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Abstract. In online social networks, most relationships are lack of
meaning labels (e.g., “colleague” and “intimate friends” ), simply because
users do not take the time to label them. An interesting question is: can
we automatically infer the type of social relationships in a large network?
what are the fundamental factors that imply the type of social relation-
ships? In this work, we formalize the problem of social relationship learn-
ing into a semi-supervised framework, and propose a Partially-labeled
Pairwise Factor Graph Model (PLP-FGM) for learning to infer the type
of social ties. We tested the model on three different genres of data sets:
Publication, Email and Mobile. Experimental results demonstrate that
the proposed PLP-FGM model can accurately infer 92.7% of advisor-
advisee relationships from the coauthor network (Publication), 88.0% of
manager-subordinate relationships from the email network (Email), and
83.1% of the friendships from the mobile network (Mobile). Finally, we
develop a distributed learning algorithm to scale up the model to real
large networks.

1 Introduction

With the success of many large-scale online social networks, such as Facebook,
MySpace, and Twitter, and the rapid growth of mobile social networks such as
FourSquare, online social network has become a bridge between our real daily
life and the virtual web space. Facebook, one of the largest social networks, has
more than 600 million active users in Jan 2011; Foursquare, a location-based
mobile social network, has attracted 6 million registered users by the end of
2010. Just to mention a few, there is little doubt that most of our friends are
online now. Considerable research has been conducted on social network analy-
sis [1,7,18,21], dynamic evolution analysis [13], social influence analysis [5,12,
23], and social behavior analysis [20,22]. However, most of these works ignore
one important fact that makes the online social networks very different from the
physical social networks, i.e., our physical social networks are colorful (“family
members”, “colleagues”, and “classmates”) but the online social networks are
still black-and-white: the users merely do not take the time to label the rela-
tionships. Indeed, statistics show that only 16% of mobile phone users in Europe

* The work is supported by the Natural Science Foundation of China (No.
61073073, No. 60973102), Chinese National Key Foundation Research (No. 60933013,
No0.61035004).



2 Wenbin Tang, Honglei Zhuang, and Jie Tang

........... Colleagues
= = = Friends
= Family

Both in office
08:00 - 18:00

/
From Office From Office
15:20 17:55

From Home
08:40

From Office
11:35

e ST
From Outside
21:30

Fig. 1. An example of relationship mining in mobile communication network. The
left figure is the input of our problem, and the right figure is the objective of the
relationship mining task.

have created custom contact groups [20,10] and less than 23% connections on
LinkedIn have been labeled. Identification of the type of social relationships can
benefit many applications. For example, if we could have extracted friendships
between users from the mobile communication network, we can leverage the
friendships for a “word-of-mouth” promotion of a new product [12].

In this work, we investigate to what extent social relationships can be in-
ferred from the online social networks: E.g., given users’ behavior history and
interactions between users, can we estimate how likely they are to be family
members? There exist a few related studies. For example, Diehl et al. [4] try
to identify the relationships by learning a ranking function. Wang et al. [26]
propose an unsupervised algorithm for mining the advisor-advisee relationships
from the publication network. However, both algorithms focus on a specific do-
main (Email network in [4] and Publication network in [26]) and are not easy to
extend to other domains. It is well recognized that the type of users’ relation-
ships in a social network can be implied by various complex and subtle factors
[9, 14]. One challenging question is: can we design a unified model so that it can
be easily applied to different domains?

Motivating Examples To illustrate the problem, Figure 1 gives an example
of relationship mining in mobile calling network. The left figure is the input of
our problem: a mobile social network, which consists of users, calls and messages
between users, and users’ location logs, etc. Our objective is to infer the type
of the relationships in the network. In the right figure, the users who are family
members are connected with a red-colored line, friends are connected with a
blue-colored dash line, and colleagues are connected with a green-colored dotted
line. The probability associated with each relationship represents our confidence
on the detected relationship types.

Thus, the problem becomes how to design a flexible model for effectively and
efficiently mining relationship types in different networks. This problem is non-
trivial and poses a set of unique challenges. First, what are the underlying factors
that may determine a specific type of social relationship. Second, the input social
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network is partially labeled. We may have some labeled relationships, but most
of the relationships are unknown. To learn a high-quality predictive model, we
should not only consider the knowledge provided by the labeled relationships, but
also leverage the unlabeled network information. Finally, real social networks are
getting bigger with thousands even millions of nodes. It is important to develop
a method that can scale well to real large networks.

Contributions In this paper, we try to conduct a systematic investigation
of the problem of inferring social relationship types in large networks with the
following contributions:

— We formally formulate the problem of inferring social relationship in large
networks, and propose a partially-labeled pairwise factor graph model (PLP-
FGM).

— We present a distributed implementation of the learning algorithm based on
MPT (Message-Passing Interface) to scale up to large networks.

— We conduct experiments on three different data sets: Publication, Email,
Mobile network. Experimental results show that the proposed PLP-FGM
model can be applied to the different scenarios and clearly achieves better
performance than several alternative models.

The rest of paper is organized as follows. Section 2 formally formulates the
problem; Section 3 explains the PLP-FGM model; Section 4 gives experimental
results; Finally, Section 5 discusses related work and Section 6 concludes.

2 Problem Definition

In this section, we first give several necessary definitions and then present the
problem formulation.

A social network can be represented as G = (V, E), where V is the set of
|V| = N users and E C V x V is the set of |E| = M relationships between users.
The objective of our work is to learn a model that can effectively infer the type
of social relationships between two users. To begin with, let us first give a formal
definition of the output of the problem, namely “relationship semantics”.

Definition 1. Relationship semantics: Relationship semantics is a triple
(€ij,7ij,Pij), where e;; € E is a social relationship, r;; € Y is a label associ-
ated with the relationship, and p;; is the probability (confidence) obtained by an
algorithm for inferring relationship type.

Social relationships might be undirected in some networks (e.g., the friend-
ship discovered from the mobile calling network) or directed in other networks
(e.g., the advisor-advisee relationship in the publication network). To be con-
sistent, we define all social relationships as directed relationships. In addition,
relationships may be static (e.g., the family-member relationship) or change over
time (e.g., colleague relationship). In this work, we focus on static relationships,
and leave the dynamic case to our future work.
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To infer relationship semantics, we could consider different factors such as
user-specific information, link-specific information, and global constraints. For
example, to discover advisor-advisee relationships from a publication network,
we can consider how many papers were coauthored by two authors; how many
papers in total an author has published; when the first paper was published
by each author. Besides, there may already exist some labeled relationships.
Formally, we can define the input of our problem, a partially labeled network.

Definition 2. Partially labeled network: A partially labeled network is an
augmented social network denoted as G = (V,EY, EV, RE, W), where E* is
a set of labeled relationships and EU is a set of unlabeled relationships with
EYUEY = E; RY is a set of labels corresponding to the relationships in EX; W
18 an attribute matriz associated with users in V. where each row corresponds to
a user, each column an attribute, and an element w;; denotes the value of the
jtP attribute of user v;.

Based on the above concepts, we can define the problem of inferring social
relationships. Given a partially labeled network, the goal is to detect the types
(labels) of all unknown relationships in the network. More precisely,

Problem 1. Social relationship mining. Given a partially labeled network
G = (V,EY, EY, RY, W), the objective is to learn a predictive function

f:G=(V,E" EY,R*, W) - R

Our formulation of inferring social relationships is very different from existing
works on relation mining [3]. They focus on detecting the relationships from
the content information, while we focus on mining relationship semantics in
social networks. Both Diehl et al.[4] and Wang et al.[26] investigate the problem
of relationship identification. However, they focus on the problem in specific
domains (Email network or Publication network).

3 Partially-Labeled Pairwise Factor Graph Model
(PLP-FGM)

3.1 Basic Idea

In general, there are two ways to model the problem. The first way is to model
each user as a node and for each node we try to estimate probability distributions
of different relationships from the user to her neighborhood nodes in the social
network. The graphical model consists of N variable nodes. Each node contains
a d x |Y| matrix to represent the probability distributions of different relation-
ships between the user and her neighbors, where d is the number of neighbors
of the node. This model is intuitive, but it suffers from some limitations. For
example, it is difficult to model the correlations between two relationships, and
its computational complexity is high. An alternative way is to model each re-
lationship as a node in the graphical model and the relationship mining task
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relationships

Fig. 2. Graphical representation of the PLP-FGM model.

becomes how to predict the semantic label for each relationship node in the
model. This model contains M nodes (2M when the input social network is
undirected). More importantly, this model is able to incorporate different corre-
lations between relationships.

For inferring the type of social relationships, we have three basic intuitions.
First, the user-specific or link-specific attributes will contain implicit informa-
tion about the relationships. For example, two users who made a number of calls
in working hours might be colleagues; while two users who frequently contact
with each other in the evening are more likely to be family members or intimate
friends. Second, relationships of different users may have a correlation. For ex-
ample, in the mobile network, if user v; makes a call to user v; immediately after
calling user vg, then user v; may have a similar relationship (family member or
colleague) with user v; and user vg. Third, we need also consider some global
constraints such as common knowledge or user-specific constraints.

3.2 Partially-Labeled Pairwise Factor Graph Model (PLP-FGM)

Based on the above intuitions, we propose a partially-labeled pairwise factor
graph model (PLP-FGM). Figure 2 shows the graphical representation of the
PLP-FGM. Each relationship (v;,,v;,) or e;,;, in partially labeled network G
is mapped to a relationship node r; in PLP-FGM. We denote the set of rela-
tionship nodes as Y = {y1,92,...,ynm}. The relationships in G are partially
labeled, thus all nodes in PLP-FGM can be divided into two subsets Y and
YV, corresponding to the labeled and unlabeled relationships respectively. For
each relationship node y; = (vi,, Vi, 7,4, ), We combine the attributes {w; , w;,}
into a relationship attribute vector x;.

Now we explain the PLP-FGM in detail. The relationships in the input are
modeled by relationship nodes in PLP-FGM. Corresponding to the three intu-
itions, we define the following three factors.
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— Attribute factor: f(y;,x;) represents the posterior probability of the rela-
tionship y; given the attribute vector x;;

— Correlation factor: g(y;, G(y;)) denotes the correlation between the relation-
ships, where G(y;) is the set of correlated relationships to y;.

— Constraint factor: h(y;, H(y;)) reflects the constraints between relationships,
where H(y;) is the set of relationships constrained on y;.

Given a partially-labeled network G = (V, EL, EV R, W), we can define
the joint distribution over Y as

p(Y|G) = nyz,xz 9(yi, G(yi))h(yi, H(y:)) 1)

The three factors can be instantiated in different ways. In this paper, we use
exponential-linear functions. In particular, we define the attribute factor as

Pl i) = - exp{AT Bl x:)} @)

where A is a weighting vector and ® is a vector of feature functions. Similarly,
we define the correlation factor and constraint factor as

g(qu(yi))=Ziexp{ > algyiny)} (3)
« y; €G(y:)

h(ys, H(ys)) f*eXp{ > B'h(yi,y))} (4)
y; €H (y;)

where g and h can be defined as a vector of indicator functions.

Model Learning Learning PLP-FGM is to estimate a parameter con-
figuration 8 = (A «,53), so that the log-likelihood of observation infor-
mation (labeled relationships) are maximized. For presentation simplicity,
we concatenate all factor functions for a relationship node y; as s(y;) =
(@(yi,xi)T,Zyj g(yi,yj)T7Zyj h(y;,y;)7)T. The joint probability defined in
(Eq. 1) can be written as

PYIG) = Hexp{eT ()} = 5 expl6” s} = S ep(0S} ()

(3

where Z = Z\Z,Z3 is a normalization factor (also called partition function), S is
the aggregation of factor functions over all relationship nodes, i.e., S = >, s(y;).

One challenge for learning the PLP-FGM model is that the input data is
partially-labeled. To calculate the partition function Z, one needs to sum up the
likelihood of possible states for all nodes including unlabeled nodes. To deal with
this, we use the labeled data to infer the unknown labels. Here Y |Y'L denotes
a labeling configuration Y inferred from the known labels. Thus, we can define
the following log-likelihood objective function O(0):
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Input: learning rate n
Output: learned parameters 6
Initialize 0;

repeat
Calculate E,,, vy g)S using LBP ;

Calculate E,,(y|¢)S using LBP ;
Calculate the gradient of 6 according to Eq. 7:

Vg = Epg(Y\YL,G)S - Epg<y‘G)S
Update parameter § with the learning rate n:

gnew - eold -n- v@

until Convergence;

Algorithm 1: Learning PLP-FGM.

0(0) = logp(Y*|G) = log Z %exp{@TS}

Y|y L
= log Z exp{07S} —log Z
Y|YL
= log Z exp{07S} — logZexp{HTS} (6)
Y|YL Y

To solve the objective function, we can consider a gradient decent method
(or a Newton-Raphson method). Specifically, we first calculate the gradient for
each parameter 6:

80(8) 0 (log ZY\YL expf’'S —log >, exp OTS)

00 00
_ Syiyrexpd’S-S Xy expd’S - S
2yiye expdTS >y expdTS

=B, vive,e)S = Epy(vie)S (7)

Another challenge here is that the graphical structure in PLP-FGM can be
arbitrary and may contain cycles, which makes it intractable to directly cal-
culate the second expectation E,,(y|g)s- A number of approximate algorithms
have been proposed, such as Loopy Belief Propagation (LBP) [17] and Mean-
field [28]. In this paper, we utilize Loopy Belief Propagation. Specifically, we
approximate marginal probabilities p(y;|0) and p(y;,y;]0) using LBP. With the
marginal probabilities, the gradient can be obtained by summing over all rela-
tionship nodes. It is worth noting that we need to perform the LBP process twice
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in each iteration, one time for estimating the marginal probability p(y|G) and
the other for p(y|Y'*,G). Finally with the gradient, we update each parameter
with a learning rate 7. The learning algorithm is summarized in Algorithm 1.

Inferring Unknown Social Ties We now turn to describe how to infer the type
of unknown social relationships. Based on learned parameters 6, we can predict
the label of each relationship by finding a label configuration which maximizes
the joint probability (Eq. 1), i.e.,

Y" = argmaxy |y Lp(Y|G) (8)

Again, we utilize the loopy belief propagation to compute the marginal prob-
ability of each relationship node p(y;|Y”, G) and then predict the type of a rela-
tionship as the label with largest marginal probability. The marginal probability
is then taken as the prediction confidence.

3.3 Distributed Learning

As real social networks may contain millions of users and relationships, it is
important for the learning algorithm to scale up well with large networks. To
address this, we develop a distributed learning method based on MPI (Message
Passing Interface). The learning algorithm can be viewed as two steps: 1) com-
pute the gradient for each parameter via loopy belief propagation; 2) optimize
all parameters with the gradient descents. The most expensive part is the step of
calculating the gradient. Therefore we develop a distributed algorithm to speed
up the process.

We adopt a master-slave architecture, i.e., one master node is responsible for
optimizing parameters, and the other slave nodes are responsible for calculating
gradients. At the beginning of the algorithm, the graphical model of PLP-FGM
is partitioned into P roughly equal parts, where P is the number of slave proces-
sors. This process is accomplished by graph segmentation software METIS[11].
The subgraphs are then distributed over slave nodes. Note that in our imple-
mentation, the edges (factors) between different subgraphs are eliminated, which
results in an approximate, but very efficient solution. In each iteration, the mas-
ter node sends the newest parameters 6 to all slaves. Slave nodes then start to
perform Loopy Belief Propagation on the corresponding subgraph to calculate
the marginal probabilities, then further compute the parameter gradient and
send it back to the master. Finally, the master node collects and sums up all
gradients obtained from different subgraphs, and updates parameters by the gra-
dient descent method. The data transferred between the master and slave nodes
are summarized in Table 1.

4 Experimental Results

The proposed relationship mining approach is general and can be applied to
many different scenarios. In this section, we present experiments on three differ-
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Table 1. Data transferred in distributed learning algorithm.

Phase [ From [ To [ Data Description

Initialization Master|Slave @ i-th subgraph
Iteration Beginning|Master|Slave i| Current parameters 6
Iteration Ending |Slave i|Master|Gradient in i-th subgraph

Table 2. Statistics of three data sets.

Data set H Users [Unlabeled Relationships[Labeled Relationships

Publication||1,036,990 1,984,164 6,096
Email 151 3,424 148
Mobile 107 5,122 314

ent genres of data sets to evaluate the effectiveness and efficiency of our proposed
approach. All data sets and codes are publicly available.!

4.1 Experiment Setup

Data sets. We perform our experiments on three different data sets: Publica-
tion, Email, and Mobile. Statistics of the data sets are shown in Table 2.

— Publication. In the publication data set, we try to infer the advisor-advisee
relationship from the coauthor network. The data set is provided by [26].
Specifically, we have collected 1,632,442 publications from Arnetminer [24]
(from 1936 to 2010) with 1,036,990 authors involved. The ground truth is
obtained in three ways: 1) manually crawled from researcher’s homepage;
2) extracted from Mathematics Genealogy project?; 3) extracted from Al
Genealogy project?. In total, we have collected 2,164 advisor-advisee pairs
as positive cases, and another 3,932 pairs of colleagues as negative cases.
The mining results for advisor-advisee relationships are also available in the
online system Arnetminer.org.

— Email. In the email data set, we aim to infer the manager-subordinate re-
lationship from the email communication network. The data set consists of
136,329 emails between 151 Enron employees. The ground truth of manager-
subordinate relationships is provided by [4].

— Mobile. In the mobile data set, we try to infer the friendship in mobile calling
network. The data set is from Eagle et al. in [6]. It consists of call logs,
bluetooth scanning logs and location logs collected by a software installed in
mobile phones of 107 users during a ten-month period. In the data set, users
provide labels for their friendships. In total, 314 pairs of users are labeled as
friends.

! http://arnetminer.org/socialtie/
2 http://www.genealogy.math.ndsu.nodak. edu
% http://aigp.eecs.umich.edu
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Factor definition. In the Publication data set, relationships are established
between authors v; and v; if they coauthored at least one paper. For each pair of
coauthors (v;, v;), our objective is to identify whether v; is the advisor of author
vj. In this data set, we consider two types of correlations: 1) co-advisee. The
assumption is based on the fact that one could have only a limited number of
advisors in her/his research career. Based on this, we define a correlation factor
hi between nodes r;; and ry;. 2) co-advisor. Another observation is that if v;
is the advisor of v; (i.e., 7;; = 1), then v; is very possible to be the advisor of
some other student v, who is similar to v;. We define another factor function ho
between nodes 7;; and 7.

In the Email data set, we try to discover the “manager-subordinate” rela-
tionship. A relationship (v;, v;) is established when two employees have at least
one email communication. There are in total 3,572 relationships among which
148 are labeled as manager-subordinate relationships. We try to identify the
relationship types from the email traffic network. For example, if most of an
employee’s emails were sent to the same one, then the recipient is very likely to
be her manager. A correlation named co-recipient is defined, that is, if a user
v; sent more than ¥ emails of which recipients including both v; and v (9 is a
threshold and is set as 10 in our experiment), then, the relationship r;; and r;
are very likely to be the same. Therefore, a correlation factor is added between
the two relationships. Two constraints named co-manager and co-subordinate
are also introduced in an analogous way as that for the publication data.

In the Mobile data set, we try to identify whether two users have a friendship
if there were at least one voice call or one text message sent from one to the other.
Two kinds of correlations are considered: 1) co-location: if more than three users
arrived in the same location roughly the same time, we establish correlations
between all the relationships in this groups. 2) related-call. When v; makes a call
to both v;, and v; from the same location, or makes a call to v, immediately
after the call with v;, we add a related-call correlation factor between 7;; and
Tik-

In addition, we also consider some other features in the three data sets. A
detailed description of the factor definition for each data set is given in Table 5
in Appendix.

Comparison methods. We compare our approach with the following methods
for inferring relationship types:

SVM: It uses the relationship attribute vector x; to train a classification
model, and predict the relationships by employing the classification model. We
use the SVM-light package to implement SVM.

TPFG: Tt is an unsupervised method proposed in [26] for mining advisor-
advisee relationships in publication network. This method is domain-specific
and thus we only compare with it on the Publication data set.

PLP-FGM-S: The proposed PLP-FGM is based on the partially-labeled net-
work. Another alternative strategy is to train the model (parameters) with the
labeled nodes only. We use this method to evaluate the necessity of the partial
learning.
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Table 3. Performance of relationship mining with different methods on three data
sets: Publication, Email and Mobile (%).

Data set H Method [Accuracy[Precision[Recall[Fl—score
SVM 76.6 72.5 54.9 | 62.1
Publication TPFG 81.2 82.8 |89.4| 86.0

PLP-FGM-S| 84.1 77.1 78.4 7.7
PLP-FGM 92.7 91.4 87.7 | 89.5

SVM 82.6 79.1 88.6 | 83.6

Email 55 FaMS 856 858 | 856 | 85.7
PLP-FGM | 88.0 88.6 | 872 | 87.9
Mobile SVM 0.0 92.7 | 649 | 76.4

PLP-FGM-S| 80.9 88.1 71.3 | 78.8
PLP-FGM 83.1 89.4 75.2 | 81.6

Evaluation measures. To quantitatively evaluate the proposed method, we
consider two aspects: performance and scalability. For the relationship mining
performance, we consider two-fold cross-validation(i.e., half training and half
testing) and evaluate the approaches in terms of accuracy, precision, recall, and
F1-score. For scalability, we examine the execution time of the model learning.

All the codes are implemented in C++-, and all experiments are conducted on
a server running Windows Server 2008 with Intel Xeon CPU E7520 1.87GHz (16
cores) and 128 GB memory. The distributed learning algorithm is implemented
on MPI (Message Passing Interface).

4.2 Accuracy Performance

Table 3 lists the accuracy performance of inferring the type of social relationships
by the different methods.

Performance comparison. Our method consistently outperforms other com-
parative methods on all the three data sets. In the Publication data set, PLP-
FGM achieves a +27% (in terms of Fl-score) improvement compared with SVM,
and outperforms TPFG by 3.5% (F1-score) and 11.5% in terms of accuracy. We
observe that TPFG achieves the best recall among all the four methods. This
is because that TPFG tends to predict more positive cases (i.e., inferring more
advisor-advisee relationships in the coauthor network), thus would hurt the pre-
cision. As a result, TPFG underperforms our method 8.6% in terms of precision.
In Email and Mobile data set, PLP-FGM outperforms SVM by +4% and +5%
respectively.

Unlabeled data indeed helps. From the result, it clearly showed that by
utilizing the unlabeled data, our model indeed obtains a significant improvement.
Without using the unlabeled data, our model (PLP-FGM-S) results in a large
performance reduction (-11.8% in terms of F1-score) on the publication data set.
On the other two data sets, we also observe a clear performance reduction.
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Table 4. Factor contribution analysis on three data sets. (%).

Data set[ Factors used [Accuracy[Precision[Recaﬂ[ Fl-score

Attributes 77.1 71.1 59.8 64.9
+ Co-advisor 83.5 80.9 | 69.8 |75.0 (+10.1%)

Publication — = e T 83.1 | 797 [ 70.2 [ 747 (19.8%)
Al 927 | 914 | 87.7 |80.5(124.6%)
Attributes 80.1 79.5 81.2 80.3

+ Co-recipient 80.8 81.5 79.7 | 80.6 (+0.3%)

Email + Co-manager 83.1 82.8 83.5 | 83.2 (+2.9%)
)

)

+ Co-subordinate| 85.0 84.4 | 85.7 [85.0 (+4.7%
All 88.0 88.6 87.2 | 87.9 (+7.6%

Attributes 81.8 88.6 73.3 80.2
+ Co-location 82.2 89.2 73.3 1 80.4 (+0.2%)
+ Related-call 81.8 88.6 73.3 | 80.2 (+0.0%)
All 83.1 894 | 752 | 816 (11.4%)

Mobile

Factor contribution analysis. We perform an analysis to evaluate the con-
tribution of different factors defined in our model. We first remove all the corre-
lation/constraint factors and only keep the attribute factor, and then add each
of the factors into the model and evaluate the performance improvement by each
factor. Table 4 shows the result of factor analysis. We see that almost all the fac-
tors are useful for inferring the social relationships, but the contribution is very
different. For example, for inferring the manager-subordinate relationship, the
co-subordinate factor is the most useful factor which achieves a 4.7% improve-
ment by Fl-score, and the co-manager factor achieves a 2.9% improvement; while
the co-recipient factor only results in a 0.3% improvement. However, by com-
bining all the factors together, we can further obtain a 2.9% improvement. An
extreme phenomenon appears on the Mobile data set. With each of the two fac-
tors (co-location and related-call), we cannot obtain a clear improvement (0.2%
and 0.0% by F1). However, when combining the two factors and the attribute
factor together, we can achieve a 1.4% improvement. This is because our model
not only considers different factors, but also leverages the correlation between
them.

4.3 Scalability Performance

We now evaluate the scalability performance of our distributed learning algo-
rithm on the Publication data set. Figure 3 shows the running time and speedup
of the distributed algorithm with different number of computer nodes (2,3,4,8,12
cores) used. The speedup curve is close to the perfect line at the beginning. Al-
though the speedup inevitably decreases when the number of cores increases, it
can achieve ~ 8x speedup with 12 cores. It is noticeable that the speedup curve
is beyond the perfect line when using 4 cores, it is not strange since our dis-
tributed strategy is approximated. In our distributed implementation, graphs are
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partitioned into subgraphs, and the factors across different parts are discarded.
Thus, the graph processed in distributed version contains less edges, making the
computational cost less than the amount in the original algorithm. The effect
of subgraph partition is illustrated in Figure 4. By using good graph partition
algorithm such as METIS, the performance only decreases slightly (1.4% in ac-
curacy and 1.6% in Fl-score). A theoretical study of the approximate ratio for
the distributed learning algorithm would be an interesting issue and is also one
of our ongoing work.

5 Related work

Relationship mining is an important problem in social network analysis. One
research branch is to predict and recommend unknown links in social networks.
Liben-Nowell et al.[16] study the unsupervised methods for link prediction. Xiang
et al. [27] develop a latent variable model to estimate relationship strength from
interaction activity and user similarity. Backstrom et al. [2] propose a supervised
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random walk algorithm to estimate the strength of social links. Leskovec et al.
[15] employ a logistic regression model to predict positive and negative links in
online social networks, where the positive links indicates the relationships such
as friendship, while negative indicating opposition. However, these works con-
sider only the black-white social networks, and do not consider the types of the
relationships. There are also several works on mining the relationship semantics.
Diehl et al. [4] try to identify the manager-subordinate relationships by learning
a ranking function. Wang et al. [26] propose an unsupervised probabilistic model
for mining the advisor-advisee relationships from the publication network. Ea-
gle et al. [6] present several patterns discovered in mobile phone data, and try
to use these pattern to infer the friendship network. However, these algorithms
mainly focus on a specific domain, while our model is general and can be ap-
plied to different domains. Moreover, these methods do not explicitly consider
the correlation information between different relationships.

Another related research topic is relational learning[3, 8]. However, the prob-
lem presented in this paper is very different. Relational learning focuses on the
classification problems when objects or entities are presented in relations, while
this paper explores the relationship types in social network. A number of su-
pervised methods for link prediction in relational data have also been developed
[25,19].

6 Conclusion

In this paper, we study the problem of inferring the type of social ties in large
networks. We formally define the problem in a semi-supervised framework, and
propose a partially-labeled pairwise factor graph model (PLP-FGM) to learn to
infer the relationship semantics. In PLP-FGM, relationships in social network are
modeled as nodes, the attributes, correlations and global constraints are modeled
as factors. An efficient algorithm is proposed to learn model parameters and to
predict unknown relationships. Experimental results on three different types of
data sets validate the effectiveness of the proposed model. To further scale up
to large networks, a distributed learning algorithm is developed. Experiments
demonstrate good parallel efficiency of the distributed learning algorithm.
Detecting the relationship semantics makes online social networks colorful
and closer to our real physical networks. It represents a new research direction in
social network analysis. As future work, it is interesting to study how to further
improve the mining performance by involving users into the learning process
(e.g., via active learning). In addition, it would be also interesting to investigate
how the inferred relationship semantic information can help other applications
such as community detection, influence analysis, and link recommendation.
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Appendix: Feature Definition

In this section, we introduce how we define the attribute factor functions. In
the Publication data set, we define five categories of attribute factors: Paper
count, Paper ratio, Coauthor ratio, Conference coverage, First-paper-year-diff.
The definitions of the attributes are summarized in Table 5. In the Email data
set, traffic-based features are extracted. For a relationship, we compute the num-
ber of emails for different communication types. In the Mobile data set, the
attributes we extracted are #voice calls, #messages, Night-call ratio, Call du-
ration, #proximity and In-role proximity ratio.

Table 5. Attributes used in the experiments. In the Publication data set, we use P; and
P; to denote the set of papers published by author v; and v; respectively. For a given
relationship (v;,v;), five categories of attributes are extracted. In the Email data set,
for relationship (v;, v;), number of emails for different communication types are com-
puted. In the Mobile data set, the attributes are from the voice call/message/proximity
logs.

Data set || Factor [ Description
Paper count Pil, | Pj]
Paper ratio Pi[/1P;]
Publication Coauthor ratio P; 0 P;[/[Pi], [P 0 P[/1P;]

Conference coverage |The proportion of the conferences which both v; and v; at-
tended among conferences v; attended.
First-paper-year-diff |The difference in year of the earliest publication of v; and

v
Sender Recipients Include
Uy V4
Email Traffics v v;
v vi and not v;
v vg and not v;
Vg v; and not v,
Vg v; and not v;
Vi v; and v;
F#voice calls The total number of voice call logs between two users.
#messages Number of messages between two users.
Night-call ratio The proportion of calls at night (8pm to 8am).
Mobile Call duration The total duration time of calls between two users.
F#proximity The total number of proximity logs between two

users.
In-role proximity ratio|The proportion of proximity logs in “working place” and in
working hours (8am to 8pm).




