations of the same unlabeled data, improving GRAND’s generalization behavior
under the semi-supervised setting.

Finally, we theoretically illustrate that random propagation and consistency regularization can enforce
the consistency of classification confidence between each node and its multi-hop neighborhoods.
Empirically, we also show both strategies can improve the generalization of GRAND, and mitigate the
issues of non-robustness and over-smoothing that are commonly faced by existing GNNs. Altogether,
extensive experiments demonstrate that GRAND achieves state-of-the-art semi-supervised learning
results on GNN benchmark datasets.

2 Problem and Related Work

Let G = (V,E) denote a graph, where V is a set of |V | = n nodes and E ⊆ V × V is a set of |E|
edges between nodes. A ∈ {0, 1}n×n denotes the adjacency matrix of G, with each element Aij = 1
indicating there exists an edge between vi and vj , otherwise Aij = 0.

Semi-Supervised Learning on Graphs. This work focuses on semi-supervised graph learning, in
which each node vi is associated with 1) a feature vector Xi ∈ X ∈ Rn×d and 2) a label vector
Yi ∈ Y ∈ {0, 1}n×C with C representing the number of classes. For semi-supervised classification,
m nodes (0 < m � n) have observed their labels YL and the labels YU of the remaining n−m
nodes are missing. The objective is to learn a predictive function f : G,X,YL → YU to infer the
missing labels YU for unlabeled nodes. Traditional approaches to this problem are mostly based on
graph Laplacian regularizations [46, 44, 27, 38, 2]. Recently, graph neural networks (GNNs) have
emerged as a powerful approach for semi-supervised graph learning, which are reviewed below.

Graph Neural Networks. GNNs [15, 33, 20] generalize neural techniques into graph-structured
data. The core operation in GNNs is graph propagation, in which information is propagated from
each node to its neighborhoods with some deterministic propagation rules. For example, the graph
convolutional network (GCN) [20] adopts the propagation rule H(l+1) = σ(ÂH(l)W(l)), where Â
is the symmetric normalized adjacency matrix, σ(.) denotes the ReLU function, and W(l) and H(l)

are the weight matrix and the hidden node representation in the lth layer with H(0) = X.

The GCN propagation rule could be explained via the approximation of the spectral graph convo-
lutions [4, 18, 8], neural message passing [14], and convolutions on direct neighborhoods [29, 17].
Recent attempts to advance this architecture include GAT [35], GMNN [31], MixHop [1], and
GraphNAS [13], etc. In addition, sampling based techniques have also been developed for fast and
scalable GNN training, such as GraphSAGE [17], FastGCN [7], AS-GCN [19], and LADIES [47].
The sampling based propagation used in those models may also be used as a graph augmentation
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Figure 1: Illustration of GRAND with DropNode as the perturbation method. GRAND designs
random propagation (a) to generate multiple graph data augmentations (b), which are further used as
consistency regularization (c) for semi-supervised learning.

method. However, its potential effects under semi-supervised setting have not been well-studied,
which we try to explore in future work.

Regularization Methods for GNNs. Another line of work has aimed to design powerful regular-
ization methods for GNNs, such as VBAT [9], GraphVAT [11], G3NN [25], GraphMix [36], and
DropEdge [32]. For example, VBAT [9] and GraphVAT [11] first apply consistency regularized
training into GNNs via virtual adversarial training [28], which is highly time-consuming in practice.
GraphMix [36] introduces the MixUp strategy [43] for training GNNs. Different from GRAND,
GraphMix augments graph data by performing linear interpolation between two samples in the
hidden space, and regularizes GNNs by encouraging the model to predict the same interpolation of
corresponding labels.

3 GRAPH RANDOM NEURAL NETWORKS

We present the GRAPH RANDOM NEURAL NETWORKS (GRAND) for semi-supervised learning on
graphs, as illustrated in Figure 1. The idea is to design a propagation strategy (a) to stochastically
generate multiple graph data augmentations (b), based on which we present a consistency regularized
training (c) for improving the generalization capacity under the semi-supervised setting.

3.1 Random Propagation for Graph Data Augmentation

Given an input graph G with its adjacency matrix A and feature matrix X, the random propagation
module generates multiple data augmentations. For each augmentation X, it is then fed into the
classification model, a two-layer MLP, for predicting node labels. The MLP model can also be
replaced with more complex and advanced GNN models, such as GCN and GAT.

Random Propagation. There are two steps in random propagation. First, we generate a perturbed
feature matrix X̃ by randomly dropping out elements in X. Second, we leverage X̃ to perform feature
propagation for generating the augmented features X.

In doing so, each node’s features are randomly mixed with signals from its neighbors. Note that the
homophily assumption suggests that adjacent nodes tend to have similar features and labels [26]. Thus,
the dropped information of a node could be compensated by its neighbors, forming an approximate
representation for it in the corresponding augmentation. In other words, random propagation allows
us to stochastically generate multiple augmented representations for each node.

In the first step, there are different ways to perturb the input data X. Straightforwardly, we can use
the dropout strategy [34], which has been widely used for regularizing neural networks. Specifically,
dropout perturbs the feature matrix by randomly setting some elements of X to 0 during training,
i.e., X̃ij =

εij
1−δXij , where εij draws from Bernoulli(1− δ). In doing so, dropout makes the input

feature matrix X noisy by randomly dropping out its elements without considering graph structures.
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To account for the structural effect, we can simply remove some nodes’ entire feature vectors—
referred to as DropNode, instead of dropping out single feature elements. In other words, DropNode
enables each node to only aggregate information from a subset of its (multi-hop) neighbors by
completely ignoring some nodes’ features, which reduces its dependency on particular neighbors and
thus helps increase the model’s robustness (Cf. Section 4.5). Empirically, it generates more stochastic
data augmentations and achieves better performance than dropout (Cf. Section 4.2).

Formally, in DropNode, we first randomly sample a binary mask εi ∼ Bernoulli(1− δ) for each
node vi. Second, we obtain the perturbed feature matrix X̃ by multiplying each node’s feature vector
with its corresponding mask, i.e., X̃i = εi ·Xi where Xi denotes the ith row vector of X. Finally,
we scale X̃ with the factor of 1

1−δ to guarantee the perturbed feature matrix is in expectation equal to
X. Note that the sampling procedure is only performed during training. During inference, we directly
set X̃ as the original feature matrix X.

In the second step of random propagation, we adopt the mixed-order propagation, i.e., X = AX̃,
where A =

∑K
k=0

1
K+1Â

k is the average of the power series of Â from order 0 to order K. This
propagation rule enables the model to incorporate more local information, reducing the risk of
over-smoothing when compared with directly using ÂK [1, 41]. Note that calculating the dense
matrix A is computationally inefficient, thus we compute X by iteratively calculating and summing
up the product of sparse matrix Â and ÂkX̃ (0 ≤ k ≤ K − 1) in implementation.

With this propagation rule, we could observe that DropNode (dropping the ith row of X) is equivalent
to dropping the ith column of A. This is similar to DropEdge [32], which aims to address over-
smoothing by randomly removing some edges. In practice, DropEdge could also be adopted as the
perturbation method here. Specifically, we first generate a corrupted adjacency matrix Ã by dropping
some elements from Â, and then use Ã to perform mix-order propagation as the substitute of Â at
each epoch. We empirically compare the effects of different perturbation methods in Section 4.2. By
default, we use DropNode as the perturbation method.

Prediction. After performing random propagation for S times, we generate S augmented feature
matrices {X(s)|1 ≤ s ≤ S}. Each of these augmented data is fed into a two-layer MLP to get the
corresponding outputs:

Z̃(s) = fmlp(X
(s)
,Θ),

where Z̃(s) ∈ [0, 1]n×C denotes the prediction probabilities on X
(s)

and Θ are the model parameters.

Observing the data flow from random propagation to the prediction module, it can be realized that
GRAND actually separates the feature propagation step, i.e., X = AX̃, and transformation step, i.e.,
fmlp(XW,Θ). Note that these two steps are commonly coupled with each other in standard GNNs,
that is, σ(AXW). This separation allows us to perform the high-order feature propagation without
conducting non-linear transformations, reducing the risk of over-smoothing (Cf. Section 4.6). A
similar idea has been adopted by Klicpera et al. [21], with the difference that they first perform the
prediction for each node and then propagate the prediction probabilities over the graph.

3.2 Consistency Regularized Training

In graph based semi-supervised learning, the objective is usually to smooth the label information over
the graph with regularizations [46, 38, 20], i.e., its loss function is a combination of the supervised
loss on the labeled nodes and the graph regularization loss. Given the S data augmentations generated
in random propagation, we can naturally design a consistency regularized loss for GRAND’s semi-
supervised learning.

Supervised Loss. With m labeled nodes among n nodes, the supervised objective of the graph node
classification task in each epoch is defined as the average cross-entropy loss over S augmentations:

Lsup = − 1

S

S∑
s=1

m−1∑
i=0

Y>i log Z̃
(s)
i . (1)

Consistency Regularization Loss. In the semi-supervised setting, we propose to optimize the
prediction consistency among S augmentations for unlabeled data. Considering a simple case of S =
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Algorithm 1 GRAND

Input:
Adjacency matrix Â, feature matrix X ∈ Rn×d, times of augmentations in each epoch S, DropNode/dropout
probability δ, learning rate η, an MLP model: fmlp(X,Θ).

Output:
Prediction Z.

1: while not convergence do
2: for s = 1 : S do
3: Pertube the input: X̃(s) ∼ DropNode(X, δ).
4: Perform propagation: X

(s)
= 1

K+1

∑K
k=0 Â

kX̃(s).

5: Predict class distribution using MLP: Z̃(s) = fmlp(X
(s)
,Θ)

6: end for
7: Compute supervised classification loss Lsup via Eq. 1 and consistency regularization loss via Eq. 3.
8: Update the parameters Θ by gradients descending: Θ = Θ− η∇Θ(Lsup + λLcon)
9: end while

10: Output prediction Z via: Z = fmlp( 1
K+1

∑K
k=0 Â

kX,Θ).

2, we can minimize the squared L2 distance between the two outputs, i.e., min
∑n−1
i=0 ‖Z̃

(1)
i − Z̃

(2)
i ‖22.

To extend this idea into the multiple-augmentation situation, we first calculate the label distribution
center by taking the average of all distributions, i.e., Zi = 1

S

∑S
s=1 Z̃

(s)
i . Then we utilize the

sharpening [3] trick to “guess” the labels based on the average distributions. Specifically, the ith
node’s guessed probability on the jth class is calculated by:

Z
′

ij = Z
1
T
ij

/ C−1∑
c=0

Z
1
T
ic , (0 ≤ j ≤ C − 1), (2)

where 0 < T ≤ 1 acts as the “temperature” that controls the sharpness of the categorical distribution.
As T → 0, the sharpened label distribution will approach a one-hot distribution. We minimize the

distance between Z̃i and Z
′

i in GRAND:

Lcon =
1

S

S∑
s=1

n−1∑
i=0

‖Z
′

i − Z̃
(s)
i ‖

2
2. (3)

Therefore, by setting T as a small value, we can enforce the model to output low-entropy predictions.
This can be viewed as adding an extra entropy minimization regularization into the model, which
assumes that the classifier’s decision boundary should not pass through high-density regions of the
marginal data distribution [16].

Training and Inference. In each epoch, we employ both the supervised classification loss in Eq. 1
and the consistency regularization loss in Eq. 3 on S augmentations. The final loss of GRAND is:

L = Lsup + λLcon, (4)

where λ is a hyper-parameter that controls the balance between the two losses. Algorithm 1 outlines
GRAND’s training process. During inference, as mentioned in Section 3.1, we directly use the original
feature X for propagation. This is justified because we scale the perturbed feature matrix X̃ during
training to guarantee its expectation to match X. Hence the inference formula is Z = fmlp(AX,Θ).

Complexity. The complexity of random propagation is O(Kd(n+ |E|)), where K denotes propaga-
tion step, d is the dimension of node feature, n is the number of nodes and |E| denotes edge count.
The complexity of its prediction module (two-layer MLP) is O(ndh(d+ C)), where dh denotes its
hidden size and C is the number of classes. By applying consistency regularized training, the total
computational complexity of GRAND is O(S(Kd(n+ |E|) + ndh(d+ C))), which is linear with
the sum of node and edge counts.

Limitations. GRAND is based on the homophily assumption [26], i.e., “birds of a feather flock
together”, a basic assumption in the literature of graph-based semi-supervised learning [46]. Due to
that, however, GRAND may not succeed on graphs with less homophily.
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3.3 Theoretical Analysis

We theoretically discuss the regularization effects brought by random propagation and consistency
regularization in GRAND. For analytical simplicity, we assume that the MLP used in GRAND has
one single output layer, and the task is binary classification. Thus we have Z̃ = sigmoid(AX̃ ·W),
where W ∈ Rd is the learnable parameter vector. For the ith node, the corresponding conditional
distribution is z̃yii (1− z̃i)1−yi , in which z̃i ∈ Z̃ and yi ∈ {0, 1} denotes the corresponding label.

As for the consistency regularization loss, we consider the simple case of generating S = 2 augmen-

tations. Then the loss Lcon = 1
2

∑n−1
i=0

(
z̃
(1)
i − z̃

(2)
i

)2
, where z̃(1)i and z̃(2)i represent the model’s

two outputs on node i corresponding to the two augmentations, respectively.

With these assumptions, we have the following theorem with proofs in Appendix B.1.

Theorem 1. In expectation, optimizing the unsupervised consistency loss Lcon is approximate to
optimize a regularization term: Eε (Lcon) ≈ Rc(W) =

∑n−1
i=0 z

2
i (1− zi)2Varε

(
AiX̃ ·W

)
.

DropNode Regularization. With DropNode as the perturbation method, we can easily check that
Varε(AiX̃ ·W) = δ

1−δ
∑n−1
j=0 (Xj ·W)2(Aij)

2, where δ is drop rate. Then the corresponding
regularization termRcDN can be expressed as:

Rc
DN (W) =

δ

1− δ

n−1∑
j=0

[
(Xj ·W)2

n−1∑
i=0

(Aij)
2z2

i (1− zi)2

]
. (5)

Note that zi(1− zi) (or its square) is an indicator of the classification uncertainty for the ith node,
as zi(1 − zi) (or its square) reaches its maximum at zi = 0.5 and minimum at zi = 0 or 1. Thus∑m−1
i=0 (Aij)

2z2i (1 − zi)2 can be viewed as the weighted average classification uncertainty over
the jth node’s multi-hop neighborhoods with the weights as the square values of A’s elements,
which is related to graph structure. On the other hand, (Xj ·W)2—as the square of the input of
sigmoid—indicates the classification confidence for the jth node. In optimization, in order for a node
to earn a higher classification confidence (Xj ·W)2, it is required that the node’s neighborhoods
have lower classification uncertainty scores. Hence, the random propagation with the consistency
regularization loss can enforce the consistency of the classification confidence between each node
and its multi-hop neighborhoods.

Dropout Regularization. With X perturbed by dropout, the variance term Varε(AiX̃ ·W) =
δ

1−δ
∑n−1
j=0

∑d−1
k=0 X

2
jkW

2
k(Aij)

2. The corresponding regularization termRcDo is

Rc
Do(W) =

δ

1− δ

d−1∑
h=0

W2
h

n−1∑
j=0

[
X2

jh

n−1∑
i=0

z2
i (1− zi)2(Aij)

2

]
. (6)

Similar to DropNode, this extra regularization term also includes the classification uncertainty
zi(1−zi) of neighborhoods. However, we can observe that different from the DropNode regularization,
dropout is actually an adaptive L2 regularization for W, where the regularization coefficient is
associated with unlabeled data, classification uncertainty, and the graph structure.

Previous work [37] has also drawn similar conclusions for the case of applying dropout in generalized
linear models.

By applying the Cauchy-Schwarz Inequality, we haveRcDo ≥ RcDN [Erratum at Sep 20, 2021: This
statement was falsely claimed and thus should be ignored]. That is to say, dropout’s regularization
term is the upper bound of DropNode’s. By minimizing this term, dropout can be regarded as an
approximation of DropNode.

Random propagation w.r.t supervised classification loss. We also discuss the regularization effect
of random propagation with respect to the supervised classification loss.

With the previous assumptions, the supervised classification loss is: Lsup =
∑m−1
i=0 −yi log(z̃i)−

(1 − yi) log(1 − z̃i). Note that Lsup refers to the perturbed classification loss with DropNode
on the node features. By contrast, the original (non-perturbed) classification loss is defined as:
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Lorg =
∑m−1
i=0 −yi log(zi) − (1 − yi) log(1 − zi), where zi = sigmoid(AiX ·W) is the output

with the original feature matrix X. Then we have the following theorem with proof in Appendix B.2.

Theorem 2. In expectation, optimizing the perturbed classification loss Lsup is equivalent to
optimize the original loss Lorg with an extra regularization term R(W), which has a quadratic

approximation formR(W) ≈ Rq(W) = 1
2

∑m−1
i=0 zi(1− zi)Varε

(
AiX̃ ·W

)
.

This theorem suggests that DropNode brings an extra regularization loss to the optimization objective.
Expanding the variance term, this extra quadratic regularization loss can be expressed as:

Rq
DN (W) =

1

2

δ

1− δ

n−1∑
j=0

[
(Xj ·W)2

m−1∑
i=0

(Aij)
2 zi(1− zi)

]
. (7)

Different fromRcDN in Eq. 5, the inside summation term in Eq. 7 only incorporates the first m nodes,
i.e, the labeled nodes.

4 Experiments

4.1 Experimental Setup

We follow exactly the same experimental procedure—such as features and data splits—as the standard
GNN settings on semi-supervised graph learning [42, 20, 35]. The setup and reproducibility details
are covered in Appendix A.

Datasets. We conduct experiments on three benchmark graphs [42, 20, 35]—Cora, Citeseer, and
Pubmed—and also report results on six publicly available and large datasets in Appendix C.1.

Baselines. By default, we use DropNode as the perturbation method in GRAND and compare it with
14 GNN baselines representative of three different categories, as well as its variants:

• Eight graph convolutions: GCN [20], GAT [35], APPNP [21], Graph U-Net [12], SGC [39],
MixHop [1], GMNN [31] and GrpahNAS [13].
• Two sampling based GNNs: GraphSAGE [17] and FastGCN [7].

• Four regularization based GNNs: VBAT [9], G3NN [25], GraphMix [36] and Dropedge [32]. We
report the results of these methods with GCN as the backbone model.
• Four GRAND variants: GRAND_dropout, GRAND_DropEdge, GRAND_GCN and GRAND_GAT.

In GRAND_dropout and GRAND_DropEdge, we use dropout and DropEdge as the perturbation
method respectively, instead of DropNode. In GRAND_GCN and GRAND_GAT, we replace MLP
with more complex models, i.e., GCN and GAT, respectively.

4.2 Overall Results

Table 1 summarizes the prediction accuracies of node classification. Following the community
convention [20, 35, 31], the results of baselines are taken from the original works [20, 35, 12, 1, 13, 9,
25, 36, 32, 21]. The results of GRAND are averaged over 100 runs with random weight initializations.

From the top part of Table 1, we can observe that GRAND consistently achieves large-margin
outperformance over all baselines across all datasets. Note that the improvements of GRAND over
other baselines are all statistically significant (p-value � 0.01 by a t-test). Specifically, GRAND
improves upon GCN by a margin of 3.9%, 5.1%, and 3.7% (absolute differences) on Cora, Citeseer,
and Pubmed, while the margins improved by GAT upon GCN were 1.5%, 2.2%, and 0%, respectively.
When compared to the very recent regularization based model—DropEdge, the proposed model
achieves 2.6%, 3.1%, and 3.1% improvements, while DropEdge’s improvements over GCN were only
1.3%, 2.0%, and 0.6%, respectively. To better examine the effectiveness of GRAND in semi-supervised
setting, we further evaluate GRAND under different label rates in Appendix C.6.

We observe GRAND_dropout and GRAND_DropEdge also outperform most of baselines, though still
lower than GRAND. This indicates DropNode is the best way to generate graph data augmentations
in random propagation. Detailed experiments to compare DropNode and dropout under different
propagation steps K are shown in Appendix C.4.
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We interpret the performance of GRAND_GAT, GRAND_GCN from two perspectives. First, both
GRAND_GAT and GRAND_GCN outperform the original GCN and GAT models, demonstrating the
positive effects of the proposed random propagation and consistency regularized training methods.
Second, both of them are inferior to GRAND with the simple MLP model, suggesting GCN and GAT
are relatively easier to over-smooth than MLP. More analyses can be found in Appendix C.5.

Method Cora Citeseer Pubmed

GCN [20] 81.5 70.3 79.0
GAT [35] 83.0±0.7 72.5±0.7 79.0±0.3

APPNP [21] 83.8±0.3 71.6± 0.5 79.7± 0.3
Graph U-Net [12] 84.4±0.6 73.2±0.5 79.6±0.2

SGC [39] 81.0±0.0 71.9± 0.1 78.9± 0.0
MixHop [1] 81.9± 0.4 71.4±0.8 80.8±0.6
GMNN [31] 83.7 72.9 81.8

GraphNAS [13] 84.2±1.0 73.1±0.9 79.6±0.4

GraphSAGE [17] 78.9±0.8 67.4±0.7 77.8±0.6
FastGCN [7] 81.4±0.5 68.8±0.9 77.6±0.5

VBAT [9] 83.6±0.5 74.0±0.6 79.9±0.4
G3NN [25] 82.5±0.2 74.4±0.3 77.9±0.4

GraphMix [36] 83.9±0.6 74.5±0.6 81.0±0.6
DropEdge [32] 82.8 72.3 79.6

GRAND_dropout 84.9±0.4 75.0±0.3 81.7±1.0
GRAND_DropEdge 84.5±0.3 74.4±0.4 80.9±0.9

GRAND_GCN 84.5±0.3 74.2±0.3 80.0±0.3
GRAND_GAT 84.3±0.4 73.2± 0.4 79.2±0.6

GRAND 85.4±0.4 75.4±0.4 82.7±0.6

w/o CR 84.4±0.5 73.1±0.6 80.9±0.8
w/o mDN 84.7±0.4 74.8±0.4 81.0±1.1
w/o sharpening 84.6±0.4 72.2±0.6 81.6±0.8
w/o CR & DN 83.2±0.5 70.3±0.6 78.5±1.4

Table 1: Overall classification accuracy (%).
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Figure 2: Generalization on Cora (x: epoch).

4.3 Ablation Study

We conduct an ablation study to examine the contributions of different components in GRAND.

• Without consistency regularization (CR): We only use the supervised classification loss, i.e., λ = 0.

• Without multiple DropNode (mDN): Do DropNode once at each epoch, i.e., S = 1, meaning that CR only
enforces the model to give low-entropy predictions for unlabeled nodes.

• Without sharpening: The sharpening trick in Eq. 2 is not used in getting the distribution center, i.e., T = 1.

• Without CR and DropNode (CR & DN): Remove DropNode (as a result, the CR loss is also removed), i.e.,
δ = 0, λ = 0. In this way, GRAND becomes the combination of deterministic propagation and MLP.

In Table 1, the bottom part summarizes the results of the ablation study, from which we have two
observations. First, all GRAND variants with some components removed witness clear performance
drops when comparing to the full model, suggesting that each of the designed components contributes
to the success of GRAND. Second, GRAND without consistency regularization outperforms almost
all eight non-regularization based GCNs and DropEdge in all three datasets, demonstrating the
significance of the proposed random propagation technique for semi-supervised graph learning.

4.4 Generalization Analysis

We examine how the proposed techniques—random propagation and consistency regularization—
improve the model’s generalization capacity. To achieve this, we analyze the model’s cross-entropy
losses on both training and validation sets on Cora. A small gap between the two losses indicates a
model with good generalization. Figure 2 reports the results for GRAND and its two variants. We can
observe the significant gap between the validation and training losses when without both consistency
regularization (CR) and random propagation (RP), indicating an obvious overfitting issue. When
applying only the random propagation (without CR), the gap becomes much smaller. Finally, when
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further adding the CR loss to make it the full GRAND model, the validation loss becomes much
closer to the training loss and both of them are also more stable. This observation demonstrates
both the random propagation and consistency regularization can significantly improve GRAND’s
generalization capability.

4.5 Robustness Analysis

We study the robustness of GRAND by generating perturbed graphs with two adversarial attack meth-
ods: Random Attack perturbs the graph structure by randomly adding fake edges, and Metattack [49]
attacks the graph by removing or adding edges based on meta learning.

Figure 3 presents the classification accuracies of different methods with respect to different pertur-
bation rates on the Cora dataset. We observe that GRAND consistently outperforms GCN and GAT
across all perturbation rates on both attacks. When adding 10% new random edges into Cora, we
observe only a 7% drop in classification accuracy for GRAND, while 12% for GCN and 37% for
GAT. Under Metattack, the gap between GRAND and GCN/GAT also enlarges with the increase of
the perturbation rate. This study suggests the robustness advantage of the GRAND model (with or
without) consistency regularization over GCN and GAT.

(a) Random Attack (b) Metattack
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Figure 3: Robustness Analysis on Cora.
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Figure 4: Over-Smoothing on Cora

4.6 Over-Smoothing Analysis

Many GNNs face the over-smoothing issue—nodes with different labels become indistinguishable—
when enlarging the feature propagation steps [23, 6]. We study how vulnerable GRAND is to this
issue by using MADGap [6], a measure of the over-smoothness of node representations. A smaller
MADGap value indicates the more indistinguishable node representations and thus a more severe
over-smoothing issue.

Figure 4 shows both the MADGap values of the last layer’s representations and classification results
w.r.t. different propagation steps. In GRAND, the propagation step is controlled by the hyperparameter
K, while for GCN and GAT, it is adjusted by stacking different hidden layers. The plots suggest that
as the propagation step increases, both metrics of GCN and GAT decrease dramatically—MADGap
drops from∼0.5 to 0 and accuracy drops from 0.75 to 0.2—due to the over-smoothing issue. However,
GRAND behaves completely different, i.e., both the performance and MADGap benefit from more
propagation steps. This indicates that GRAND is much more powerful to relieve over-smoothing,
when existing representative GNNs are very vulnerable to it.

5 Conclusions

In this work, we study the problem of semi-supervised learning on graphs and present the GRAPH
RANDOM NEURAL NETWORKS (GRAND). In GRAND, we propose the random propagation strategy
to stochastically generate multiple graph data augmentations, based on which we utilize consistency
regularization to improve the model’s generalization on unlabeled data. We demonstrate its consistent
performance superiority over fourteen state-of-the-art GNN baselines on benchmark datasets. In
addition, we theoretically illustrate its properties and empirically demonstrate its advantages over
conventional GNNs in terms of robustness and resistance to over-smoothing. To conclude, the
simple and effective ideas presented in GRAND may generate a different perspective in GNN design,
in particular for semi-supervised graph learning. In future work, we aim to further improve the
scalability of GRAND with some sampling methods.
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Broader Impact

Over the past years, GNNs have been extensively studied and widely used for semi-supervised graph
learning, with the majority of efforts devoted to designing advanced and complex GNN architectures.
Instead of heading towards that direction, our work focuses on an alternative perspective by examining
whether and how simple and traditional machine learning (ML) techniques can help overcome
the common issues that most GNNs faced, including over-smoothing, non-robustness, and weak
generalization.

Instead of the nonlinear feature transformations and advanced neural techniques (e.g., attention), the
presented GRAND model is built upon dropout (and its simple variant), linear feature propagation,
and consistency regularization—the common ML techniques. Its consistent and significant outper-
formance over 14 state-of-the-art GNN baselines demonstrates the effectiveness of our alternative
direction. In addition, our results also echo the recent discovery in SGC [39] to better understand
the source of GCNs’ expressive power. More importantly, these simple ML techniques in GRAND
empower it to be more robust, better avoid over-smoothing, and offer stronger generalization than
GNNs.

In light of these advantages, we argue that the ideas in GRAND offer a different perspective in
understanding and advancing GNN based semi-supervised learning. For future research in GNNs,
in addition to designing complex architectures, we could also invest in simple and traditional graph
techniques under the regularization framework which has been widely used in (traditional) semi-
supervised learning.
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