
Addressing Cold Start in Recommender Systems:
A Semi-supervised Co-training Algorithm

Mi Zhang1,2 Jie Tang3 Xuchen Zhang1,2 Xiangyang Xue1,2

1School of Computer Science, Fudan University
2Shanghai Key Laboratory of Intelligent Information Processing

3Department of Computer Science and Technology, Tsinghua University
{mi_zhang,13210240075,xyxue}@fudan.edu.cn, jietang@tsinghua.edu.cn

ABSTRACT
Cold start is one of the most challenging problems in recommender
systems. In this paper we tackle the cold-start problem by propos-
ing a context-aware semi-supervised co-training method named C-
SEL. Specifically, we use a factorization model to capture fine-
grained user-item context. Then, in order to build a model that
is able to boost the recommendation performance by leveraging the
context, we propose a semi-supervised ensemble learning algorith-
m. The algorithm constructs different (weak) prediction models
using examples with different contexts and then employs the co-
training strategy to allow each (weak) prediction model to learn
from the other prediction models. The method has several distin-
guished advantages over the standard recommendation methods for
addressing the cold-start problem. First, it defines a fine-grained
context that is more accurate for modeling the user-item preference.
Second, the method can naturally support supervised learning and
semi-supervised learning, which provides a flexible way to incor-
porate the unlabeled data.

The proposed algorithms are evaluated on two real-world
datasets. The experimental results show that with our method the
recommendation accuracy is significantly improved compared to
the standard algorithms and the cold-start problem is largely allevi-
ated.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscellaneous

Keywords
Cold-start; Recommendation; Semi-supervised Learning

1. INTRODUCTION
Recommendation plays an important role in many fields and has

attracted a lot of research interest. For example, Netflix has re-
leased an interesting fact that about 75% of its subscribers watch
are from recommendations. In a recommender system such as Net-
flix and Amazon, users can browse items and choose those item-
s they are interested in, while the system would also recommend

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR’14, July 6–11, 2014, Gold Coast, Queensland, Australia.
Copyright 2014 ACM 978-1-4503-2257-7/14/07 ...$15.00.
http://dx.doi.org/10.1145/2600428.2609599.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Items Bins from Popular to Unpopular

R
M

S
E

RMSE
Popularity

Figure 1: Average popularity and RMSE on items with differ-
ent popularity. The dataset is from MovieLens (D′

1, Cf. Section 6.1
for details). We estimate the popularity of each item based on the num-
ber of ratings and partition all the items into 10 bins according to their
popularity with equal number. The average RMSE scores are obtained
using a standard collaborative filtering approach (Cf. Eq. 1).

to them the items that the system thought best match their prefer-
ences. Afterward, the user may provide feedback (such as rating,
usually represented as a score between, for example, 1 and 5) on
how the user thinks about an item after she/he has experienced the
item. One important task for the recommendation engine is to un-
derstand users’ personalized preferences from their historic rating
behaviors.

Another important, and actually more challenging task is how to
improve the recommendation accuracy for the new (or rarely rat-
ed) items and the new (or inactive) users. Comparing to the pop-
ular items, for the newly released ones and the old items that are
rarely rated by users, it is difficult for the standard recommenda-
tion approaches such as collaborative filtering approach to provide
high-quality recommendations. Figure 1 shows some preliminary
results in our experiments. The recommendation error (by mean-
square error, i.e., RMSE) increases quickly with the decrease of
popularity of the item. The average error of the most unpopular
items (Bin10) almost doubles that of the popular items (Bin1, Cf.
Table 2 for details). The problem also exists for the newly entered
users or the inactive users who have not contributed enough ratings.
Technically, this problem is referred to as cold start. It is prevalent
in almost all recommender systems, and most existing approaches
suffer from it [22].

Despite that much research has been conducted in this field,
the cold-start problem is far from solved. Schein [22] proposed a
method by combining content and collaborative data under a single
probabilistic framework. However, their method is based on Bayes

classifier, which cannot accurately model the user’s fine-grained
preference. Lin et al. [17] addressed the cold-start problem for Ap-
p recommendation. They use the social information from Twitter
to help App recommendation. The method is effective for dealing
with the problem as it introduces external social information for
building the recommendation model. However, if we deepen the
analysis, we can easily find that for building a practical and accu-
rate recommendation model, the available (useful) information is
usually from different sources. A single model would be ineffec-
tive in this sense. Thus the question is, how to build models using
the information of different sources and, more importantly, how the
different models can help each other? Besides, there are also some
other challenges in the cold-start problem. For example, since the
available labeled data from different sources is often limited, it is
important to develop a semi-supervised learning method so as to
leverage the unlabeled data.

Solution and Contributions. In this paper, we aim to conduct
a systematical investigation to answer the above questions. In or-
der to capture users’ preferences, a fine-grained context-aware ap-
proach is proposed which incorporates additional sources of infor-
mation about the users and items rather than users’ rating informa-
tion only. Furthermore, we propose a semi-supervised co-training
method to build the recommendation model. The model not only is
able to make use of unlabeled data to help learn the recommenda-
tion model, but also has the capacity to build different sub models
based on different views (contexts). The built sub models are then
combined by an ensemble method. This significantly alleviates the
cold-start problem.

We evaluate the proposed model on a publicly available dataset,
MovieLens. The results clearly demonstrate that our proposed
method significantly outperforms alternative methods in solving
the cold-start problem. The overall RSME is reduced by 3-4%,
and for the cold-start users and items the prediction accuracy is
improved up to 10% (p < 0.05 with t-test). Beyond accurate rec-
ommendation performance, our method is also insensitive to pa-
rameter tuning as confirmed in the sensitivity analysis. Finally, we
use several case studies as the anecdotal evidence to further demon-
strate the effectiveness of our method. To summarize, contributions
of this work include:

• By providing an in-depth analysis about the existing algo-
rithms, we propose a fine-grained modeling method to cap-
ture the user-item contexts;

• We propose a semi-supervised co-training method named C-
SEL to leverage the unlabeled examples. With the context-
aware model given beforehand, CSEL is able to construct d-
ifferent regressors by incorporating different contexts, which
ideally helps capture the data’s characteristics from different
views.

• Our empirical study on real-world datasets validates the ef-
fectiveness of the proposed semi-supervised co-training al-
gorithm.

Organization. Section 2 formulates the problem; Section 3
presents a fine-grained user-item context model; Section 4 de-
scribes the proposed semi-supervised co-training algorithm (C-
SEL); Section 5 discusses related work; finally, Section 6 presents
the experimental results and Section 7 concludes the work.

2. OVERVIEW
Here we present required definitions and formulate the cold-start

problem in recommender systems.

Let I be the set of items and U be the set of users in the system.
We use rui to denote a rating that user u ∈ U gives to the item
i ∈ I, and use L = {rui} ⊂ I × U to denote the set of all
ratings. Further let U = {xui} denote all the unknown ratings, i.e.,
U = I×U −L. We use the notation |.| to denote the cardinality of
a set, for example |L| indicates the number of ratings in the set L.
In addition, each user/item may have some attributes. For example,
a user may have gender, age and other attributes and an item may
be associated with multiple genres. In this work gender, age and
occupation are referred to as the context of users, whereas genres
are referred to as the context of items. The goal of the cold-start
recommendation is to leverage all the available information to learn
a recommendation function f so that we can predict the rating of
user u for item i, i.e.,

f((u, i)|L,U)→ rui

Here in the definition, if the rating rui is already available, i.e.,
rui ∈ L, the learning objective is to minimize the difference of the
estimated rating and the real rating |r̂ui−rui|, otherwise the goal is
to predict the most possible rating for xui ∈ U with high accuracy.

In the following, for an item i ∈ I let di be i’s popularity, which
is obtained by di =

mi
m

, where mi is the number of users who have
rated i and m is the number of users in the recommender system.
For a user u ∈ U , let du be u’s popularity, which is obtained by
du = nu

n
, where nu is the number of items rated by u and n is the

total number of items.

2.1 Approach Overview
To deal with a general recommendation problem, we can con-

sider the standard factorization algorithm [15] as a baseline model.
It is a model-based collaborative filtering (CF) algorithm proposed
by the winning team in the Netflix competition 1, which is designed
for improving the prediction accuracy of the Netflix movie recom-
mender system. This algorithm can be regarded as a state-of-the-art
algorithm. The model is defined as

r̂ui = µ+ bu + bi + qTi pu (1)

Here, the observed rating is factorized into four components:
global average µ, item bias bi, user bias bu, and user-item inter-
action qTi pu that captures the user u’s personalize preference on
item i. By minimizing the difference of the real ratings and the
factorized ratings in the labeled training data, we can estimate the
unknown parameters ({bu}, {bi}, {qi}, {pu}) in Eq. 1. This model
is referred to as FactCF in the rest of the paper.

However, the standard CF approach cannot deal with the cold-
start problem. As shown in Figure 1, the recommendation error
increases quickly when directly applying the standard approach to
unpopular items.

In this paper, we propose a novel semi-supervised co-training ap-
proach, i.e., CSEL, to address the cold-start problem. Specifically,
at the high-level, the approach consists of two stages:

• Context-aware factorization. We propose a fine-grained
context model by adding in the contexts of users and item-
s, specifically, the interactions between them into the model.
The model is the basis to deal with the cold-start problem;

• Semi-supervised Co-training. Based on the context mod-
eling results, a semi-supervised learning framework is built
for addressing the cold-start problem in recommender sys-
tems, where multiple models are constructed using different

1http://www.netflixprize.com/leaderboard

information and then co-training is applied so that the learned
models can help (teach) each other. This is the major tech-
nical contribution of this work. Besides the specific models
used in this work, the proposed framework is very flexible
and can accommodate any kind of models without any extra
information.

3. CONTEXT-AWARE FACTORIZATION
Often in a recommender system, many users supply very few

ratings, making it difficult to reach general conclusions on their
taste. One way to alleviate this problem is to incorporate addition-
al sources of information, for example, recommender systems can
use the attributes of the users and items to build a context of the
user preference. Following this thread, we propose a context-aware
factorization model by leveraging “more general” sources such as
age and gender of a user, or the genres and tags of an item that are
independent of ratings. Saying that they are “more general” than
the ratings is in a sense that a rating is given by a specific user to
a specific item, whereas these sources can be learned from all the
users or items that share the same category. In this section, based
on the FactCF algorithm given in Eq. 1 we propose a context-aware
model that incorporates the context information into the model.

Here we start enhancing the model by letting item biases share
components for items linked by the genres. For example, items in
a certain genre may be rated somewhat higher than the average.
We therefore add shared bias parameters to different items with a
common information. The expanded model is as follows

r̂ui = µ+ bu + bi + qTi pu +
1

|genres(i)|
∑

g∈genres(i)

bg , (2)

then the total bias associated with an item i sums both its
own specific bias modifier bi, together with the mean bias as-
sociated with its genres 1

|genres(i)|
∑

g∈genres(i) bg . One could
view these extensions as a gradual accumulation of the biases.
For example, when modeling the bias of i, the start point is

1
|genres(i)|

∑
g∈genres(i) bg , and then bi adds a residual correction

on the top of this start point. A similar method has been also used
for music recommendations [7].

The second type of “general” information we incorporate into
the model is the context (attributes) of users such as age and gender.
For example, we can enhance Eq. 2 as follows:

r̂ui = µ+ bu+ bi+qTi pu+

∑
g∈genres(i) bg

|genres(i)| + ba+ bo+ bs (3)

where ba, bo and bs are the biases associated with the user’s age,
occupation and gender, respectively. Moreover, we propose mixing
the user and item’s contexts as below to obtain a further optimiza-
tion:

r̂ui = µ+bu+bi+qTi pu+

∑
g∈genres(i) bug

|genres(i)| +bia+bio+bis (4)

where bug, bia, bio and bis are the parts mixing the contexts.
Specifically, bug is user u’s bias in genre g, i.e., bug catches u’s
preference in g. We can use a stochastic gradient descent (SGD)
algorithm to learn the parameters. Compared to bg that is indepen-
dent of specific users, here bug is only updated when the current
rating (in L) used for training is given by u. Likewise, bia, bio and
bis are item i’s preferences by the users in the categories of a, o and

s, respectively, and they’ll be updated in the learning process when
the rating is associated with i and the users are in the corresponding
categories.

Model Learning. By combining all the context information, we
can define an objective function to learn the context model by min-
imizing the prediction errors over all the examples in L.

min
p∗,q∗,b∗

∑
(u,i)∈K

(rui − r̂ui)
2 + λ(∥pu∥2 + ∥qi∥2 +

∑
b2∗) (5)

where r̂ui can be any model defined in Eqs. 2-4; ||·|| indicate the 2-
norm of the model parameters and λ is the regularization rate. The
objective function can be solved by the stochastic gradient descent
(SGD). SGD processes the training examples one-by-one, and up-
date the model parameters corresponding to each example. More
specifically, for training example rui, SGD lowers the squared pre-
diction error e2ui = (rui − r̂ui)

2 by updating each individual pa-
rameter θ by

∆θ = −γ ∂e
2
ui

∂θ
− λθ = 2γeui

∂r̂ui
∂θ
− λθ

where γ is the learning rate. Thus, the parameters are updated by
moving in the opposite direction of the gradient, yielding:

qi ← qi + γ · (eui · pu − λ · qi)

pu ← pu + γ · (eui · qi − λ · pu)

b∗ ← b∗ + γ · (eui − λ · b∗)

For each type of learned parameter we set a distinct learning rate
and regularization rate. This grants us the flexibility to tune learn-
ing rates such that, e.g., parameters that appear more often in a
model are learned more slowly (and thus more accurately). Similar-
ly, the various regularization coefficients allow assuming different
scales for different types of parameters.

The model given by Eq. 4 turns out to provide a better perfor-
mance than the other ones in terms of prediction accuracy therefore
it is adopted in this work for the further optimization with semi-
supervised co-training.

4. SEMI-SUPERVISED CO-TRAINING
Based on the learned contexts, we propose a semi-supervised

co-training (CSEL) framework to deal with the cold-start problem
in recommender systems. CSEL aims to build a semi-supervised
learning process by assembling two models generated with the
above context-aware model, in order to provide more accurate pre-
dictions. Specifically, CSEL consists of three major steps.

• Constructing multiple regressors. Since we are addressing
a regression problem, the first step is to construct the two
regressors, i.e. h1 and h2 from L, each of which is then
refined with the unlabeled examples that are labeled by the
latest version of their peer regressors.

• Co-Training. In the co-training, each regressor can learn
from each other. More accurately, those examples with high
confidences are selected for the regressor and being labeled
(predicted) by it, and later to be used to “teach” the other
regressors.

• Assembling the results. In the end the results obtained by
the individual regressors are assembled to form the final so-
lution.

Input: the training set L with labeled (rated) examples, and the
unlabeled (not rated) example set U ;

Output: regressor h(u, i) for the rating prediction;

Step 1: Construct multiple regressors;
Generate the two regressors h1 and h2 by manipulating the training
set (Ms) or manipulating the attributes (Mv in Section 4.1);
Create a pool U ′ by randomly picking examples from U ;
Initialize the teaching sets T1 = ϕ; T2 = ϕ;
Step 2: Co-Training;
repeat

for j = 1 to 2 do
foreach xui ∈ U ′ do

Obtain the confidence Cj(xui) by Eq. 10:

Cj(xui) =
d
(j)
u ×d

(j)
i ×

∏
c∈G,O,A,S d

(j)
c

N ;
end
Select N examples to form Tj by the Roulette algorithm
with the probability Pr(xui, j) given by Eq. 11:
Tj ← Roulette(Pr(xui, j));
U ′ = U ′ − Tj ;

end
Teach the peer regressors: L1 = L1 ∪ T2; L2 = L2 ∪ T1;
Update the two regressors: h1 ← L1;h2 ← L2;

until t rounds;
Step 3: Assembling the results (with the methods in Section 4.3);
h(u, i) = Assemble(h1(u, i), h2(u, i)).

Algorithm 1: Semi-supervised Co-Training (CSEL).

Algorithm 1 gives the algorithm framework. In the following
more details will be given about the methods of constructing multi-
ple regressors, constructing the teaching sets, and assembling. Note
that in principle, the algorithm can be easily extended to accommo-
date multiple regressors (more than two). In this work, for the sake
of simplicity we focus on two regressors.

4.1 Constructing Multiple Regressors
Generally speaking, in order to generate different learners for

ensemble, one way is to train the models with different examples
by manipulating the training set, while the other way is to build up
different views by manipulating the attributes [6], which are both
adopted in this paper to generate multiple regressors for co-training.

Constructing Regressors by Manipulating the Training Set. A
straightforward way of manipulating the training set is Bagging. In
each run, Bagging presents the learning algorithm with a training
set that consists of a sample of k training examples drawn randomly
with replacement from the original training set. Such a training set
is called a bootstrap replicate of the original training set.

In this work two subsets are generated with the Bagging method
from the original training set, and two regressors are trained on
the two different subsets, respectively, for the purpose of working
collaboratively in the co-training process. The basic learner for
generating the regressors could be the standard factorization model
(Eq. 4), i.e.,

h1(u, i) = h2(u, i) = µ+ bu + bi + qTi pu

+

∑
g∈genres(i) bug

|genres(i)| + bia + bio + bis
(6)

Some related work tries to use diverse regressors to reduce the
negative influence of the newly labeled noisy data [30]. Our ex-
periments also showed that a good diversity between the regressors
indeed helps much in improving the performance of co-training.
Thus it is an important condition for generating good combinations

of regressors. Intuitively the diversity between the two regressors
generated in this way are coming from the different examples they
are trained on, and can be evaluated by their difference on pre-
dictions. Moreover, another important condition to make a good
ensemble is, the two regressors should be sufficient and redundant.
Then being translated to this case, it means each training set should
be sufficient for learning, respectively and the predictions made by
the two individual regressors should be as accurate as possible.

However, the above two conditions, diversity and sufficiency, are
contradictive to each other. That is, let the size of the two subsets
generated with the Bagging method both be k, then with the orig-
inal training set size fixed, when k is big, the overlap between the
two subsets will be big as well, which will result in a small diversi-
ty between regressors. In the mean time the accuracy performance
of individual regressors will be good with a big set of training ex-
amples. And vice versa when k is small. Thus in the experiments
we need to find an appropriate value of k for the trade-off between
these two criteria. This method is referred to as Ms hereafter.

Constructing Regressors by Manipulating the Attributes. An-
other way to generate multiple regressors is to divide attributes into
multiple views, such as

h1(u, i) = µ+ bu + bi + qTi pu +
1

|genres(i)|
∑

g∈genres(i)

bug (7)

h2(u, i) = µ+ bu + bi + qTi pu + bia + bio + bis (8)

The two regressors are both a part of the model given in Eq. 4.
Unlike Ms, here the regressors are both trained on the entire train-
ing set. To guarantee enough diversity between the constructed re-
gressors, the contexts are separated, specifically, user-related con-
texts and item-related contexts are given to the different regressors.
Further, in order to keep a good performance in terms of prediction
accuracy (with respect to the sufficient condition) for the individual
regressors, the common part, µ+ bu + bi + qTi pu, is kept for both
regressors. This method is referred to as Mv hereafter.

Constructing Regressors by a Hybrid Method. As described
above, Ms is to train a same model on different subsets whereas
Mv is to construct different models and let them be trained on a
single set. The hybrid method is to construct different regressors
as well as training them on the different subsets of the attributes.
Obviously, it will bring in more diversity between the regressors.
The hybrid method is referred to as Msv .

4.2 Semi-supervised Co-training
Now with the multiple regressors at hand, the task becomes how

to co-train the different regressors. Specifically, we need to con-
struct a “teaching set” Tj for each regressor j and use it to teach
its peer (the other regressors). This is a key step for launching the
semi-supervised learning (SSL). One challenge here is how to de-
termine the criteria for selecting unlabeled examples from U ′ so
as to build the teaching set. The criteria we used in this work is
the regressor’s confidence. Every candidate example has a specific
confidence value to reflect the probability of its prediction to be ac-
curate. As given in the algorithm, before SSL processes a smaller
set U ′ ⊂ U is drawn randomly from U because U could be huge.

Confidence for the FactCF Model. In many cases the user can
benefit from observing the confidence scores [11], e.g. when the
system reports a low confidence in a recommended item, the user
may tend to further research the item before making a decision.
However, not every regression algorithm can generate a confidence

by itself, like the factorization regressor this work is based on. Thus
it is needed to design a confidence for it.

In [30] the authors proposed the predictive confidence estima-
tion for the kNN regressors. The idea is that the most confidently
labeled example of a regressor should decrease most the error of
the regressor on the labeled example set, if it is utilized. Howev-
er, it requires the example to be merged with the labeled data and
re-train the model, and this process needs to be repeated for all
candidate examples. Similarly, in [10] another confidence measure
was proposed, again, for the kNN regressor. The idea is to calculate
the conflicts level between the neighbors of the current item for the
current user. However, the above two methods are both based on
the k nearest neighbors of the current user and cannot be directly
applied to our model. In the following we define a new confidence
measure that suits our model.

Confidence in the recommendation can be defined as the sys-
tem’s trust in its recommendations or predictions [11]. As we have
noted above, collaborative filtering recommenders tend to improve
their accuracy as the amount of data over items/users grows. In fact,
how well the factorization regressor works directly depends on the
number of labeled examples (ratings) that is associated with each
factor in the model. And the factors in the model pile up together
to have an aggregate impact on the final results. Based on this idea,
we propose a simple but effective definition for the confidence on a
prediction made by regressor j for example xui:

Cj(xui) =
d
(j)
u × d

(j)
i

N (9)

whereN is the normalization term; d(j)u and d
(j)
i are the user u and

item i’s popularities associated with regressor j.
The idea is, the more chances (times) a factor gets to be updated

during the training process, the more confident it is with the pre-
dictions being made with it. The rating number that is associated
with the user-related factors bu and pu in the model is expressed by
du, while the rating number that is associated with the item-related
factors bi and qi is expressed by di. Here the assumption is that the
effects of the parameters are accumulative.

Confidence for the Context-aware Models. With the similar idea
the confidence for the context-aware models is defined as below:

Cj(xui) =
d
(j)
u × d

(j)
i ×

∏
c∈G,O,A,S d

(j)
c

N (10)

where c stands for the general information including genre, age,
gender, occupation, etc.; dc represents the fraction of items that
fall in a certain category c. For example, dg1 is the fraction of
items that fall in the genre “Fictions”, dg2 is the fraction of items
that fall in the genre “Actions”, etc., with G = {g1, ..., g18} (there
are 18 genres in the MovieLens dataset). Likewise, da, ds, do,
are associated with the categories of A = {a1, ..., a7} (the entire
range of age is divided into 7 intervals), S = {male, female} and
O = {o1, ..., o20} (20 kinds of occupations), respectively, can be
obtained in the same way.

Specifically, for the model with the item-view, i.e., h1 in E-
q. 7, the confidence for xui is C1(xui) = d

(1)
u × d

(1)
i × d̄gk,

where d̄gk = 1
|genres(i)|

∑
gk∈genres(i) dgk and |genres(i)| is

the number of genres i belongs to. On the other hand, for the
model with the user-view, i.e., h2 in Eq. 8, the confidence is
C2(xui) = d

(2)
u × d

(2)
i × da × ds × do. This way the confidence

depends on the view applied by the model.

With this definition, the two regressors (given by Eq. 6) being
trained on different sample sets (Ms) will naturally have different
du, di and dc. E.g., for a user u, its d(1)u for h1 is the rating numbers
of u being divided into the first sub-set, while its d(2)u for h2 is the
rating numbers of u being divided into the second sub-set, and di
likewise. Therefore, it will result in two different confidence values
for these two models.

Note that in this work the confidence value of a prediction,
Cj(xui), is for selecting examples within a single model j, in order
to steer the process of semi-supervised learning. Hence they are
not comparable between different models. For the same reason the
normalization part N is a constant within a model and thus can be
omitted.

Constructing and Co-training with the Teaching Set. For each
regressor j, when constructing the “teaching set” Tj with Cj(xui),
to avoid focusing on the examples that are associated with the most
popular users and items that have relatively high d

(j)
u and d

(j)
i ,

rather than directly selecting the examples with the highest con-
fidence, we obtain a probability for each candidate example based
on Cj(xui) and select with the Roulette algorithm [1]. Specifically,
the probability given to an example xui is calculated by:

Pr(xui, j) =
Cj(xui)∑

xk∈U′ Cj(xk)
(11)

What’s noteworthy is, in the experiments we found that simply s-
electing examples with Pr(xui, j) sometimes cannot guarantee the
performance. Moreover, we observed that a big diversity between
the outputs of the two regressors is important for the optimization.
The experiments show that for the selected examples, if the differ-
ence between the predictions made for them is not big enough the
teaching effect can be trivial. This is consistent with the conclu-
sion in [20] where the authors emphasize the diversity between the
two learners are important. To guarantee a progress in SSL we pro-
pose to apply an extra condition in the teaching set selection. That
is, only those examples with a big difference between the predic-
tions made by the two regressors are selected. Specifically, when
an example xui is drawn from U ′ with Pr(xui, j), its predictions
made by the two regressors are compared to a threshold τ . If the
difference between them is bigger than τ then xui is put into Tj ,
otherwise it is discarded.

Next, the examples in the teaching set are labeled with the pre-
dictions made by the current regressor, likewise for its peer regres-
sor. Note again that for the sake of diversity the teaching sets for
the two regressors should be exclusive.

At last the regressors are updated (re-trained) with these new la-
beled data. In this way the unlabeled data are incorporated into the
learning process. According to the results given in the experiments,
by incorporating the unlabeled data the CSEL strategy provides a
significant boost on the system performance. This process of con-
structing the teaching sets and co-training will be repeated for t
iterations in the algorithm.

4.3 Assembling the Results
The final step of the algorithm is to assemble the results of the

regressors after the optimization by SSL. A straightforward method
is to take the average, i.e.,

h(u, i) =
1

l

∑
j=1..l

hj(u, i) (12)

where l is the number of regressors being assembled. In our case,
to assemble results from two regressors it is h(u, i) = 1

2
[h1(u, i)+

h2(u, i)]. However, this method does not consider the confidence
of the different regressors. To deal with this problem, we assemble
the results by a weighted vote of the individual regressors. Here the
confidence can be used as the weights of assembling, i.e.,

h(u, i) =
∑

j=1..l

Cj(xui)∑
k=1..l Ck(xui)

hj(u, i) (13)

Another option is to weight the regressors by ωj that corre-
sponds to regressor j’s accuracy in the training set: h(u, i) =∑

j=1...l ωjhj(u, i). It is trained with the loss function
argminωj

∑
j

∑
rk∈L(ωjhj(uk, ik)− rk)

2 and addressed by lin-
ear regression. However, this method requires the model to be
trained on all the labeled examples again and in the end it did
not yield a better performance in our experiments. Some oth-
er options can also be adopted such as selecting the regressor
hj with the minimum errors in the training set, i.e., h(u, i) ←
argminj

∑
rk∈L(hj(uk, ik) − rk)

2, where rk is a labeled exam-
ple in L that is associated with uk and ik. This method also turned
out to fail at providing the optimal results in our experiments.

Note that these ensemble methods can either be applied right af-
ter the training of individual models without semi-supervised learn-
ing, or after the semi-supervised learning. The former way makes
use of the labeled data only, while the latter one makes use of both
labeled and unlabeled data.

Moreover, the ensemble results can be used in different ways.
That is, in each iteration the ensemble of the two newest regressors’
predictions is obtained and used to label the examples in the teach-
ing sets, rather than using their own predictions as described be-
fore. The reason is, firstly, according to our experiments the ensem-
ble predictions always performs better than the individual results,
which promises a bigger improvement for the algorithm; Secondly,
since selecting the examples with high confidences only means the
current regressor is more confident about them than the other ex-
amples, it does not say anything about its peer, which means if the
original prediction is actually better noises will be brought into the
peer regressors.

5. RELATED WORK
Cold-start is a problem common to most recommender systems

due to the fact that users typically rate only a small proportion of
the available items [21], and it is more extreme to those users or
items newly added to the system since they may have no ratings at
all [22]. A common solution for these problems is to fill the miss-
ing ratings with default values [5], such as the middle value of the
rating range, and the average user or item rating. A more reliable
approach is to use content information to fill out the missing rat-
ings [4, 18]. For instance, the missing ratings can be provided by
autonomous agents called filterbots [9], that act as ordinary users of
the system and rate items based on some specific characteristics of
their content. The content similarity can also be used “instead of”
or “in addition to” rating correlation similarity to find the nearest-
neighbors employed in the predictions [16, 23]. From a broad-
er viewpoint, our problem is also related to the recommendation
problem, which has been intensively studied in various situations
such as collaborative recommendation [13] and cross-domain rec-
ommendation [26]. However, the cold-start problem is still largely
unsolved.

Dimensionality reduction methods [2, 8, 14, 25] address the
problems of limited coverage and sparsity by projecting users and
items into a reduced latent space that captures their most salient fea-
tures. There are also some more recent work that proposed some

new methods to tackle the cold-start problem in different applica-
tions such as [17, 19, 24, 29]. Work [19] tries to address the cold-
start problem as a ranking task by proposing a pairwise preference
regression model and thus minimizing the distance between the re-
al rank of the items and the estimated one for each user. Work [29]
follows the idea of progressively querying user responses through
an initial interview process. [24] is based on an interview process,
too, by proposing an algorithm that learns to conduct the interview
process guided by a decision tree with multiple questions at each s-
plit. [17] aims to recommend apps to the Twitter users by applying
latent Dirichlet allocation to generate latent groups based on the
users’ followers, in order to overcome the difficulty of cold-start
app recommendation. Unlike the above work that addresses the
cold-start problem in some specific applications with specific extra
sources, our work possesses more generosity. The framework for
the CSEL algorithm proposed in this work can basically accommo-
date any kind of regressors without any extra information required.

The semi-supervised learning algorithm adopted in this paper
falls in the category of disagreement-based SSL [31]. This line of
research started from Blum and Mitchell’s work [3]. Disagreement-
based semi-supervised learning is an interesting paradigm, where
multiple learners are trained for the task and the disagreements a-
mong the learners are exploited during the semi-supervised learn-
ing process. However, little work has been done making use of
the semi-supervised techniques in the literature of recommender
systems although it is a natural way to solve these problems. Fol-
lowing this line of research we propose a semi-supervised learn-
ing algorithm specifically designed for the factorization regressors
that outperforms the standard algorithm in both the overall system
performance and providing high quality recommendations for the
users and items that suffer from the cold-start problem.

6. EVALUATION

6.1 Experimental Setup

Datasets. We evaluate our methods on a public available dataset,
MovieLens, consisting of 100, 000 ratings (1-5) from 943 users on
1, 682 movies. In the experiments, the algorithms are performed at
two stages of the system. The first stage is the early stage, i.e., when
the system has run for 3 month. 50, 000 ratings are collected given
by 489 users to 1, 466 items. The second stage is the late stage with
the entire dataset collected during 7 months. The datasets at these
two stages are referred to as D1 and D2, respectively.

The proposed methods are also evaluated on a different version
of MovieLens dataset consisting of 1, 000, 000 ratings provided by
6, 040 users for 3, 900 movies. The experiments are performed
on two stages of it as well. The first stage is when the system
has run for 3 months, by this time 200, 000 ratings are collected
for 3, 266 items given by 1429 users. The second stage is again
the full dataset collected in 34 months. They are referred to as
D′

1 and D′
2 for this larger version MovieLens, respectively. The

reason we did not do the evaluations on the Netflix dataset is, it only
provides the ratings without any attributes or context information
about users or items, which makes it impossible to perform the
context-aware algorithm and the CSEL method by manipulating
the attributes (Mv) proposed in this work.

Besides the historical ratings MovieLens datasets also provides
some context information, including 19/18 genres associated with
items (movies) and age, occupation and gender associated with
users. Gender is denoted by “M” for male and “F” for female,
age is given from 7 ranges and there are 20 types of occupations.

In the evaluation, the available ratings were split into train, vali-
dation and test sets such that 10% ratings of each user were placed
in the test set, another 10% were used in the validation set, and
the rest were placed in the training set. The validation dataset is
used for early termination and for setting meta-parameters, then we
fixed the meta-parameters and re-built our final model using both
the train and validation sets. The results on the test set are reported.

Comparison Algorithms. We compare the following algorithms.

• FactCF: the factorization-based collaborative filtering algo-
rithm given by Eq. 1 [15];

• UB k-NN and IB k-NN: the user-based and item-based k-
nearest neighbor collaborative filtering algorithms;

• Context: the context-aware model we propose in Section 3,
given by Eq. 4;

• Ensembles and Ensemblev: directly assembling the result-
s of h1 and h2 generated by manipulating the training set
(Ms) and manipulating the attributes (Mv in Section 4.1),
respectively. Among the options of ensemble method in Sec-
tion 4.3, the weighted method in Eq. 13 gives a slightly better
result than the other ones and thus being adopted.

• CSELs, CSELv and CSELsv: the semi-supervised co-
training algorithms using the h1 and h2 generated by Ms,
Mv and Msv (Cf. Section 4.1), respectively.

Besides the state-of-the-art FactCF algorithm we also use anoth-
er standard algorithm, k-NN, to serve as a baseline. Two kinds of
k-NN algorithms are implemented and compared to our methods.
With user-based k-NN, to provide a prediction for xui, the k n-
earest neighbors of u who have also rated i are selected according
to their similarities to u, and the prediction is made by taking the
weighted average of their ratings. With item-based k-NN, the k n-
earest neighbors of i that have also been rated u are selected to form
the prediction. Note that as another standard recommendation ap-
proach, the content-based algorithm has a different task from ours
and thus not considered in this work. It aims to provide top-N rec-
ommendations with the best content similarities to the user, rather
than providing predictions.

When training the models we mainly tuned the parameters manu-
ally and sometimes resorted to an automatic parameter tuner (APT)
to find the best constants (learning rates, regularization, and log ba-
sis). Specifically, we were using APT2, which is described in [27].
All the algorithms are performed with 10-fold cross-validations.

Evaluation Measures. The quality of the results is measured by
the root mean squared error of the predictions:

RMSE =

√√√√ ∑
(u,i)∈TestSet

(rui − r̂ui)2

|TestSet|

where rui is the real rating and r̂ui is the rating estimated by a
recommendation model.

6.2 Results
The overall performance on the four datasets are given in Table 1.

The CSEL methods outperform both k-NN and FactCF algorithms
in terms of the overall RMSE. Specifically, compared to FactCF the
prediction accuracy averaged on all the test examples is improved
by 3.4% on D1, 3.6% on D2, 3.2% on D′

1 and 3% on D′
2 respec-

tively, with CSELv performing the best among the methods. An

Table 1: The overall RMSE Performance on the Four Datasets.
Models D1 D2 D′

1 D′
2

UB k-NN 1.0250 1.0267 1.0224 0.9522
IB k-NN 1.0733 1.0756 1.0709 1.0143
FactCF 0.9310 0.9300 0.9260 0.8590
Context 0.9164 0.9180 0.9140 0.8500

Ensembles 0.9174 0.9170 0.9156 0.8490
Ensemblev 0.9131 0.9153 0.9130 0.8452

CSELs 0.9013 0.9061 0.9022 0.8375
CSELv 0.8987 0.8966 0.8963 0.8334
CSELsv 0.9012 0.9020 0.9000 0.8355

unexpected result is that the hybrid method CSELsv does not out-
perform CSELv . It is because the double splitting, i.e., on both the
training set and views, leads to a bigger diversity (see Table 4) as
well as worse accuracy for the regressors. As expected, FactCF out-
performs k-NN on the overall performance by exploiting the latent
factors. We tried different values of k from 10 to 100, k = 20 gives
the best results. CSEL presents a much bigger advantage over the
k-NN algorithms, i.e., 12% over UB and 16% over IB. The optimal
solution is obtained by the CSELv for all datasets.

Cold-start Performance. Except for the overall RMSE perfor-
mance, we also present the recommendation performance accord-
ing to the popularity of items. Specifically, we estimate the pop-
ularity of each item based on the number of ratings and partition
all the items into 10 bins according to their popularity with equal
number, the average RMSE scores are obtained for each bin. The
results on these 10 bins over dataset D2 are depicted in Table 2
corresponding to Bin

(1)
i through Bin

(10)
i . Likewise, all the users

are partitioned into 10 bins, the average RMSE scores are reported
for each bin, corresponding to Bin

(1)
u through Bin

(10)
u in the ta-

ble. The average rating number in each bin is given, too. With the
users and items being grouped by their popularity we can observe
how well the cold-start problem is solved. For the presented results,
the differences between the algorithms are statistically significant
(p < 0.05 with t-test). Due to space limitation, we do not list re-
sults on all the datasets, as according to the experimental results the
behaviors of the algorithms on the four datasets (D1, D2, D′

1, and
D′

2) turned out to be similar with each other.
Table 2 demonstrates how well the cold-start problem can be ad-

dressed by the proposed CSEL algorithm. The performance of the
k-NN algorithms shows again that the cold-start problem is com-
mon to all kinds of recommendation algorithms, i.e., the items and
users with less ratings receive less accurate predictions. The reason
is that the effectiveness of the k-NN collaborative filtering recom-
mendation algorithms depends on the availability of sets of user-
s/items with similar preferences [12]. Compared to the baseline
algorithms, CSEL successfully tackles the cold-start problem by
largely improving the performance of the unpopular bins. Again,
CSELv provides the best results, compared to FactCF, RMSE drops
up to 8.3% for the most unpopular user bins and 10.1% for the most
unpopular item bins. Compared to UB k-NN, it drops up to 13.5%
for the most unpopular user bins and 22.3% for the most unpopular
item bins, respectively.

6.3 Analysis and Discussions
We further evaluate how the different components (context-

aware factorization, ensemble methods, etc.) contribute in the pro-
posed algorithm framework. In the following the performance of
the proposed context-aware model and ensemble methods are giv-
en, and the results of CSEL are further analyzed.

Table 2: RMSE Performance of Different Algorithms on D2. Bin
(1)
u − the set of most active users; Bin

(10)
u − the set of most inactive

users. Bin
(1)
i − the set of most popular items; Bin

(10)
i − the set of most unpopular items.

D2 Total RMSE Bin
(1)
u Bin

(2)
u Bin

(3)
u Bin

(4)
u Bin

(5)
u Bin

(6)
u Bin

(7)
u Bin

(8)
u Bin

(9)
u Bin

(10)
u

Rating # 106 (AVG#) 340 207 148 110 77 57 44 33 26 21
UB k-NN 1.0267 0.9816 0.9939 1.0191 1.0292 1.0696 1.0739 1.1043 1.1145 1.1381 1.1694
IB k-NN 1.0756 1.0156 1.0470 1.0536 1.0729 1.1041 1.1245 1.1396 1.1446 1.1852 1.2768
FactCF 0.9300 0.8929 0.9019 0.9100 0.9432 0.9789 0.9933 1.0291 1.0435 1.0786 1.0923
Context 0.9180 0.8797 0.8887 0.8920 0.9253 0.9503 0.9630 0.9861 1.0370 1.0573 1.0656

Ensembles 0.9170 0.8810 0.8867 0.8995 0.9280 0.9478 0.9522 0.9734 1.0100 1.0338 1.0448
Ensemblev 0.9153 0.8836 0.8877 0.8983 0.9179 0.9451 0.9585 0.9760 0.9938 1.0268 1.0422

CSELs 0.9061 0.8779 0.8815 0.8928 0.9170 0.9282 0.9335 0.9714 0.9927 1.0054 1.0316
CSELv 0.8966 0.8694 0.8773 0.8832 0.9078 0.9215 0.9223 0.9687 0.9849 0.9918 1.0023
CSELsv 0.9020 0.8700 0.8752 0.8849 0.9100 0.9254 0.9367 0.9700 0.9835 0.9985 1.0153

D2 Total RMSE Bin
(1)
i Bin

(2)
i Bin

(3)
i Bin

(4)
i Bin

(5)
i Bin

(6)
i Bin

(7)
i Bin

(8)
i Bin

(9)
i Bin

(10)
i

Rating # 60 (AVG#) 254 130 80 53 35 21 12 7 3 1
UB k-NN 1.0267 0.9677 0.9888 1.0089 1.0281 1.0592 1.0836 1.1003 1.1632 1.2977 1.3860
IB k-NN 1.0756 0.9865 1.0035 1.0360 1.0556 1.0930 1.1360 1.2608 1.4398 1.4742 1.5553
FactCF 0.9300 0.9071 0.9099 0.9300 0.9824 1.0344 1.0709 1.1066 1.1375 1.1531 1.1983
Context 0.9180 0.8871 0.9023 0.9177 0.9607 0.9980 1.0316 1.0649 1.1017 1.1171 1.1485

Ensembles 0.9170 0.8934 0.9050 0.9215 0.9656 0.9938 1.0384 1.0522 1.0957 1.1174 1.1242
Ensemblev 0.9153 0.8819 0.8973 0.9163 0.9454 0.9740 1.0307 1.0576 1.1067 1.1098 1.1317

CSELs 0.9061 0.8821 0.8990 0.9184 0.9383 0.9572 1.0066 1.0166 1.0357 1.0661 1.0868
CSELv 0.8966 0.8741 0.8907 0.9168 0.9235 0.9561 1.0008 1.0237 1.0454 1.0592 1.0768
CSELsv 0.9020 0.8781 0.8920 0.9151 0.9243 0.9537 1.0076 1.0370 1.0470 1.0654 1.0800

Table 3: RMSE Performance of the evolving model. RMSE
reduces while adding model components.
Models D1 D2 D′

1 D′
2

1) µ+ bu + bi + qTi pu 0.931 0.93 0.926 0.859
2) 1) + bio + bia + bis (hv1) 0.922 0.925 0.920 0.853

3) 1) +
∑

g∈genres(i) bug

|genres(i)| (hv2) 0.919 0.920 0.917 0.850

4) 2) +
∑

g∈genres(i) bug

|genres(i)| 0.915 0.918 0.914 0.850

Context-aware Model. Table 3 depicts the results of the evolving
model by adding on the biases of bi∗ and bu∗ separately. This way
the effect of each part can be observed. Obviously, bug contributes
more than bi∗ for the final improvement in RMSE. The reason can
be traced back again to the rating numbers falling into into each
category. Specifically, the average rating number of items is 60 and
the average rating number of users is 106. The bi∗ and bu∗ are re-
lated to the specific i and u now, which means these ratings are then
divided into these categories, i.e., S,O,A and G. Roughly speak-
ing, the ratings for each item are divided by 2 for S, 20 for O and 7
for A, respectively, whereas the ratings for each user are shared be-
tween 18 genres but not exclusively, which leaves relatively richer
information for bug than bio, bia and bis.

With the context-aware model, the overall RMSE is improved by
1.7% on D1, 1.3% on D2, 1.5% on D′

1 and 1% on D′
2, respectively,

compared to FactCF. The performance on the cold-start problem is
depicted in Table 2. There is a certain level improvement on all the
bins comparing to the baseline algorithms.

Ensemble Results. In Table 1 we give the ensemble results ob-
tained by two approaches Ms and Mv , respectively. Let hs1 and
hs2 be the regressors generated by Ms, hv1 and hv2 be the ones
generated by Mv . Their performance serves as a start point for the
SSL process. The corresponding ensemble results are depicted as

Ensembles and Ensemblev , respectively. The ensemble method-
s present a much better results in overall RMSE than the FactCF
algorithm. Given the individual regressors hv1 and hv2’s perfor-
mance in Table 3, by simply assembling them together before any
optimization with SSL, the accuracy has been largely improved.

Table 2 shows the performance on bins. Comparing to Context,
with a slightly better performance on the overall RMSE, their per-
formance on the unpopular bins are better. The biggest improve-
ment is observed in the last bin, where the RMSE is reduced by
4.6% for users and 6% for items. The empirical results demon-
strate that the ensemble methods can be used to address the cold-
start problem. For a more theoretical analysis for the ensemble
methods, please refer to [6].

Semi-supervised Co-training Algorithm (CSEL). In order to
generate the bootstrap duplicates with the Ms method, we set a
parameter 0 ≤ ζ ≤ 1 as the proportion to take from the origi-
nal training set. In our evaluation, by trying different values ζ is
set to 0.8, i.e., 0.8 × |T | examples are randomly selected for each
duplicate, which provides the best performance in most cases.

As mentioned in Section 4.2, selecting the examples with a big
difference between h1 and h2 to form the teaching set is essential
to the success of the SSL process. In order to do so, a threshold
β is set to select the examples with the top 10% biggest differ-
ence. So, according to the distribution of the difference depicted in
Figure 2 we have β =0.675 for Ms, 0.85 for Mv and 1 for Msv , re-
spectively. As expected, Msv generates the most diverse regressors
whereas Ms generates the least. During the iterations the difference
changes with the updated regressors. That is, if there is not enough
unlabeled examples meet the condition the threshold will automat-
ically shrink by β = 0.8 × β. The performance on solving the
cold-start problem on D′

2 is depicted by the comparison of the left
and right figures in Figure 3, which presents the results on user bin-
s of the FactCF method and the CSELv method, respectively. The

0.15 0.5 0.85 1.2 1.45 1.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Difference

D
is

tr
ib

ut
io

n

CSEL
s

CSEL
v

CSEL
sv

Figure 2: Difference Distribution between the Multiple Regres-
sors Generated for the CSEL Methods (on D2). We estimate
the difference between the predictions made by the multiple
regressors generated with different methods, i.e., Ms, Mv and
Msv . The threshold of difference is set according to the distri-
butions for selecting the examples to form the teaching set.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

User Bins from Popular to Unpopular

R
M

S
E

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

User Bins from Popular to Unpopular

R
M

S
E

Figure 3: Comparison between the FactCF algorithm (left) and
CSELv (right) on the cold-start problem for D′

2. The average
RMSE scores on user bins with different popularity are given.

RMSE on the cold-start bins drops dramatically. The performance
on those bins are much more closer to the performance on the pop-
ular bins now. In other words, the distribution of RMSE becomes
much more balanced than FactCF. Meanwhile, the performance on
the popular bins has also been improved, which means the overall
RMSE performance is generally improved. The improvement on
the unpopular bins means the cold-start problem is well addressed
in the sense that the predictions for the users and items that possess
limited ratings become more accurate, which makes it possible to
provide accurate recommendations for them.

Efficiency Performance. Roughly speaking, the cost of the al-
gorithm is t times of the standard factorization algorithm since the
individual models are re-trained for t times. In the experiments we
found that teaching set size N has a big influence on convergence.
We tried many possible values of N from 1, 000 up to 20, 000 with
respect to the optimization effect and time efficiency, and found that
20% of the training set size is a good choice, e.g., N = 8, 000 for
D1 and N = 16, 000 for D2, which leads to a fast convergence and
optimal final results. Besides, we found the quality of the teaching
set, i.e., difference and accuracy of the predictions made for the se-
lected examples, has a even bigger impact on the performance and
convergence of CSEL. With the methods described in Section 4.2
we managed to guarantee the best examples that satisfy the condi-
tions are selected. The convergence point is set to when the RMSE
in the validation set does drop any more for 2 iterations in a row.
The entire training process is performed off-line.

Table 4: Diversity of the Individual Regressors h1 and h2 Pre-
and Post- CSEL Methods.

Methods D1 D2 D′
1 D′

2

Before CSELs 0.43 0.45 0.4 0.45
After CSELs 0.13 0.12 0.11 0.12

Before CSELv 0.49 0.5 0.5 0.52
After CSELv 0.15 0.11 0.12 0.1

Before CSELsv 0.51 0.57 0.55 0.56
After CSELsv 0.13 0.15 0.12 0.11

Table 5: Predictions made for the users and items with different
popularity.

Methods x11 x12 x21 x22

Real Rating 3 4 1 5
FactCF 3.3124 3.2171 2.0155 3.7781
Context 3.3084 3.4605 1.9560 4.2217

Ensemblev 3.2934 3.5071 1.8032 4.3433
CSELs 3.2313 3.4913 1.8351 4.241
CSELv 3.1971 3.7655 1.5456 4.671

Diversity Analysis. The diversity of the regressors pre- and post-
performing the CSEL Methods is depicted in Table 4 for all the
datasets under estimation. Here diversity is defined as the aver-
age difference between the predictions made by the regressors. In
the experiments we observed that the diversity drops rapidly when
the accuracy goes up. At the point of convergence the regressors
become very similar to each other and the ensemble of the results
does not bring any more improvements at this point. As mentioned
before diversity is an important condition to achieve a good perfor-
mance. Apparently, simply distinguishing the teaching sets of the
two regressors cannot help enough with maintaining the diversity
and some strategies can be designed in this respect.

Moreover, when generating the multiple regressors with Mv or
Ms there is a setback on their performance, i.e., h1 and h2 do not
perform as good as the full model (Eq. 4) being trained on the full
training set. For example, as shown in Table 3, hv1 and hv2 have
a setback in accuracy compared to the full model. Although by
simply assembling the two regressors together the accuracy can be
brought back (see Table 1), some improvement could still be done
in this respect to obtain an even better initial point at the beginning
of the SSL process.

6.4 Qualitative Case Study
To have a more intuitive sense about how the algorithms work in

different cases, we pick two users and two items from the dataset
and look at their predictions. Let u1 be an active user and u2 be
an inactive user, i1 be a popular item and i2 be an unpopular item.
Then four examples x11, x12, x21, x22 are drawn from the dataset
with the given users and items, where xkj is given by uk to ij .
This way x11 is rated by an active user to a popular item whereas
x22 is rated by an inactive user to an unpopular item, etc., and the
performance of the algorithms on them can be observed. In this
case study we pick the four examples that have the real ratings,
r11, r12, r21, r22.

The results are given in Table 5, showing that providing accurate
predictions also helps with personalization. That is, to recommend
items that the end-user likes, but that are not generally popular,
which can be regarded as the users’ niche tastes. By providing
more accurate predictions for these items, the examples such as

x12 or x22 can be identified and recommended to the users who
like them. Thus the users’ personalized tastes can be retrieved.

7. CONCLUSION
This paper resorts to the semi-supervised learning methods to

solve the cold-start problem in recommender systems. Firstly, to
compensate the lack of ratings, we propose to combine the contexts
of users and items into the model. Secondly, a semi-supervised co-
training framework is proposed to incorporate the unlabeled exam-
ples. In order to perform the co-training process and let the models
teach each other, a method of constructing the teaching sets is in-
troduced. The empirical results show that our strategy improves
the overall system performance and makes a significant progress in
solving the cold-start problem.

As future work, there are many things worth to try. For example,
our framework provides a possibility for accommodating any kinds
of regressors. One interesting problem is how to choose the right
regressors for a specific recommendation task. Meanwhile, this
semi-supervised strategy can be easily expanded to include more
than two regressors. For example, three regressors can be con-
structed and a semi-supervised tri-training can then be performed
on them. Finally, it is also intriguing to further consider rich social
context [28] in the recommendation task.

Acknowledgements. This work is partially supported by Nation-
al Natural Science Foundation of China (61103078, 61170094),
National Basic Research Program of China (2012CB316006,
2014CB340500), NSFC (61222212), and Fundamental Research
Funds for the Central Universities in China and Shanghai Leading
Academic Discipline Project (B114). We also thank Prof. Zhihua
Zhou for his valuable suggestions.

8. REFERENCES
[1] T. Back. Evolutionary Algorithms in Theory and Practice:

Evolution Strategies, Evolutionary Programming, Genetic
Algorithms. Oxford University Press, 1996.

[2] R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at
multiple scales to improve accuracy of large recommender
systems. In KDD’07, pages 95–104, 2007.

[3] A. Blum and T. Mitchell. Combining labeled and unlabeled
data with co-training. In COLT’98, 1998.

[4] M. Degemmis, P. Lops, and G. Semeraro. A
content-collaborative recommender that exploits
wordnet-based user profiles for neighborhood formation.
User Modeling and User-Adapted Interaction,
17(3):217–255, 2007.

[5] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Transaction on
Information Systems, 22(1):143–177, 2004.

[6] T. G. Dietterich. Ensemble methods in machine learning. In
Workshop on Multiple Classifier Systems, pages 1–15, 2000.

[7] G. Dror, N. Koenigstein, and Y. Koren. Yahoo! music
recommendations: Modeling music ratings with temporal
dynamics and item taxonomy. In RecSys’11, pages 165–172,
2011.

[8] K. Goldberg, T. Roeder, D.Gupta, and C. Perkins.
Eigentaste: A constant time collaborative filtering algorithm.
Information Retrieval, 4(2):133–151, 2001.

[9] N. Good, J. Schafer, and J. etc. Combining collaborative
filtering with personal agents for better recommendations. In
AAAI’99, pages 439–446, 1999.

[10] G. Guo. Improving the performance of recommender
systems by alleviating the data sparsity and cold start
problems. In IJCAI’13, pages 3217–3218, 2013.

[11] J. Herlocker, J. Konstan, and J. Riedl. Explaining
collaborative filtering recommendations. In CSCW’00, pages
241–250, 2000.

[12] P. B. Kantor, F. Ricci, L. Rokach, and B. Shapira.
Recommender Systems Handbook. Springer, 2010.

[13] I. Konstas, V. Stathopoulos, and J. M. Jose. On social
networks and collaborative recommendation. In SIGIR’09,
pages 195–202, 2009.

[14] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD’08, pages
426–434, 2008.

[15] Y. Koren. The bellkor solution to the netflix grand prize.
Technical report, 2009.

[16] J. Li and O. Zaiane. Combining usage, content, and structure
data to improve web site recommendation. In EC-Web’04,
2004.

[17] J. Lin, K. Sugiyama, M.-Y. Kan, and T.-S. Chua. Addressing
cold-start in app recommendation: Latent user models
constructed from twitter followers. In SIGIR’13, pages
283–293, 2013.

[18] P. Melville, R. Mooney, and R. Nagarajan. Content-boosted
collaborative filtering for improved recommendations. In
AAAI’02, pages 187–192, 2002.

[19] S.-T. Park and W. Chu. Pairwise preference regression for
cold-start recommendation. In RecSys’09, pages 21–28,
2009.

[20] L. Rokach. Ensemble-based classifiers. Artificial Intelligence
Review, 33(1):1–39, 2010.

[21] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Using
filtering agents to improve prediction quality in the grouplens
research collaborative filtering system. In CSCW’98, pages
345–354, 1998.

[22] A. Schein, A. Popescul, L. Ungar, and D. Pennock. Methods
and metrics for cold-start recommendations. In SIGIR’02,
pages 253–260, 2002.

[23] I. Soboroff and C. Nicholas. Combining content and
collaboration in text filtering. In IJCAI Workshop on Machine
Learning for Information Filtering, pages 86–91, 1999.

[24] M. Sun, F. Li, J. Lee, K. Zhou, G. Lebanon, and H. Zha.
Learning multiple-question decision trees for cold-start
recommendation. In WSDM’13, pages 445–454, 2013.

[25] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. Scalable
collaborative filtering approaches for large recommender
systems. Journal of Machine Learning Research,
10:623–656, 2009.

[26] J. Tang, S. Wu, J. Sun, and H. Su. Cross-domain
collaboration recommendation. In KDD’12, pages
1285–1294, 2012.

[27] A. Toscher and M. Jahrer. The bigchaos solution to the
netflix prize 2008. Technical Report, 2008.

[28] Z. Yang, K. Cai, J. Tang, L. Zhang, Z. Su, and J. Li. Social
context summarization. In SIGIR’11, pages 255–264, 2011.

[29] K. Zhou, S.-H. Yang, and H. Zha. Functional matrix
factorizations for cold-start recommendation. In SIGIR’11,
pages 315–324, 2011.

[30] Z.-H. Zhou and M. Li. Semi-supervised regression with
co-training. In IJCAI’05, pages 908–913, 2005.

[31] Z.-H. Zhou and M. Li. Semi-supervised regression with
co-training style algorithms. IEEE Transactions on
Knowledge and Data Engineering, 19(11):1479–1493, 2007.

