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Spatio-Temporal Routine Mining on Mobile Phone Data
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Mining human behaviors has always been an important subarea of Data Mining. While it provides empirical

evidences to psychological/behavioral studies, it also builds the foundation of various big-data systems, which

rely heavily on the prediction of human behaviors. In recent years, the ubiquitous spreading of mobile phones

and the massive amount of spatio-temporal data collected from them make it possible to keep track of the

daily commute behaviors of mobile subscribers and further conduct routine mining on them. In this article,

we propose to model mobile subscribers’ daily commute behaviors by three levels: location trajectory, one-

day pattern, and routine pattern. We develop the model Spatio-Temporal Routine Mining Model (STRMM)

to characterize the generative process between these three levels. From daily trajectories, the STRMM model

unsupervisedly extracts spatio-temporal routine patterns that contain two aspects of information: (1) How

people’s typical commute patterns are. (2) How much their commute behaviors vary from day to day. Com-

pared to traditional methods, STRMM takes into account the different degrees of behavioral uncertainty in

different timespans of a day, yielding more realistic and intuitive results. To learn model parameters, we adopt

Stochastic Expectation Maximization algorithm. Experiments are conducted on two real world datasets, and

the empirical results show that the STRMM model can effectively discover hidden routine patterns of human

commute behaviors and yields higher accuracy results in trajectory prediction task.
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1 INTRODUCTION

Mining human behaviors has always been an important subarea of Data Mining. Its main assump-
tion is that human behaviors are dominated by some hidden patterns (Gonzalez et al. 2008). For
example, Zipf’s law (Powers 1998) holds for most human languages. On the one hand, these pat-
terns provide empirical evidence to subjects that try to build the theory of human behaviors, such
as linguistics, sociology, and psychology. On the other hand, patterns of historical behaviors allow
us to forecast behaviors in the future, which is the foundation of various recommendation systems
(Bao et al. 2015).
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Commute routine mining has become a more and more popular topic thanks to the availability
of large-scale location data collected from mobile phones. Mobile phone is able to record the daily
trajectories of individuals in both time and space. For example, when a mobile subscriber calls or
sends messages, he/she can be coarsely located near the cellular tower with which his/her phone
is transferring data. Compared to GPS data, location data from mobile phone records are much
larger in amount because mobile phones are among the few things that people carry with them
wherever they go. Therefore, with mobile phone data, it has been never more possible to mine
modern people’s life pattern and especially commute routines (Candia et al. 2008; Liu et al. 2013;
Shan et al. 2013; Yuan et al. 2012; Zheng et al. 2014).

What is routine and what is routine mining? While there are multiples ways to define the term
“routine,” in this article we refer to routine as the pattern that people tend to show up at certain
places during certain time of a day. For example, a typical student’s life might consist of two rou-
tines as “school-days” and “off-school-days.” In school-day routine, the student tends to show up
at classroom during daytime and dormitory at night. In off-school-days routine, the student might
frequently show up at a nearby shopping mall. In different routines, people’s location trajectories
are subject to different pattern. The task of Mobile Routine Mining is to extract the above routine
pattern from trajectories collected from mobile phone records.

Numerous applications of routine mining can be found in real world. In Location-Based Social
Networks (Chow et al. 2010; Scellato et al. 2011), routine patterns are usually viewed as a user’s
feature in the real world. Along with the user’s features in online virtual world, together they
contribute to tasks such as user classification and user similarity measurement (Xiao et al. 2010).
Besides, given a user’s historical routine pattern, prediction can be made regarding his/her future
location trajectory (Cho et al. 2011). If the user is predicted to appear at an entertainment area
within the next few hours, recommendation of restaurant and entertainment services would be
profitable. Moreover, patterns of a mobile subscriber’s routine tell us what is typical of him/her, or
to say, what is the expectation of his/her behaviors. Understanding the expectation allows us to
measure how anomalous a location trajectory is, which makes it possible to conduct anomaly de-
tection (Madey et al. 2006). Identification of these anomalous trajectories may find its applications
in crime detection, anti-terrorism, and personal reminder systems (Banovic et al. 2016).

Despite the promising applications of routine miming, it is a challenging task because of three
reasons. First, people’s daily trajectories are of great variety. Even if they follow the same commute
routine, variations in behaviors largely exist. Second, “routine” is never a strictly defined term. The
best definition of routine is highly context dependent. Since routine mining is the basis of many
downstream tasks (trajectory prediction, anomaly detection, etc.), an appropriate representation of
routine pattern would greatly facilitate downstream applications. Third, human behaviors exhibit
different degrees of uncertainty in different timespan of a day. Here, “uncertainty” is defined as
the entropy of location distribution. For example, people locations trajectories are of low entropy
at midnight because at this time most people are sleeping at home and location distribution is
peaked at the place of their houses. However, trajectories at noon are typically much more erratic
and uncertain. The same person could choose difference restaurants for lunch on different days,
thus at this time location distribution should be more flat and of higher entropy. When mining
routine patterns from location trajectories, a sensible model should emphasize on timespans with
lower uncertainty, but allows a higher degree of flexibility during timespans that come naturally
with high uncertainty. For instance at noon, even if the location trajectories of two days vary
greatly from each other, they may still be subject to the same routine pattern because the degree of
uncertainty has always been very high at this time. On the contrary, in midnight when the degree
of uncertainty is low, minor deviation might suggest two days are subject to different routines.
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To address these three challenges, we develop Spatio-Temporal Routine Mining Model
(STRMM), aiming to mine mobile subscribers’ commute routines from mobile phone data. The
major contributions of this article can be summarized as follows:

(1) Proposed a novel way to understanding human commute routine. Routine behaviors are
modeled as three levels: location trajectory, one-day pattern, and routine pattern.

(2) Developed the STRMM model which learns routine pattern unsupervisedly from location
trajectories. The model is able to take into account different degrees of behavioral uncer-
tainty in different timespans of a day, yielding more realistic and intuitive routines.

(3) Conducted extensive experiments on two real-world datasets, and the results show that
the STRMM model is able to mine meaningful routine patterns from mobile phone data.
Furthermore, when applied to trajectory prediction, the prediction accuracy by STRMM
model outruns that of other two methods, which indirectly proves the effectiveness of
mined routines.

The following sections are summarized as follows: In Section 2, we explore existing literatures
that are related to trajectory mining and routine mining. In Sections 3–5, we introduce the pro-
posed STRMM model. Section 3 defines five basic concepts used throughout the model, and data
preprocessing methods. Section 4 explains the generative process and other properties of STRMM
model. Section 5 outlines the adopted learning and inference methods for STRMM. Finally, in Sec-
tion 6, we include experiments conducted on one synthetic dataset and two real world datasets.

2 RELATED WORK

In Farrahi and Gatica-Perez (2008a), user’s daily trajectories are represented by vectors, and Sup-
port Vector Machine is leveraged to classify them into different categories of routine. Here, rou-
tines are manually selected categories, such as weekday-routine/weekend-routine. The biggest
weakness of classification methods is lack of labeled data, especially among mobile phone data.
Clustering methods seek to mine routines without labeled data. In Lv et al. (2013), the authors first
define one-day activity as a place reference matrix, each entry ei, j of which represents the time
duration that the user stays at the ith reference place during the jth timespan of that day. Then,
one-day activities of multiple days are clustered into a few routine activities, which characterize
the probability that the user is at the ith reference place during the jth timespan of the day. Both
classification methods and clustering methods rely heavily on the calculation of distance, which
usually treats all dimensions of location vector equally. However, in our case each part of the daily
trajectories are not equal in its contribution to routine patterns. For instance, at midday, even if
the location trajectories of two days vary greatly from each other, they may still be subject to the
same routine pattern because the degree of uncertainty is very high in this timespan of the day. On
the contrary, in midnight when the degree of uncertainty is low, minor deviation might suggest
they belong to different routines.

Principal Component Analysis (PCA) method explores the use of eigenvalue decomposition in
routine mining (Eagle and Pentland 2010; Jiang et al. 2012). The covariance matrix of location
trajectory vectors are calculated and decomposed into eigenvectors (also called eigenbehaviors).
The linear combination of “eigenbehaviors” is able to reconstruct each day’s trajectory with high
accuracy, and therefore the spanned subspace can be interpreted as the routine pattern. However,
in real life people usually follow multiple routines, and PCA cannot model this property explicitly.

Farrahi et. al. have done comprehensive research on the use of LDA in routine mining (Farrahi
and Gatica-Perez 2008b, 2010a, 2010b, 2011, 2012). For example, In Farrahi and Gatica-Perez
(2008b), user’s locations are recorded every half-hour and three consecutive locations plus a time
identifier constitute a “word.” A total of 48 words of a day are viewed as a document, on which
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LDA runs and infers the latent topic of each word. Here, latent topics are interpreted as routines
and in each routine there are certain words that tend to cooccur in the same document with
high probability. However, routines mined by LDA can only represent partial pattern of a day
because latent topics are assigned to words rather than documents. In Farrahi and Gatica-Perez
(2008b), the authors use the most dominant topic (the topic with the highest probability in topic
distribution) to represent the routine of the whole document. This method has its limitation in
that it loses the information of other non-dominant topics in that day. In this article, we aim to
directly mine the routine pattern of a whole day, integrating all the information in any time of a
day. This integrated routine better supports tasks such as trajectory prediction because in most
cases we have to first infer the routine pattern of the whole day based on part of the observed
trajectories and then predicting future trajectory.

HMM are also widely used in the task of routine mining (Eagle and Pentland 2006; Huai et al.
2014). HMM methods assume each location in the trajectory is emitted from a hidden state and
Markov property holds between consecutive hidden states. Similar to LDA, the hidden states are
interpreted as routines. In Huai et al. (2014), research works further study the semi-supervised
training of HMM to learn more meaningful hidden states(routines) from location trajectories.
HMM based methods share the same weakness of LDA: the learnt routines only represent par-
tial pattern of a day.

There are also works on trajectory mining that are highly related to routine mining. Trajec-
tory mining includes data preprocessing (denoising, segmentation, compression, ROI/stay point
extraction, etc.) (Deng et al. 2011; Kellaris et al. 2009; Lee and Krumm 2011; Zheng 2015) and
pattern mining (Jiang et al. 2012; Ye et al. 2009; Yuan et al. 2015) (sequential patterns, trajectory
clustering, etc.). This work is overlapped with the latter part. Advanced trajectory preprocessing
techniques are not explored in this article because the emphasis of this article is to model/extract
human routine behaviors given trajectory semantics.

This article is also related to group anomaly detection. Though having different aims, both rou-
tine mining and group anomaly detection try to extract typical pattern (or expectation) from data.
For example, the MGMM model in Liang et al. (2011b) is able to learn typical topic distributions
from multiple documents. Yet MGMM model uses Multinomial parameter to represent typical topic
distributions, thus restricting documents of the same category to have completely same topic dis-
tributions. Liang et al. (2011a) solves this problem by introducing Dirichlet parameter, taking into
account the uncertainty of topic distributions in different documents.

To overcome the limitations shown in the above traditional methods, we propose the STRMM
model. The model is able to extract multiple routine patterns unsupervisedly from daily trajec-
tories. Moreover, routines mined by the STRMM model integrate information of the whole day,
overcoming the problem of “partial pattern” in LDA and HMM. Finally, the STRMM model takes
into account different degree of behavioral uncertainty in different timespans of a day, yielding
more realistic and intuitive routines.

3 CONCEPTS DEFINITION AND DATA PREPROCESSING

In this section, we introduce definition of five key concepts used in STRMM model and illustrate
the method for preprocessing raw mobile phone data.

3.1 Concepts Definition

POI. Point of Interest (POI ) is a geographical point, which represents semantic meaning of the
place, such as “home,” “working place,” “plaza,” “supermarket,” “on the road,” and so on.

ROI. Region of Interest (ROI ) is a region that has special meaning for individuals. This region
might be user’s home, or the shopping mall that user frequently visits. Different ROIs can be
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Fig. 1. Table of trajectories.

characterize by the distribution of different types of POIs that exist within this region. The distri-
bution of POI can provide useful information of the types of region this ROI represents. If most
POIs within thisROI are restaurants and shopping malls, then thisROI is most likely a recreational
region.

Location trajectory. We assume each day is divided equally into τ time slices, each of which
represents 24

τ
hour. For a mobile subscriber U , we define his/her Region of Interest Set to be

ROIs = {ROI1,ROI2, . . . ,ROIC }. Then, location trajectory is defined as a sequence of length τ :
(p1,p2, . . . ,pτ ), where pj ∈ ROIs (j = 1, 2, . . . ,τ ) denotes userU ’s location within time slice j. The
bigger τ is, the more precise location trajectory describes U ’s traveling behaviors. In this article,
τ is usually set as 24 or 48, i.e., user’s location is measured every hour/half hour. D sequences of
location trajectories are used to represent userU ’s traveling behaviors inD days. We further divide
each day intoT timespans, with the kth timespan covers Nk time slices,

∑T
k=1 Nk = τ . Assume we

have user U ’s location trajectories in D days, which is shown in Figure 1. TS denotes time slice.

p (k )
i, j , i = 1, 2, . . . ,D, j = 1, 2, . . . ,Nk , k = 1, 2, . . . ,T is user U ’s location in the jth time slice of

the kth timespan of the ith day, p (k )
i, j ∈ ROIs . In this article, T is set to be 8. The 8 timespans are:

0:00–7:00, 7:00–9:00, 9:00–11:00, 11:00–14:00, 14:00–17:00, 17:00–19:00, 19:00–21:00, 21:00–24:00.
The reason why we chose these time slots is that we try to capture those common daily events, for
example, morning work time, lunch time, and dinner time. If we aim to capture some other events,
other time slots could be used.

One-day pattern. One-day pattern is the hidden rule behind each day’s location trajectory. We

assume all locations p (k )
i, j , j = 1, 2, . . . ,Nk in the same timespan k of day i are subject to the same

Multinomial distribution p (k )
i, j ∼ Multinomial (θ (k )

i ). This is a reasonable assumption because most

people do only one type of thing in one timespan. For example, timespan 0:00–7:00 is the time
where most people sleep at home, while timespan 7:00–9:00 is the time where most people travel

from home to school/working place. The set {θ (k )
i | k = 1, 2, . . . ,T } of length T is the one-day

pattern of the ith day in all T timespans.

Routine pattern. Given the table of D trajectories, our task is to mine R routine pattern from it.
One-day pattern may vary from day to day, but routine pattern keeps what one-day patterns have
in common. For example, Monday and Tuesday are all subject to the weekday routine. Then, in
corresponding timespan like 9:00–11:00 on Monday and Tuesday, user is highly likely to be doing
the same thing “working at company.” Formally, if the ith day and the i ′th day are subject to the

same routine pattern, then there must be strong interrelation betweenθ (k )
i andθ (k )

i′ , k = 1, 2, . . . ,T .

Dirichlet distribution is leveraged to characterize this interrelation: we assume θ (k )
i and θ (k )

i′ are

subject to the same Dirichlet distributionθ (k )
i ,θ

(k )
i′ ∼ Dirichlet (α (k )

r ). The set {α (k )
r | k = 1, 2, . . . ,T }

is the r th routine pattern in all the T timespans.
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3.2 Data Preprocessing and ROI Discovery

Data collected from mobile phone is usually in the form of “check-in” data, i.e., user is present
at cellular tower X at time Y. Check-in records are collected when phone interchanges data with
nearby cellular tower. Information contained in raw check-in data is limited in that it only pro-
vides coarse-grain geo-location data but lack of semantic meaning. Attaching semantic labels to
raw geo-location point could prove to be helpful in extracting more intuitive and robust routines.
For a mobile subscriber, multiple cellular towers’ locations may share the same semantic meaning.
For example, there are three cellular towers far away from each other, each neighboring a shop-
ping mall. Depending on the downstream task, distinguishing these three cellular towers might be
unnecessary because the user goes to these places only for one purpose: shopping. On the other
hand, a single geo-location point can also represent multiple semantics for a user. A hot-spot in
downtown could have restaurants, recreational facilities, and parking lot all in one place. Methods
have been studied to extract POI (or reference places) from raw trajectory (Montoliu and Gatica-
Perez 2010; Zhou et al. 2007), but they are not suitable for trajectories formed by sparse cellular
towers geo-location. Therefore, we propose the following three steps to extract meaningful ROIs
from raw check-in data.

First, we rule out noisy location points in trajectory that contribute little to user’s commute
routine. For example, places where user lives and works are usually essential in explaining
his/her spatio-temporal routine pattern. However, there are noisy locations where user only passes
through by chance, having little or no explanatory power as to either user’s behavior or intention.
We adopt DBSCAN algorithm to cluster cellular towers by their longitude and latitude, and exclude
those outlier noisy points by setting a threshold.

In the second step, we label every non-noisy cellular tower with a semantic distribution. Typi-
cally the region covered by one cellular tower in a city is too large that it’s not reasonable to label
it with just one POI label. Therefore, we assign every tower with a POI-distribution. We catego-
rize POI into eight groups: catering service, service for life, leisure and entertainment, education,
transportation, company, accommodation, and hotel. Using PlaceSearchAPI provided by Baidu
Map Service, we are able to count the number of eight types of POI facilities surrounding each
cellular tower. We use the distribution of these POI counts as the semantic meaning of cellular
towers. (e.g. if there are five schools, three hotels, and eight restaurants around toweri , the label
of toweri will be a vector like [cate:8, service for life:0, leisure and entertainment:0, education:5,
transportation:0, company:0, accommodation:0, hotel:3])

Last, we group towers with similar semantic meaning together. Using semantic distribution
(which is an integer vector of size 8) to represent each cellular tower, we use K-means algorithm
to group them into several categories that most concisely capture user’s intention in visiting these
places (e.g., shopping). We identify cluster centers to be the Region of Interest Set (ROIs) and label
all cellular towers belonging to a cluster with a discreet ROI label. User’s geo-location trajectory
can now be represented as a sequence τ : (p1,p2, . . . ,pτ ), where pj ∈ ROIs (j = 1, 2, . . . ,τ ).

Through the above three steps, we use external POI information to transform low-level geo-
location data into a high-level ROI sequences. These ROI sequences exist in semantic space, in
which user’s behavior and intention is easier to explain. For example, given that a person usually
approaches towerx between 12:00p.m. and 1:00p.m., along with the fact that towerx is associated
with ROI label [catering service:20, service for life:1, leisure and entertainment:1, . . . hotel:1], con-
clusion can be drawn that the user is most likely having lunch in this place. The term “location
trajectory” used in following sections refers to this high level ROI sequence, instead of raw check-
in location sequence.
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Fig. 2. Plate notation of the STRMM model.

4 MODEL SPECIFICATION

In the last section, we defined three key concepts related to human travel pattern: Location Tra-
jectory, One-day Pattern, and Routine Pattern. These three concepts together form a hierarchical
view of human travel behaviors. From top to down, first we have Routine Pattern, the underly-
ing “theme” of the day’s commute pattern. For example, Routine Pattern can be “stay at home all
day,” “commute and work from nine to five,” or “go to parents house for dinner.” Then there is
One-day Pattern, the variation of the “theme.” Three days may follow the same Routine Pattern
“go to parents house for dinner,” but people may choose from three different roads when they
drive depending on the traffic of the day. Therefore, on each of the three days people may follow
a slightly different travel pattern, corresponding to three possible One-day Patterns. Each One-
day Pattern is a realization of the underlying Routine Pattern. Routine Pattern defines what the
most typical One-day Pattern is likely to be and how One-day Patterns may vary from day to day.
Last, we have Location Trajectory, which is the real location trajectory that user follows. Location
trajectories are recorded as mobile phone users move across cellular towers. After preprocessing
Location Trajectory becomes a sequence of ROI , each of which represents the semantic meaning
of the tower.

Based on the five defined concepts, we propose Spatio-Tempotal Routine Mining Model
(STRMM). See Figure 2 for its plate notation.

Here, ri is a categorical variable denoting the day’s routine pattern. θ is one-day pattern and
p is location trajectory. We assume the number of routine types R is fixed (in experiments R is
pre-selected by the measurement of perplexity).T Dirichlet parameters are used to describe theT
timespans in each of theR routine pattern. Parameter π is the probabilistic distribution ofR routine
patterns. For the ith day of user U , we sample this day’s routine category ri ∼ Multinomial (π ).

Then, for each of the T timespans of day i , we sample its one-day pattern θ (k )
i from the corre-

sponding Dirichlet parameter θ (k )
i ∼ Dirichlet (α (k )

ri
), k = 1, 2, . . . ,K . Last, we sample the location

in each time slice according to Multinomial distributionp (k )
i, j ∼ Multinomial (θ (k )

i ), j = 1, 2, . . . ,Nk .

Table 1 summarizes the notations used in our model. The generative process of STRMM is de-
scribed as follows.
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Table 1. Notations Used in the STRMM Model

Notation Description
π Probabilistic distribution of R types of routines

α (k )
r Dirichlet parameter of the kth timespan of the r th routine

ri Type of routine that the ith day is following

θ (k )
i Multinomial parameter of the kth timespan of the ith day

p (k )
i, j ROI of the jth time slice of the kth timespan of the ith day

D D days of location trajectories in total
R R types of routine patterns in total
C C regions of interest (ROI )
Nk Number of time slices in the kth timespan
T A day is divided into T timespans
τ A day is divided into τ time slices

Generative Process of the Model

1 Set parameter π
2 Set parameter α
3 for i = 1→ D do

4 Draw ri ∼ Multinomial (π )
5 for k = 1→ T do

6 Draw θ (k )
i ∼ Dirichlet (α (k )

ri
)

7 for j = 1→ Nk do

8 Draw p (k )
i, j ∼ Multinomial (θ (k )

i )

9 end for

10 end for

11 end for

Parameters to be learnt is routine distribution π and routine pattern α (k )
r , k = 1, 2, . . .T , r =

1, 2, . . . ,R. π is easy to understand, as πr denoting the probability of the r th routine’s appearance
in this user’s daily life. The r th routine pattern α ·r can be understood from the following two
perspectives:

(1) It characterizes the typical one-day pattern in the k timespans of the r th routine. Specifically,

if we extend the Dirichlet parameter α (k )
r into its vector form α (k )

r = (α (k )
r,1 , α

(k )
r,2 , . . . , α

(k )
r,C ), then

we have

E
[
θ (k )

r

]
=
��
�
α (k )

r,1

α (k )
r, ·
,
α (k )

r,2

α (k )
r, ·
, . . . ,

α (k )
r,C

α (k )
r, ·

��
	 , (1)

whereα (k )
r, · =

∑C
y=1 α

(k )
r,y . Here,θk

r ∼ Dirichlet (α (k )
r ) is the possible one-day pattern in thekth times-

pan generated from routine pattern α (k )
r and E[θ (k )

r ] represents the “typical” one-day pattern. The

r th routine’s typical one-day pattern is the set {E[θ (k )
r ] | k = 1, 2, . . . ,T }.
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(2) It characterizes the uncertainty of one-day patterns of the r th routine from day to day. The
measurement of uncertainty can be done with entropy

H
(
θ (k )

r

)
= loдB

(
α (k )

r

)
−

(
C − α (k )

r, ·
)
ψ

(
α (k )

r, ·
)
−

C∑
y=1

(
α (k )

r,y − 1
)
ψ

(
α (k )

r,y

)
, (2)

where B (·) is Beta function and ψ (·) is Digamma function. Normally, the smaller the entropy is,

the closer one-day pattern θ (k )
r is distributed near E[θ (k )

r ]. This means traveling behaviors are
relatively stable and of less uncertainty across days. As the Dirichlet density function is relatively

steep when entropy is low, minor difference on θ (k )
i and θ (k )

i′ leads to large difference in the overall
model likelihood and thus would suggest day i and day i ′ are subject to different routines. On the

contrary as entropy grows larger, Dirichlet density function flattens and one-day pattern θ (k )
r is

allowed to distributed farther from E[θ (k )
r ]. In this case, minor difference on θ (k )

i and θ (k )
i′ might not

change the overall model likelihood function very much. This property of Dirichlet distribution
creates an effect that when deciding the routine type of one day, more emphasis is placed on the
timespan with lower uncertainty.

To sum up, routine pattern α carries two aspects of information: the typical one-day pattern and
the measurement of uncertainty. This allow us to mine more meaningful and intuitive routines
from data, according to experiment results in latter section.

5 INFERENCE AND LEARNING

Inference and learning of the model is done by maximizing the marginal likelihood function of
the observed data. We first derive the simplified marginal likelihood leveraging the conjugacy
between Dirichlet distribution and Multinomial distribution, then we adopt Stochastic Expectation
Maximization algorithm to approximate the true value of parameters (Bishop 2009, 2009; Hastie
et al. 2009).

We denotes model parameters Θ = {π , α }, latent variablesZ = {θ , r } and observed dataV = {p}.
Given the ith day’s location trajectory V i = p

(k )
i, j , j = 1, 2, . . . ,Nk , k = 1, 2, . . . ,T , the complete

likelihood function of the ith day is

P (V i , Z i | Θ) = P
(
p ( ·)

i, · , ri , θ
( ·)
i | π , α

)

= Mult (ri | π )
T∏

k=1

��
�Dir

(
θ (k )

i | α (k )
ri

) Nk∏
j=1

Mult
(
p (k )

i, j | θ
(k )
i

)��
	 .

(3)

After integrating out latent variables θ and r , we have the marginal likelihood function as fol-
lows:

P (V i | Θ) =
∑
ri

(
Mult (ri | π )

×
T∏

k=1

∫
θ

(k )
i

Dir
(
θ (k )

i | α (k )
ri

) Nk∏
j=1

Mult
(
p (k )

i, j | θ
(k )
i

)
dθ (k )

i

)
.

(4)

Given that Dirichlet distribution is the conjugate prior to the Multinomial distribution, the in-
tegral in the above equation can be simplified as
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∫
θ

(k )
i

Dir
(
θ (k )

i | α (k )
ri

) Nk∏
j=1

Mult
(
p (k )

i, j | θ
(k )
i

)
dθ (k )

i

=
Γ(α (k )

ri , ·)

Γ(n(k )
i, · + α

(k )
ri , ·)

C∏
y=1

Γ(n(k )
i,y + α

(k )
ri ,y )

Γ(α (k )
ri ,y )

, (5)

where α (k )
ri , · =

∑C
y=1 α

(k )
ri ,y . n(k )

i,y denotes the number of times that the yth ROI appears in the location

trajectory of the kth timespan of the ith day. n(k )
i, · denotes the total number of ROI that appears in

the location trajectory of the kth timespan of the ith day, n(k )
i, · =

∑C
y=1 n

(k )
i,y = Nk .

By substituting Equation (5) into Equation (4), we derive the simplified version of the marginal
likelihood function of the ith day:

P (V i | Θ) =
∑
ri

πri

T∏
k=1

(
Γ(α (k )

ri , ·)

Γ(n(k )
i, · + α

(k )
ri , ·)

C∏
y=1

Γ(n(k )
i,y + α

(k )
ri ,y )

Γ(α (k )
ri ,y )

)

�
∑
ri

πri
f
(
V i | α ( ·)

ri

)
,

(6)

where πri
is the probability of routine ri and f (V i | α ( ·)

ri
) is the multiplication ofT probability mass

function of Dirichlet compound multinomial distribution (DCM).
Our aim is to find the best parameter Θ satisfying Θ = argmaxΘP (V |Θ) = argmaxΘ

∏D
i=1

P (V i |Θ). Here, we adopt Stochastic Expectation Maximization algorithm (SEM) (Celeux et al. 1996).
On the S step, we sample latent variable r from its posterior distribution

P (ri | Vi ,Θ) ∝ P (ri | Θ)P (Vi | ri ,Θ)

= πri
f
(
V i | α ( ·)

ri

)

= πri

T∏
k=1

(
Γ(α (k )

ri , ·)

Γ(n(k )
i, · + α

(k )
ri , ·)

C∏
y=1

Γ(n(k )
i,y + α

(k )
ri ,y )

Γ(α (k )
ri ,y )

)
.

(7)

On the M step, we estimate model parameter Θ by Maximum Likelihood Estimation (MLE) based
on observed dataV and the sampled latent variable r . The MLE of π can be done straightforwardly
from the histogram of r . The MLE of Dirichlet parameter α can be solved using the iterative meth-
ods in Minka (2003).

The learning algorithm iterates between sampling r and estimating Θ. After the Markov Chain
reaches its steady state, we average multiple samples to get the final output value of π and α .

6 EXPERIMENT

In this section, we conduct routine mining experiments on one synthetic dataset and two real
datasets. In synthetic datasets, we aim to evaluate the effectiveness of model learning process.
In Reality Mining dataset, we aim to mine shared routines (i.e., common behaviors) of multiple
mobile subscribers. In China Mobile Operator dataset, we aim to mine personalized routines for
individuals. Furthermore, we apply the mined routine patterns to routine type prediction task and
trajectory prediction task and make comparison with state-of-the-art methods.

6.1 Synthesized Data

We generate synthetic data according to STRMM’s Generative Process mentioned in Section 4
with pre-defined parameters Θ = {π , α }. Using the method discussed in Section 5, we in turn
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Fig. 3. Estimation error of the pre-defined parameters.

learn parameters Θ = {π , α } given synthetic data and compare the learned parameters with the
ground-truth parameters. The base setting is to use 100 days’ location trajectories (D = 100), the
number of Places (ROI) is 6 (C = 6) and the number of Routine Pattern is 3 (R = 3). We varied D, R,
andC , respectively, in different experiments to evaluate the accuracy of our model under different
settings. Result is shown in Figure 3. Error o f π and Error o f α are both calculated by Euler
distance. The larger the D is, the better our model learns correct parameters. However, as number
of routines (R) and number of ROIs (C) increases, learning becomes more difficult. This justifies
our approach in grouping raw cellular towers into semantic ROIs . Typically there are thousands
of cellular towers, which would severely deteriorate model’s learning ability. Learning on top of
extracted ROIs becomes much easier as dimension is usually reduced to less than a hundred.

6.2 Reality Mining Dataset

The Reality Mining project (Eagle et al. 2009) was conducted from 2004 to 2005 at the MIT Media
Laboratory. The dataset consists of 96 subjects whose behaviors are automatically logged by the
ContextLog application installed on their mobile phones. These behaviors include location (both
cell tower ids and semantic labels), other proximate subjects (from Bluetooth device discovery
scans at 5-minute intervals), phones activities (voice calls and text messages), active applications
(such as the calendar or games), and the phone’s charging status. The part used in this article is
the semantic location trajectories of each subjects.

We construct the table of 6,887 day’s location trajectories as in Figure 1. Each day is divided to
τ = 24 time slices andT = 8 timespans: 0:00–7:00, 7:00–9:00, 9:00–11:00, 11:00–14:00, 14:00–17:00,
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Fig. 4. Perplexity calculated for the 20% test data.

17:00–19:00, 19:00–21:00, 21:00–24:00. We set the number of ROIs to be C = 5. In each time slice,
one of the five location labels are recorded: 1-home, 2-work, 3-elsewhere, 0-no signal, NaN-phone
is off. These five location labels have the same functionality of ROIs defined in Section 3.

Perplexity is leveraged to find the best routine number R. Perplexity is a measurement of how
well a probability distribution or probability model predicts a sample. We randomly select 80% of
the dataset to be training data and calculate the trained model’s perplexity on the rest 20% dataset.
Result is shown in Figure 4.

As the number of routine pattern R grows larger, the model predicts better of unknown data.
However, perplexity changes little after 40, so we set R = 40 in the following experiments. Due to
the limitation of space, we only present two of the mined routine patterns as examples of how the
STRMM model extracts meaning routines from raw location trajectories. More are presented in
the appendix.

Figure 5(a) plots the most typical 100 days in the dataset subject the 31th routine pattern. From
bottom to top the likelihood of data increases. Each line is the location trajectory of a day. Five
colors stand for five location labels respectively. Figure 5(b) is the stacked column diagram plot of
the typical one-day pattern of the 31th routine, calculated according to Equation (1). Figure 5(c)
measures the degree of uncertainty of the one-day pattern on different timespan of a day. First,
we compute the confidence of prediction (red column) by calculating the probability that location
trajectories is generated from the typical one-day pattern for each timespan. Then, we compute the
entropy of Dirichelt distribution under each timespan according to Equation (2). The blue column
is the negative entropy.

As can be seen from Figure 5(a) and (b), the 31th routine pattern probably depicts those who
“work from nine to five.” In timespan T1 and T8 (21:00–7:00) people have high probability of stay-
ing home (blue color), while in timespan T3, T4, T5 (from 9:00 to 17:00) people have high probability
of staying at working place (green). The probability of staying elsewhere (orange) remains around
0.2 in daytime and reaches its peak value in T6 and T7 (17:00–21:00), which suggest that people
sometimes “go our for leisure after work.”

In Figure 5(c), we observe the proportional relation between confidence of prediction and neg-
ative entropy. The higher confidence of prediction is (as in T1 and T8), the less uncertain this
timespan is. At the same time, entropy is also relatively low in T1 and T8. By contrast, confidence
of prediction is low in T2–T7 because human behaviors are much more complex and uncertain dur-
ing daytime, and entropy are also relatively large in these timespans. The apparent proportional
relation between confidence of prediction and negative entropy demonstrates that apart from
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Fig. 5. The 31th routine pattern.

typical one-day pattern, our model is also able to take into account different degree of uncertainty
of one-day pattern in each timespan.

Different from the 31th routine, the 29th routine (Figure 6) likely depicts those who “work late
into the night.” Instead of coming home after 17:00, under this routine users tend to stay late at
working place. In Figure 6(b), the probability of staying at working place remains high until T8.
Also, in Figure 6(c), we observe the similar proportional relation between confidence of prediction
and negative entropy.

6.3 A China Mobile Operator Dataset

The mobile dataset used in this section is provided by a China Mobile Operator, involving a popu-
lation of 300,000 mobile subscribers in a medium-size city of China from 2010 to 2011. It contains
the time and location of several types of events, such as Call, SMS, Phone Power On/Off, Tower
Switch (phone connecting to a different cellular tower). Call/SMS log helps locate user when he/she
is actively using the phone. Tower Switch log helps locate user when he/she is moving across cells,
without the need of user’s action. These two parts of the data are complement to each other in order
to construct a more precise location trajectory. The dataset spans across 297 cellular towers, with
known longitude and latitude. In the occurrence of events mentioned above, user can be coarsely
located at one of these cellular towers. Data used in the following analysis, includes mobile logs
from September to October 2010. To protect user privacy, all phone numbers are encrypted and
there is no way to identify individual users in the dataset.

In this section, we aim to mine personalized routines for individuals. Different from Reality
Mining Dataset, we do not have semantic location labels (home, work, etc.) now. What we have
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Fig. 6. The 29th routine pattern.

is the original geo-location log recorded when mobile phone transfers data with nearby cellular
tower. To construct the table of trajectories (ROIs) as model input, we need the following two
additional preprocessing steps:

(1) Construct daily trajectories. The original log data is event-driven, that is, there is a record
in the database only when users call, SMS or have transition between towers. We need
to interpolate location trajectories (described in Section 3.1) from this non-uniform-in-
time data. Specifically, in this experiment we set τ = 48. Every half an hour, we select the
cellular tower which user’s phone interact most with and set its coordinate as the user’s
current location. The reason for this approach is to alleviate tower oscillation. It is fairly
common to see user’s location oscillates between multiple cellular towers. This happens
when signal from one tower is intermittently blocked by surroundings. Picking the most
frequent tower within a time period can smooth out oscillation noise to some extend. In
case there are no data records within a half-hour period, we assume the user stays where
he/she was in the previous half-hour.

(2) Denoise location trajectory and label cellular towers with real-world meaningful POIs,
and finally group cellular towers by their semantic meaning according to the three steps
proposed in Section 3. After the preprocessing, cellular tower ids are replaced by cluster
labels (ROI).

Figure 7 plots the raw trajectories of the 22,148th user. We group all cellular towers into fiveROIs
(C = 5), which are represented by five different colors. Setting the appropriateC is case dependent
and involves an inherent bias variance tradeoff.C determines the number ofROI used in the model.
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Fig. 7. Three-dimensional plot of the 22,148th user’s daily trajectories.

Being a level of abstraction over raw geographical location, ROIs exist in the semantic space in
which user’s behaviors and intention are easier to explain (refer to Section 3.2). A sensible value
for C lies between zero and number of cellular towers. A larger C allows the model to learn more
fine-grained Routine Pattern, while inevitably introducing higher variance to the learnt Routine
Pattern. In the extreme case, when C equals the number of cellular towers, ROI sequence reduces
to raw location trajectory and loses all of its semantic meaning. In this case, the model would be
highly sensitive to even a slight change in actual location trajectory (e.g., user picking a different
road to go to work) and the learnt Routine Patterns cannot be expected to be generalizable. On the
other hand, if C is too small, Routine Patterns would be vague and have little explanatory power.

Using the distribution of POIs associated each of these five ROIs , we interpret their semantic
meanings as follows:

(1) comprehensive area (which includes lots of accommodation, life service, Recreation &
Entertainment, education and diet);

(2) office area (which includes lots of companies and some traffic facilities);
(3) entertainment area (which includes lots of recreation and some traffic facilities);
(4) common area (which is similar to comprehensive area, with smaller number of POI);
(5) other area.

Figure 8 plots the 2D version of daily trajectories. Each line represents a day, and five colors
corresponds to five ROI labels obtained from clustering.

We compare three different methods of routine mining in their ability to group daily data by
underlying routine category: the clustering method in Lv et al. (2013), LDA method in Farrahi and
Gatica-Perez (2010b), and the STRMM model. We set R = 3, C = 5, τ = 48. Partition of timespan
remains the same as in last section. We use the mined routines to classify original daily trajec-
tories into three categories, as shown in Figures 9–11. Classification methods are as follows: for
STRMM model, we compute the posterior probabilities of each day’s trajectory subject to the three
candidate routines and choose the highest one; for clustering method, we compute the cosine dis-
tance between each day’s trajectory and the centers of cluster and choose the one with short-
est distance; for LDA, we take the most dominant (the one that has highest probability in topic
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Fig. 8. Location trajectories for a given user. Fig. 9. Classification result by the STRMM model.

Fig. 10. Classification result by clustering. Fig. 11. Classification result by LDA.

distribution) latent topic in each day’s document to represent that day’s routine, similar to Farrahi
and Gatica-Perez (2008b).

Routines mined by the three methods have different properties. In Figure 11, LDA method
fails to distinguish some trajectories in Figure 11(a) and (b), for example, the 1th line and 5th
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Fig. 12. Routine category prediction.

line in Figure 11(b), which is likely the consequence of “partial pattern” discussed in Section 2.
Clustering method treats every timespan of the trajectory equally. Therefore, as can be seen from
Figure 10(b) and (c), classifying of daily trajectories are based largely on morning trajectories in
this case and daytime in some other cases. While in Figure 9, classifying of daily trajectories by
the STRRM always focuses more on trajectories at night when user’s behaviors are less uncertain.
This is because the STRRM model is able to automatically learn the degree of uncertainty in
each timespan. During daytime when user’s behaviors are more complex and uncertain, the
corresponding Dirichlet distribution of this timespan would have a higher entropy and allows
more flexible trajectories from day to day. Thus, the routine mined from STRRM model would
“assign a higher weight” to the timespans of less uncertainty, rather than treat each timespan
equally. This property makes the mined routines more intuitive and meaningful.

Next, we apply routine mining technique to location prediction. Being able to accurately pred-
icate user’s next move is a way to prove the validity of the mined routine and the effectiveness
of the routine mining model. Here, two kinds of prediction are made. Based on the observed tra-
jectory of the first several hours of a day, we could first predict which routine pattern this day is
following (routine category prediction). Based on the predicted routine category, we then predict
user’s location in the next few hours (trajectory prediction).

To predict the routine category of the ith day, we train the STRRM model with the partially
observed trajectories and learn parameter Θ′ = {α ,′′ π ′}. Given the ith day’s partial observed tra-
jectory V ′

i
, we have

P (ri | V ′i ,Θ
′) ∝ P (ri | Θ′)P (V ′

i
| ri ,Θ

′)

= π ′ri
f
(
V ′

i
| α ′( ·)ri

)
.

(8)

In Figure 12, we plot the prediction result of six days’ routine category. X-axis denotes (half)
hours of observed trajectory. Y-axis denotes the membership probability of this day subject to
each of the three routine categories. Figure 12(a)–(c) are the three days with highest likelihood,
while Figure 12(d)–(f) are the three days with lowest likelihood. Apparently the first three days
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Fig. 13. Location prediction accuracy.

(Figure 12(a)–(c)) are easier to predict, with one line always higher than the other two. However,
the three days with lowest likelihood (Figure 12(d)–(f)) are much harder to predict, and three
lines twist together all the way. The results suggest that STRMM model quickly recognizes typical
traveling behaviors if it is subject to one of the learnt routine patterns.

Last, we conduct trajectory prediction task and compare three methods (Cluster (Lv et al. 2013),
LDA (Farrahi and Gatica-Perez 2010b), the STRRM model) on their prediction accuracy. Let V ′

i
denotes the partially observed trajectory, V ∗

i
denotes the trajectories in the next few hours to be

predicted. Let V ′′
i
= {V ′

i
,V ∗

i
}.

For the STRMM model, we fill V ∗
i

with trajectories on the same time of other days V ∗−i
, respec-

tively, and get D − 1 possible complete trajectories V ′′
j
, j � i . Then, we compute the membership

probability of theseD − 1 complete trajectories according to Equation (8) and get (D − 1) × R prob-
ability value. We select the maximum value, and output the corresponding V ∗

j
as the predicted

location. For clustering methods, the procedure is similar except that the calculation the mem-
bership probability is replaced by distance. For LDA methods, we adopt the trajectory prediction
algorithm proposed in Farrahi and Gatica-Perez (2010b).

Prediction accuracy of these three methods is shown in Figure 13. The x-axis is the starting time
from which we predict, and y-axis is the prediction accuracy. Subgraphs (a)–(d) show the accuracy
of 1 hour, 2 hour, 3 hour, and 4 hour prediction, respectively.
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From Figure 13, we can see that the STRRM model outruns other two methods in most of the
time. The STRMM model (red) has higher prediction accuracy at night than at daytime because
there is less degree of uncertainty at night. Yet this phenomenon is not observed on clustering
method (blue) and the LDA model (green). Further, prediction accuracy of clustering methods
in 0:00–7:00 is below 20% in all four subgraphs, which suggests that clustering method fails to
take into account the different degree of uncertainty in different timespan of a day and may have
emphasized too much on those timespans with high level of uncertainty (daytime). As for LDA
(green), its limitation lies in that the mined routines are only partial patterns of the day. In most
cases, partial pattern is not enough to represent the whole day’s pattern, and thus yields lower
prediction accuracy.

7 CONCLUSION

In this article, we study how to mine routine patterns from raw location trajectories of mobile
subscribers. We model people’s commute behaviors as three levels: location trajectory, one-day
pattern, and routine pattern. We further propose to use Multinomial distribution and Dirichelt
distribution to describe their generative process. Stochastic Expectation Maximization algorithm
is adopted for learning and inference of the model. The output of the model includes the probability
of routine categories π and routine pattern α . Two characteristic of routine pattern α are discussed.
First, it unveils typical one-day pattern subject to this routine. Second, it shows the uncertainty of
one-day patterns in each timespan.

Comprehensive experiments are conducted on synthetic dataset and two real-world datasets. On
Reality Mining dataset, we explore the use of perplexity to determine the best routine number R.
Then, we graphically present two of the forty mined routines. On China Mobile Operator dataset,
we compare three methods on their effectiveness of mining meaningful routines. We also conduct
routine category prediction and trajectory prediction tasks. Empirical results show that STRMM
model outruns the other methods on prediction accuracy.

Future works may further explore the Markov property of location trajectories. Also, ROI
extraction and routine mining could be co-modeled, instead of being separate processes as in
this article. We argue that they could be mutual beneficial: routine mining requires meaning-
ful location labels from ROI extraction, while in turn ROI extraction could benefits from user’s
spatio-temporal routine semantics on each location. Apart from ROI extraction, other advanced
trajectory preprocessing techniques such as segmentation, compression can also be used to ob-
tain location trajectories with higher information density and thus lead to more meaningful
routines.

APPENDIX

We visualize some of the mined routine patterns from Reality Mining Dataset. All users’ data are
included and here routine refers to common travel behaviors of members of this MIT community.

The 10th mined routine (Figure 14) depicts a common travel pattern that users stay at home
before 7:00a.m., go to work from 7:00a.m. to 17:00p.m., and go out for recreation at night. This is
one of the typical weekday patterns.
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Fig. 14. The 10th mined routine pattern. (a) plots the most typical 100 days in the dataset following to this

routine pattern. From bottom to top the likelihood of data increases. Each line is the location trajectory of

a day. Five colors stand for five location labels, respectively. (b) is the stacked column diagram plot of the

one-day pattern of the this routine, calculated according to Equation (1). Figure (c) measures the degree

of uncertainty of the one-day pattern on different timespan of a day. First, we compute the confidence of

prediction (red column) by calculating the probability that location trajectories is generated from the typi-

cal one-day pattern for each timespan. Then, we compute the entropy of Dirichelt distribution under each

timespan according to Equation (2). The blue column is the negative entropy.
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The 20th mined routine (Figure 15) depicts a common travel pattern that users stay at home
before 7:00am, and go outside until midnight. This routine probably represent activities such as
“go out camping” or “on business trip.”

Fig. 15. The 20th mined routine pattern. (a) plots the most typical 100 days in the dataset following this

routine pattern. From bottom to top the likelihood of data increases. Each line is the location trajectory of

a day. Five colors stand for five location labels, respectively. (b) is the stacked column diagram plot of the

one-day pattern of the this routine, calculated according to Equation (1). Figure (c) measures the degree

of uncertainty of the one-day pattern on different timespan of a day. First, we compute the confidence of

prediction (red column) by calculating the probability that location trajectories is generated from the typi-

cal one-day pattern for each timespan. Then, we compute the entropy of Dirichelt distribution under each

timespan according to Equation (2). The blue column is the negative entropy.
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The 38th mined routine pattern (Figure 16) is also a typical weekday routine except that people
tend to turn their phones off while sleeping.

Fig. 16. The 38th mined routine pattern. (a) plots the most typical 64 days in the dataset following this routine

pattern. From bottom to top the likelihood of data increases. Each line is the location trajectory of a day. Five

colors stand for five location labels, respectively. (b) is the stacked column diagram plot of the one-day pattern

of the this routine, calculated according to Equation (1). Figure (c) measures the degree of uncertainty of the

one-day pattern on different timespan of a day. First, we compute the confidence of prediction (red column)

by calculating the probability that location trajectories is generated from the typical one-day pattern for

each timespan. Then, we compute the entropy of Dirichelt distribution under each timespan according to

Equation (2). The blue column is the negative entropy.
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