# DETECTING COMMUNITY KERNELS IN LARGE SOCIAL NETWORKS

Liaoruo (Laura) Wang Cornell University December 14, 2011

Joint work with Tiancheng Lou, Jie Tang, and John Hopcroft

#### **OUTLINE**

- Introduction
- Problem Definition
  - Community Kernel
  - Auxiliary Community
  - Unbalanced Weakly-Bipartite Structure
- Algorithms
  - GREEDY
  - WEBA
- Experimental Results
  - Case Study
  - Quantitative Performance
  - Efficiency and Scalability

### AN EXAMPLE



#### **OUTLINE**

- Introduction
- Problem Definition
  - Community Kernel
  - Auxiliary Community
  - Unbalanced Weakly-Bipartite Structure
- Algorithms
  - GREEDY
  - WEBA
- Experimental Results
  - Case Study
  - Quantitative Performance
  - Efficiency and Scalability

#### COMMUNITY KERNEL AND AUXILIARY COMMUNITY



In many social networks, there exist two types of users that exhibit different influence and different behavior.

Pareto Principle: Less than 1% of the Twitter users (e.g. entertainers, politicians, writers) produce 50% of its content, while the others (e.g. fans, followers, readers) have much less influence and completely different social behavior.

#### DEFINITION

Given a graph G = (V, E), l disjoint subsets  $\{K_1, K_2, \dots, K_l\}$  of vertices are called community kernels and l associated subsets  $\{A_{k_1}, A_{k_2}, \dots, A_{k_l}\}$  of vertices are called auxiliary communities if

- Each kernel member has more connections to/from the kernel than a vertex outside the kernel does.
- A community kernel is disjoint from its auxiliary community.
- Each auxiliary member has more connections to its associated kernel than to any other kernel.
- Each kernel member is followed by more vertices in its auxiliary community than those in the kernel.



**Problem**: how to identify kernel members and auxiliary members, and how to determine the structure of community kernels?

#### Unbalanced Weakly-Bipartite (UWB) Structure

Empirical property of many real-world networks:

$$d_{21} > d_{11} > d_{22} \gg d_{12}$$

$$d_{ij} = \frac{|E(V_i, V_j)|}{|V_j|}, i, j \in \{1, 2\}$$

$$d_{11} = \frac{|G_1|}{|G_2|}$$

$$d_{12} = \frac{|G_2|}{|G_2|}$$

| Network   | $d_{21}$ | $d_{11}$ | $d_{22}$ | $d_{12}$ |
|-----------|----------|----------|----------|----------|
| Coauthor  | 14.19    | 5.34     | 4.42     | 0.37     |
| Wikipedia | 1689.31  | 104.22   | 4.69     | 0.60     |
| Twitter   | 110.78   | 26.78    | 2.94     | 0.29     |
| Slashdot  | 180.90   | 84.56    | 10.75    | 0.64     |
| Citation  | 76.69    | 35.81    | 23.80    | 0.26     |

#### **OUTLINE**

- Introduction
- Problem Definition
  - Community Kernel
  - Auxiliary Community
  - Unbalanced Weakly-Bipartite Structure
- Algorithms
  - GREEDY
  - WEBA
- Experimental Results
  - Case Study
  - Quantitative Performance
  - Efficiency and Scalability

#### **GREEDY ALGORITHM**

- Given an graph G = (V, E) and a kernel size k
  - Initialize the set S to be a random vertex  $v \in V$
  - Iteratively add to S the vertex with the most connections to S
  - Always pick the vertex with the highest degree

#### Example



#### **GREEDY ALGORITHM**

- Given an graph G = (V, E) and a kernel size k
  - Initialize the set S to be a random vertex  $v \in V$
  - Iteratively add to S the vertex with the most connections to S
  - Always pick the vertex with the highest degree
- Running time and space complexity: O(|V| + |E|)
- No guaranteed error bound
- Repeat O(|V|/k) times to obtain steady state and reduce the effect of random selection of the initial point

- Each vertex  $v \in V$  has a weight vector  $\vec{w}(v) = \{w_1(v), \dots, w_l(v)\}$  to represent its relative importance for each community kernel
- Optimization Problem:

$$\max \quad \mathcal{L}(\overrightarrow{w}) = \sum_{(u,v) \in E} \overrightarrow{w}(u) \cdot \overrightarrow{w}(v)$$
 subject to 
$$\sum_{v \in V} w_i(v) = k, \ \forall i \in \{1, \cdots, l\}$$
 
$$\sum_{1 \leq i \leq l} w_i(v) \leq 1, \ \forall v \in V$$
 
$$w_i(v) \geq 0, \forall v \in V, \ \forall i \in \{1, \cdots, l\}$$

• Intractable to solve — we approximate the solution by iteratively solving its one-dimensional version  $\mathcal{L}(w)$ 

- Theorem 1: A global maximum of the objective function  $\mathcal{L}(w)$  corresponds to a community kernel.
- Given an graph G = (V, E) and a kernel size k, maximizing  $\mathcal{L}(w)$  is NP-hard.
  - Initialize the set S to be a random subset obtained by GREEDY
  - Assign weight 1 to each vertex in S and weight 0 otherwise
  - If  $\exists u, v \in V$  such that w(u) < 1, w(v) > 0 and nw(u) > nw(v), where nw(u) is the neighboring weight of u, the weights of u and v are modified to locally maximize  $\mathcal{L}(w)$

relaxation conditions

#### **WEBA**

```
Input: G = (V, E) and kernel size k
Output: community kernels \mathbf{K} = \{\mathcal{K}_1, \mathcal{K}_2, \cdots, \mathcal{K}_\ell\}
\mathbf{K} \leftarrow \emptyset
repeat
      S \leftarrow a subset returned by GREEDY(G, k)
      \forall v \in S, \ w(v) \leftarrow 1; \ \forall v \not\in S, \ w(v) \leftarrow 0
      while \exists u, v \in V satisfying the relaxation conditions do
            if (u,v) \not\in E then \delta \leftarrow \min\{1-w(u),w(v)\}
        else \delta \leftarrow \min \left\{ 1 - w(u), w(v), \frac{nw(u) - nw(v)}{2} \right\}
           pick one pair \{u, v\} with the maximum \delta value
          w(u) \leftarrow w(u) + \delta, \ w(v) \leftarrow w(v) - \delta
      \overset{1}{C} \leftarrow \{v \in V \mid w(v) = 1\}
if C \not\in \mathbf{K} then \mathbf{K} \leftarrow \{\mathbf{K}, C\}
until O(|V|/k) times;
return K
```

- Given a graph and a kernel size k = 3
- Given a random subset of size k



• Three pairs of vertices satisfy the relaxation conditions with the maximum  $\delta=1$ 



• 
$$w(u) \leftarrow w(u) + \delta \implies w(u) \leftarrow 1$$

• 
$$w(v) \leftarrow w(v) - \delta \implies w(v) \leftarrow 0$$



 Keep balancing weights as described above until no pairs of vertices satisfy the relaxation conditions



Now we select another pair of vertices



• 
$$w(u) \leftarrow w(u) + \delta \implies w(u) \leftarrow 1$$

• 
$$w(v) \leftarrow w(v) - \delta \implies w(v) \leftarrow 0$$



The algorithm converges to another community kernel



#### **WEBA**

- Theorem 2 (correctness):
  - WEBA is guaranteed to converge to a feasible solution.
- Theorem 3 (error bound):

For any assigned weights  $\{w(v), \forall v \in V\}$  and any  $\varepsilon > 0$ , after

$$\max\left\{\frac{4k^3D^5}{\varepsilon^2}, \frac{2mkD^3}{\varepsilon}\right\}$$

iterations, we have  $\mathcal{L}(w^*(v)) - \mathcal{L}(w(v)) \leq \varepsilon$ .

• Repeat O(|V|/k) times to obtain steady state and reduce the effect of random selection of the initial point

#### FINDING AUXILIARY COMMUNITY

- Given community kernels  $\{K_1, K_2, \dots, K_l\}$ 
  - Label each vertex that is not in any kernel as unassociated
  - For each unassociated vertex, rank the kernels according to the number of edges from the vertex to each kernel and the vertices that have already been associated with that kernel
  - Associate the vertex with the top-ranked kernel(s)
  - Repeat this process until no more vertices can be associated
- Auxiliary communities can overlap with each other

#### FINDING AUXILIARY COMMUNITY



#### **OUTLINE**

- Introduction
- Problem Definition
  - Community Kernel
  - Auxiliary Community
  - Unbalanced Weakly-Bipartite Structure
- Algorithms
  - GREEDY
  - WEBA
- Experimental Results
  - Case Study
  - Quantitative Performance
  - Efficiency and Scalability

#### EXPERIMENTAL RESULTS

#### Data Sets

- Coauthor (822,415 nodes; 2,928,360 edges)
  - Benchmark coauthor network (52,146 nodes; 134,539 edges)
- Wikipedia (310,990 nodes; 10,780,996 edges)
  - Namespace talk pages (263 nodes; 1,075 edges)
  - User personal pages (266 nodes; 33,829 edges)
- Twitter (465,023 nodes; 833,590 edges)

#### Algorithms

| Local Spectral Partitioning (LSP) | METIS+MQI             |
|-----------------------------------|-----------------------|
| d-LSP (high-degree)               | NEWMAN1 (betweenness) |
| p-LSP (high-PageRank)             | NEWMAN2 (modularity)  |
| α-β                               | LOUVAIN               |

## CASE STUDY ON TWITTER



#### Community Structure by NEWMAN2



Community Structure by METIS+MQI



#### EXPERIMENTAL RESULTS

 On average, WEBA improves Precision by 340% (wiki) and 70% (coauthor), and improves Recall by 130% (wiki) and 41% (coauthor).

| Precision |       |       |          |  |       |         | Recall |       |         |  |       |         |  |
|-----------|-------|-------|----------|--|-------|---------|--------|-------|---------|--|-------|---------|--|
|           | W     | iki   | coauthor |  |       | r       | W      | iki   | coautho |  |       | r       |  |
|           | Talk  | User  | Al       |  | NC    | Average | Talk   | User  | Al      |  | NC    | Average |  |
| LSP       | 0.061 | 0.085 | 0.502    |  | 0.342 | 0.573   | 0.171  | 0.315 | 0.458   |  | 0.398 | 0.561   |  |
| d-LSP     | 0.051 | 0.091 | 0.528    |  | 0.504 | 0.617   | 0.427  | 0.273 | 0.519   |  | 0.463 | 0.609   |  |
| p-LSP     | 0.046 | 0.082 | 0.678    |  | 0.403 | 0.641   | 0.442  | 0.237 | 0.337   |  | 0.491 | 0.574   |  |
| METIS+MQI | 0.049 | 0.012 | 0.847    |  | 0.055 | 0.488   | 0.062  | 0.361 | 0.089   |  | 0.077 | 0.379   |  |
| Louvain   | 0.063 | 0.122 | 0.216    |  | 0.272 | 0.437   | 0.388  | 0.348 | 0.184   |  | 0.19  | 0.343   |  |
| NEWMAN1   | 0.033 | 0.203 | 0.4      |  | 0.259 | 0.431   | 0.769  | 0.0/7 | 0.306   |  | 0.174 | 0.311   |  |
| NEWMAN2   | 0.039 | 0.085 | 0.298    |  | 0.613 | 0.463   | 0.029  | 0.075 | 0.364   |  | 0.467 | 0.335   |  |
| α-β       | 0.324 | 0.336 | 0.443    |  | 0.747 | 0.626   | 0.422  | 0.427 | 0.602   |  | 0.568 | 0.654   |  |
| WEBA      | 0.456 | 0.46  | 0.852    |  | 0.837 | 0.911   | 0.589  | 0.57  | 0.577   |  | 0.582 | 0.664   |  |
| GREEDY    | 0.334 | 0.403 | 0.83     |  | 0.746 | 0.752   | 0.432  | 0.499 | 0.545   |  | 0.56  | 0.659   |  |

#### EXPERIMENTAL RESULTS

 On average, WEBA increases F1-score by 300% (wiki) and 61% (coauthor), and increases Resemblance by 180% (wiki) and 67% (coauthor).

| F1-score  |       |       |          |  |       | Resemblance (Jaccard Index) |       |          |                |  |       |         |
|-----------|-------|-------|----------|--|-------|-----------------------------|-------|----------|----------------|--|-------|---------|
|           | W     | iki   | coauthor |  |       | W                           | iki   | coauthor |                |  |       |         |
|           | Talk  | User  | Al       |  | NC    | Average                     | Talk  | User     | Al             |  | NC    | Average |
| LSP       | 0.090 | 0.134 | 0.479    |  | 0.368 | 0.565                       | 0.177 | 0.175    | 0.143          |  | 0.138 | 0.169   |
| d-LSP     | 0.091 | 0.137 | 0.524    |  | 0.483 | 0.612                       | 0.175 | 0.149    | 0.164          |  | 0.204 | 0.193   |
| p-LSP     | 0.083 | 0.121 | 0.450    |  | 0.443 | 0.595                       | c 177 | 0.153    | 0.130          |  | 0.208 | 0.194   |
| METIS+MQI | 0.055 | 0.023 | 0.162    |  | 0.064 | 0.370                       | 0. 30 | 0.090    | 0.022          |  | 0.018 | 0.048   |
| Louvain   | 0.108 | 0.181 | 0.199    |  | 0.224 | 0.361                       | 0.212 | 245      | <b>0</b> 0.101 |  | 0.102 | 0.118   |
| NEWMAN1   | 0.014 | 0.111 | 0.346    |  | 0.208 | 0.347                       | 0.127 | 0.208    | 0.139          |  | 0.119 | 0.120   |
| Newman2   | 0.033 | 0.080 | 0.327    |  | 0.53  | 0.350                       | 0./31 | 0.148    | 0.137          |  | 0.198 | 0.130   |
| α-β       | 0.367 | 0.376 | 0.510    |  | 0.646 | 0.587                       | 436   | 0.444    | 0.178          |  | 0.227 | 0.203   |
| WEBA      | 0.514 | 0.509 | 0.688    |  | 0.686 | 0.763                       | 0.561 | 0.557    | 0.234          |  | 0.259 | 0.246   |
| GREEDY    | 0.377 | 0.446 | 0.658    |  | 0.64  | 0.696                       | 0.445 | 0.503    | 0.216          |  | 0.234 | 0.222   |

#### SENSITIVITY



(a) Precision vs. Recall

-WEBA GREEDY 1 kernel size 1.2

(b) F1-score vs. kernel size

#### EFFICIENCY — TWITTER



#### EFFICIENCY — COAUTHOR



#### EFFICIENCY — WIKIPEDIA



#### WEBA — PARALLELIZATION



## WEBA — SCALABILITY (NO PARALLELIZATION)



(a) CPU time vs. # vertices

## WEBA — SCALABILITY (NO PARALLELIZATION)



(b) CPU time vs. density

## WEBA — SCALABILITY (NO PARALLELIZATION)



(c) CPU time vs. kernel size

#### CONCLUSION

- Structure of community kernels and their auxiliary communities
- Problem definition of detecting community kernels
  - greedy algorithm GREEDY
  - weight-balanced algorithm WEBA (w/ guaranteed error bound)
- WEBA considers both the relative influence of vertices and the link information between auxiliary and kernel members
  - significantly improves the performance over traditional cut-based and conductance-based algorithms
- WEBA reveals the common profession, interest, or popularity of groups of influential individuals.

## THANK YOU!