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Abstract—Ontology alignment identifies semantically matching entities in different ontologies. Various ontology alignment strategies

have been proposed; however, few systems have explored how to automatically combine multiple strategies to improve the matching

effectiveness. This paper presents a dynamic multistrategy ontology alignment framework, named RiMOM. The key insight in this

framework is that similarity characteristics between ontologies may vary widely. We propose a systematic approach to quantitatively

estimate the similarity characteristics for each alignment task and propose a strategy selection method to automatically combine the

matching strategies based on two estimated factors. In the approach, we consider both textual and structural characteristics of

ontologies. With RiMOM, we participated in the 2006 and 2007 campaigns of the Ontology Alignment Evaluation Initiative (OAEI).

Our system is among the top three performers in benchmark data sets.

Index Terms—Heterogeneous databases, knowledge and data engineering tools and techniques, ontology languages.

Ç

1 INTRODUCTION

ONTOLOGY, as the means to conceptualize domain knowl-
edge, has become the enabler of the fulfillment of the

Semantic Web vision. It aims to make data sharable.
Unfortunately, ontologies themselves are heterogeneous
and distributed. Defined by different organizations or by
different people in the same organization, ontologies can
have vastly different characteristics. Specifically, entities
(including concepts, relations, or instances) with the same
meaning may have different labels in different ontologies;
the same label may represent different meanings.

For example, type the keyword “publication” in

Swoogle [8], a Semantic Web search engine, more than

2,774 ontologies will be returned. Therefore, in order to

achieve semantic interoperability across ontologies, it is

necessary to discover the alignment across ontologies.
Considerable work has been made on automating the

process of ontology alignment, either focusing on specific

applications or aiming at providing a generic way for

various applications, as summarized in recent surveys [7],

[18], [31], [49], [61], [57], [22]. The existing techniques are

mostly based on calculating similarities between entities of

two ontologies by utilizing various types of information in

ontologies, e.g., entity names, taxonomy structures, con-

straints, and entities’ instances. These methods can be

classified into two categories: using a single strategy versus

combining multiple strategies. In the former, all available

information are defined as features in a single similarity

function; while in the latter, different similarity functions
are defined based on different types of information, and a
composite method is used to combine the results of
different similarities. In recent years, the combination
method becomes more and more popular, due to its ease
of extension and flexibility. In our previous work, we also
proposed RiMOM [60] for ontology alignment by combin-
ing different strategies. Experimental results show that the
combination method outperforms the single strategy based
method in many cases.

However, several problems for ontology alignment are
still needed to further investigate:

1. Is it always right to use the combination of different
strategies for ontology alignment? Actually, our
preliminary experiments show that a combined
method may underperform a single strategy in some
cases. Considering, for instance, two ontologies
defined in different languages (e.g., English and
French) but have the same taxonomy structure. A
structure-based strategy, which is the similar struc-
tures in the two ontologies, will be effective; whereas
a label name-based strategy may be useless (even
play negative effect), as these ontologies are defined
in different languages.

2. When should we use a combination method and
when should a single strategy? A major limitation of
existing approaches is that they need tune the
thresholds (or weights) for each strategy so as to
find the optimal configuration in the combination.
However, the “optimal” configuration may work for
some cases but may not succeed when we change
the context. Hence, the challenge is to find theore-
tical criteria to determine when a special strategy
should be used, given an alignment task.

A challenging issue in traditional methods is that both
single and combination strategies are statically determined
without considering characteristics of the alignment task.
Basically, we need an effective mechanism to automatically
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determine in what cases, a single strategy method should be
used, and in what cases, a combination method should be
used. Moreover, in a combination, there lacks a systematic
way to determine to what degree, each strategy should
impact the alignment result.

Based on these considerations, we extend our previous
work [60] and propose a dynamic multistrategy ontology
alignment framework, which is still named RiMOM.
RiMOM was a multiple strategy ontology alignment frame-
work based on risk minimization of Bayesian decision [60].
It employs multiple ontology alignment strategies and sets
the combination weight by manual. In the new version of
RiMOM proposed in this paper, given two input ontologies
at runtime, it automatically determines, which ontology
alignment methods to be used, what kinds of information to
use in the similarity calculation and how to combine
multiple methods as necessary. This paper aims at for-
malizing a dynamic multistrategy ontology alignment
framework in an analytic and systematic way. Specifically,
we make the following contributions:

1. We formalize the problem of dynamic multistrategy
selection in the ontology alignment and define the
major tasks in dealing with the problem.

2. We define two similarity factors, which quantita-
tively estimate the similarity characteristics between
two ontologies. We propose our dynamic multi-
strategy selection method based on the two similar-
ity factors.

3. We propose a comprehensive framework to dyna-
mically select and combine individual ontology
alignment strategies, considering both the textual
and structural similarity metrics of two ontologies.

We implemented RiMOM and participated in the 2006
and 2007 campaign of the Ontology Alignment Evaluation
Initiative (OAEI 2006 and OAEI 2007) [19]. On the bench-
mark data set, RiMOM achieves the best results among the
nine participants in OAEI 2006 and takes the third place in
OAEI 2007 [40], [20].

The rest of this paper is organized as follows: In Section 2,
we give a formal definition of the ontology and ontology
alignment and formalize the major tasks in the dynamic
multiple strategy ontology alignment. In Section 3, we give
an overview of our framework RiMOM. In Section 4, we
describe the strategies in RiMOM. In Section 5, we present
our strategy selection method. In Section 6, we give the
experimental results. Finally, before concluding the paper,
we review the related work.

2 ONTOLOGIES AND ONTOLOGY ALIGNMENT

In this section, we give the definitions related to ontologies
and ontology alignment.

2.1 Ontology

Definition 1. Ontology. An ontology is a formal specification of
a shared conceptualization [26]. We describe the ontology as a
6-tuple:

O ¼ fC;P;HC;HP ;AO; Ig;

where C and P are the sets of concepts and properties,
respectively. HC defines the hierarchical relationships HC �
C � C. ðci; cjÞ 2 HC denotes that concept ci is the subconcept of
cj. Similarly, HP defines the hierarchical relationships between
each property and its subproperties,HP � P � P .AO is a set of
axioms. I is a set of instances of concepts and properties.

Some standard languages, such as the Web Ontology
Language (OWL) [50], describe ontologies. OWL provides
vocabularies to define the formal semantics of ontology. It
uses owl:Class and rdfs:subClassOf to define the concepts and
subconcepts, rdfs:Property and rdfs:subPropertyOf to define
property and subproperties and use rdfs:domain and
rdfs:range of a property to define what concepts can have
the property and what instances of the concepts can be the
values of the property.

We refer to entities in an ontology as concepts, properties
and instances, and define them based on OWL.
MetaðeÞ is a set of words describing the metadata of

entity e, such as its name, label, and comment:

MetaðeÞ ¼
�
wjjj 2 ½1; Nm�; words occouring
in the metadata of e

�
;

ð1Þ

where e 2 C [ P [ I.
HierðeÞ denotes a set of subconcepts of concept e or a set

of subproperties of property e:
Given concept c 2 C,

HierðcÞ ¼ ciji 2 ½1; Nhc�; sub concepts of cf g: ð2Þ

Given property p 2 P ,

HierðpÞ ¼ piji 2 ½1; Nhp�; sub properties of p
� �

: ð3Þ

InstðeÞ is a set of instances of concept e or a set of
instances of property e.

Given concept c 2 C,

InstðcÞ ¼ ijjj 2 ½1; Nic�; instances of c
� �

: ð4Þ

Given property p 2 P ,

InstðpÞ ¼ ijjj 2 ½1; Nip�; instances of p
� �

: ð5Þ

RestðcÞ is a set of properties and concepts in which each
property is a property of concept c, and each concept is used
to describe concept c:

RestðcÞ ¼ ej

i 2 ½1; Nrc�; properties or concepts
used to restrict concept c; excluding
its hierarchical relationships

������
8<
:

9=
;: ð6Þ

DomaðpÞ is a set of concepts that have the property p:

DomaðpÞ ¼ cjjj 2 ½1; Ndp�; concepts having the property p
� �

:

ð7Þ

RangðpÞ is a set of concepts, whose instances can be the
value of the property p:

RangðpÞ ¼ cj
j 2 ½1; Nrp�; concepts whose instances
can be the values of property p

����
� �

:

ð8Þ
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All the above definitions indicate a set of elements. The
notation Nx denotes the number of elements in the
corresponding set.

Definition 2. Concept description-DescriptionðcÞ. A concept
c 2 C is described by a 4-tuple:

DescriptionðcÞ ¼ MetaðcÞ; HierðcÞ; RestðcÞ; InstðcÞf g:
ð9Þ

Definition 3. Property description-DescriptionðpÞ. A prop-
erty p 2 P is described by a 5-tuple:

DescriptionðpÞ ¼ MetaðpÞ; HierðpÞ;
DomaðpÞ; RangðpÞ; InstðpÞ

� �
: ð10Þ

Fig. 1 shows a snippet of an example ontology extracted
from the benchmark data set of OAEI 2006. We have the
following information:

1. “Publisher” and “Monograph” are two concepts and
the subconcepts of “Institute” and “Book.”

2. “Monograph” has the property of “chapters.”
3. “Proceedings” is a property, and the subproperty of

“isPartof.”

4. Property “proceedings” has the domain of “InPro-
ceedings” and the range of “Proceedings.”

5. Attributes “name,” “label,” and “comment” contain
the metadata.

6. “#a971541439” refers to a person instance. The
person’s name is “Alberto Trombetta.”

2.2 Ontology Alignment

Ontology alignment takes two ontologies as input and
determines as the output the alignment result between
entities of the input ontologies.

Definition 4. Ontology alignment. Given two ontologies O1

and O2, an alignment (or alignment task) finds, for each entity
in O1, a corresponding entity in O2. O1 is called the source
ontology and O2 the target ontology.

In this paper, we deal with 1:1 alignment, i.e., for an
entity in the source ontology, find at most one entity in the
target ontology. Further, we do not differentiate between
ontology alignment and ontology matching.

Adapting from OAEI [19], we formally define an
ontology alignment result as

Align O1; O2ð Þ

¼
ðei1; ei2; coni; relationiÞj
ei1 2 O1; ei2 2 O2; coni 2 ½0; 1�;
relationi 2 fexact; narrower; broader; overlapg

8><
>:

9>=
>;:
ð11Þ

Each 4-tuple ðei1; ei2; coni; relationiÞ in AlignðO1; O2Þ
represents that entity ei1 in O1 is aligned to entity ei2 in
O2 with the confidence con1 and the alignment type
relationi. The alignment type can be exact alignment
ðexactÞ, narrowing alignment (narrower : ei1 is a subentity
of ei2), broadening alignment (broader : ei1 is the superentity
of ei2) and partially overlapping alignment. coni is a
numeric value. The higher the coni value, the more reliable
the alignment.

Fig. 2 shows three example ontologies. We use ontology
Fig. 2a as the target ontology, Figs. 2b and 2c as source
ontologies. The alignment results from (b) to (a) and from (c)
to (a) are shown in Table 1. ”None” in the table denotes that
there is no aligned entity in the target ontology.

2.3 Dynamic Multistrategy Ontology Alignment

The goal of dynamic multistrategy selection in ontology
alignment is to detect: for a specific alignment task, which
strategy should be used and how confident we should be
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with a selected strategy. We define the major tasks in

dynamic multistrategy ontology alignment as follows:

1. Definition of the criteria for strategy selection. Find
criteria to quantitatively characterize the ontologies
to be aligned.

2. Dynamic selection of multiple strategies. Select strate-
gies for alignment and determine how to combine
the selected strategies.

The main challenge is in the dynamicity; in particular,

we need to strike a balance between efficiency and

effectiveness so that the selection procedure is sufficiently

accurate yet reasonably fast.

2.4 Similarity Factors between Two Ontologies

In this paper, we use the similarity between two entities to

denote the alignment confidence coni. As we know,

different ontologies have different characteristics. For two

ontologies O1 and O2, we define two similarity metrics,

label similarity factor F LSðO1; O2Þ and structure similarity

factor F SSðO1; O2Þ, their values range from 0 to 1.

Definition 5. Label similarity factor. The label similarity

factor describes the similarity between two ontologies based on

the entities’ names:

F LSðO1; O2Þ ¼
# iden conc labelþ# iden prop label

max jC1j þ jP1j; jC2j þ jP2jð Þ ;

ð12Þ

where jC1j and jC2j, jP1j and jP2j represent the number of

concepts and the number of properties in O1 and O2,

respectively. #iden conc label and #iden prop label repre-

sent the number of identical name pairs in the concept’s and

property’s names of two ontologies:

# iden conc label

¼ ðci; cjÞ

ci 2 C1; cj 2 C2; 9wi 2Metaðc1Þ;
wj 2Metaðc2Þ; wi ¼ wj

wi and wj are the words in the

names of ci and cj

���������

8>>><
>>>:

9>>>=
>>>;

���������

���������
;
ð13Þ

# iden prop label

¼ ðpi; pjÞ

pi 2 P1; pj 2 P2; 9wi 2Metaðp1Þ;
wj 2Metaðp2Þ; wi ¼ wj;

wi and wj are the words in the

names of pi and pj

���������

8>>><
>>>:

9>>>=
>>>;

���������

���������
:
ð14Þ

Take Fig. 2 as an example. F LSða; bÞ ¼ 4=6, and
F LSða; cÞ ¼ 0=6. These values indicate that ontologies
Figs. 2a and 2b have similar label description, while
ontologies Figs. 2a and 2c have very different label
description.

Definition 6. Structure similarity factor. The structure
similarity factor evaluates the similarity of two ontologies
based on their structure information:

F SSðO1; O2Þ

¼ ð# comm nonl concþ# comm nonl propÞ
maxð# nonl C1 þ# nonl P1;# nonl C2 þ# nonl P2Þ

:

ð15Þ

#nonl C1 denotes the number of concepts in O1 that have
subconcepts and likewise for #nonl C2. #comm nonl conc is
calculated as follows: if concepts c1 2 C1 and c2 2 C2 have the
same number of subconcepts and the same path length from the
root concept to them in the ontology, then we add one to
#comm nonl conc. After enumerating all pairs, we obtain
the final score of #comm nonl conc:

# nonl C1 ¼ cijci 2 C1; HierðciÞ 6¼ �f gj j; ð16Þ

# nonl C2 ¼ cijci 2 C2; HierðciÞ 6¼ �f gj j; ð17Þ

# comm nonl concðC1; C2Þ

¼ ðci; cjÞ
HierðciÞj j¼ HierðcjÞ

�� �� 6¼0; ci2C1; cj2C2;

lengthðroot1; ciÞ¼ lengthðroot2; cjÞ

�����
( )�����

�����:
ð18Þ

lengthðroot; eÞ is the path length from the root entity to
entity e in its hierarchical structure. Similarly, we can
calculate #nonl P1, #nonl P2, and #comm nonl prop.

Again take Fig. 2 as an example. F SSða; bÞ ¼ 0=2 ¼ 0,
and F SSða; cÞ ¼ 2=2 ¼ 1. It shows that ontology Fig. 2a and
ontology Fig. 2b have different structures while ontology
Fig. 2a and ontology Fig. 2c have similar structures.

3 SIMILARITIES AND OVERVIEW OF RiMOM

The core of ontology alignment is to find semantically
corresponding entities from the input ontologies. In this
section, we first examine similarity measures between
entities, as well as the similarity characteristics between
two ontologies, and then present the overview of our
dynamic multistrategy ontology alignment framework.

3.1 Entity Similarity and Two Similarity Factors

The similarity between two entities is the foundation of
ontology alignment. The higher the similarity of two
entities, the more likely the two entities to be aligned. We
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denote the similarity of two entities e1 and e2 as simðe1; e2Þ.
For two concepts e1 2 C1 and e2 2 C2, simðe1; e2Þ is defined
as the combination of sim Metaðe1; e2Þ, sim Hierðe1; e2Þ,
sim Restðe1; e2Þ, and sim Instðe1; e2Þ, which in turn denote
the similarities between Metaðe1Þ and Metaðe2Þ, between
Hierðe1Þ and Hierðe2Þ, between Restðe1Þ and Restðe2Þ, and
between Instðe1Þ and Instðe2Þ, respectively:

simðe1; e2Þ ¼ f
sim Metaðe1; e2Þ; sim Hierðe1; e2Þ;
sim Restðe1; e2Þ; sim Instðe1; e2Þ

� �
: ð19Þ

Similarly, for two properties e1 2 P1 and e2 2 P2, simðe1; e2Þ
is defined as

simðe1; e2Þ

¼ f
sim Meta e1; e2ð Þ; sim Hierðe1; e2Þ;
sim Domaðe1; e2Þ; sim Rangðe1; e2Þ; sim Inst e1; e2ð Þ

� �
;

ð20Þ

where the five component similarities represent the
similarities of two properties in metadata, hierarchy
structure, the description of domain and range of property,
and the instances, respectively.

We use the similarity factors defined in Section 2.4 to
characterize the ontologies similarity. We studied simila-
rities between each of the 10 ontologies and the so-called
reference ontology in the OAEI benchmark data set
(cf., Table 2). In Table 2, we see that the similarity
characteristics of different ontology pair vary largely.

Again, in Fig. 2, the label similarity between ontologies
Figs. 2a and 2b, F LSða; bÞ is nonzero, and the structure
similarity F SSða; bÞ is zero. This indicates that the
alignment result of ontologies Figs. 2a and 2b should rely
more on the similarity in the label information than in the
structure. In comparison, F LSða; cÞ is zero, and F SSða; cÞ
is not; therefore, the alignment between ontologies Figs. 2a
and 2c should more rely on the structure information.

As can be seen from the examples, we can use F LS and
F SS as the indicators of the effectiveness of ontology
alignment strategies. If F LS is large, it suggests that there
is much lexical overlap in the entity description, which
implies that the label based strategies are more reliable; if
F SS is large, it suggests that the two ontologies have
similar structures, which indicates the structure-based
strategies are more effective. In this paper, we propose the
strategy selection to select different ontology strategies in
the ontology alignment framework.

3.2 Overview of RiMOM

Fig. 3 illustrates the processing flow of RiMOM:

1. Preprocessing. Given two ontologies, RiMOM gener-
ates the description for each entity. Then, it
calculates the two similarity factors, which will be
used in the following steps.

2. Linguistic-based ontology alignment. In this step,
multiple linguistic-based strategies are executed.
Each strategy uses different ontological information
and obtains a similarity result for each entity pair.
These strategies will be dynamically selected to be
included in different alignment tasks.

3. Similarity combination. This step combines the simi-
larity results obtained by the selected strategies. The
weights in the combination are determined by the
two similarity factors.

4. Similarity propagation. This step considers structural
similarity. We use three similarity propagation
strategies, namely, Concept-to-Concept, Property-
to-Property, and Concept-to-Property.

5. Alignment generation and refinement. This step fine
tunes and outputs the alignment result.

As shown in Fig. 3, strategy selection is used in three of
the five steps: Step 2, Step 3, and Step 4. It determines what
information should be used in a linguistics-based strategy,
the combination weights in similarity combination and the
similarity propagation strategy.

4 ONTOLOGY ALIGNMENT STRATEGIES IN RiMOM

Many ontology alignment strategies have been proposed. In
principle, most of them can be incorporated into our
framework. We classify these strategies into two categories,
linguistic based and structure based. We present a few that
performed well in our experiments.

4.1 Linguistic-Based Strategies

4.1.1 Edit-Distance-Based Strategy

Given two entities, e1 for O1 and e2 for O2, we first define
sim Nameðw1; w2Þ using word edit distance, where w1 and
w2 are the words in the names of two entities. Then, we
define sim Nameðe1; e2Þ, which denotes the similarity
between two entities. The calculation of sim Nameðw1; w2Þ
and sim Nameðe1; e2Þ can refer to our paper [60].
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4.1.2 Vector Distance (VD)-Based Strategy

The edit-distance-based strategy makes use of the informa-
tion of an entity’s name. There is also other useful context
information in ontology such as comments and instances of
entities. We use a vector to represent this kind of context
information and propose a VD-based strategy. Different
from other vector-based strategy, we construct the content
of vector in a dynamic way according to the similarity
characteristics of ontologies.

For each entity e in the ontology O, we view its context
information as a document DðeÞ. The text in DðeÞ is
tokenized into words with stemming and stop word
removal. We construct DðeÞ for concept entity e 2 C as

DðeÞ¼

w1; countðw1Þð Þ; . . . ; wn; countðwnÞð Þ

wi2
MetaðeÞ [ [

ej2HierðeÞ
MetaðejÞ

[ [
ej2RestðeÞ

MetaðejÞ [ [
ej2InstðeÞ

MetaðejÞ

8<
:

9=
;

������

8>><
>>:

9>>=
>>;: ð21Þ

According to (21), the words in DðeÞ include those in the
metadata of the concept c, its properties, subconcepts, and
instances.

For property entity e 2 P ,

DðeÞ

¼

w1; countðw1Þð Þ; . . . ; wn; countðwnÞð Þ

wi2
MetaðeÞ [ [

ej2HierðeÞ
MetaðejÞ [ [

ej2InstðeÞ
MetaðejÞ

[ [
ej2DomaðeÞ

MetaðejÞ [ [
ej2RangðeÞ

MetaðejÞ

8><
>:

9>=
>;

�������

8>>><
>>>:

9>>>=
>>>;
:

ð22Þ

DðeÞ consists of the words in the metadata of property e,
the concepts connected to e, and instances of e.

Then, we construct a weighted feature vector using tf �
idf where tfi is the frequency of word wi occurring in DðeÞ,
denoted as countðwiÞ, and idf is the inverse of the number
of documents containing the word wi. In this way, each
entity in source ontology O1 and the target ontology O2 is
converted into a corresponding weighted feature vector
V ðe1Þ and V ðe2Þ, respectively.

The similarity between two entities e1 and e2

sim V ecðe1; e2Þ is then calculated as the cosine of the two
vectors. For each entity e1, we calculate sim V ecðe1; e2Þ for
each e2 and select the entity e2 with the maximal similarity
value as the candidate alignment entity of e1.

This VD-based strategy provides us with the flexibility of
using different kinds of information available in ontologies.
For example, we can remove Hierðe2Þ in the generation of
the document or add some other features. This flexibility
enables us to dynamically select different information for
different alignment tasks.

4.2 Structure-Based Strategies

The structural information is useful for finding alignments
when two ontologies share similar structures. The intuition
behind is: if two entities from ontologies O1 and O2 are
similar to each other, then the similarity of their related
entities is increased.

To exploit the structure information, we use an adaptive
variation of the similarity flooding (SF) [46] for ontology
alignment. Two main processes in the method are pairwise
connectivity graph (PCG) construction and similarity

propagation. Specifically, we represent each ontology to
be aligned as a directed labeled graph (DLG). Each edge in a
DLG is represented as a triple ðs; p; oÞ, where s and o are the
source and target nodes, and p is the label of the edge
(relation). Two DLGs are then converted to a PCG:

ððx; yÞ; p; ðx0; y0ÞÞ 2 PCGðA;BÞ , ðx; p; x0Þ
2 A and ðy; p; y0Þ 2 B:

Each node in the PCG represents a candidate alignment pair
between the two DLGs. Based on the PCG, we can construct
a similarity propagation graph (SPG). Each edge in the SPG
is associated with a weight that indicates how much the
similarity of a given matching pair would be propagated to
the neighborhood matching pairs.

The similarity propagation starts from initial similarities
between nodes of two DLGs and runs an iterative propaga-
tion in the SPG. The iteration stops when no similarity
changes or after a predefined number of steps.

4.2.1 Construction of DLG O and SPG O

In ontology alignment task, we use DLG O and SPG O to
represent the DLG and SPG described in [46], respectively.
We useNOðOÞ to denote the nodes inDLG OðOÞ. The edges
in DLG OðOÞ come from the ontological structure informa-
tion including HasSubConcept, HasSibling, HasProperty,
HasRange, and HasSubProperty.

For concept c 2 NOðOÞ, there are the following edges:

. ðc;HasSubConcept; csðiÞÞ, for csðiÞ2NOðOÞ\HierðcÞ,
i ¼ 1; 2; . . . ; jHierðcÞj;

. ðc;HasProperty; pcðiÞÞ, for pcðiÞ 2 NOðOÞ \RestðcÞ,
i ¼ 1; 2; . . . ; jRestðcÞj; and

. ðcsðiÞ; HasConceptSibling; csðjÞÞ, for csðiÞ 2 NOðOÞ \
HierðcÞ, csðjÞ 2 NOðOÞ \HierðcÞ, and csðiÞ 6¼ csðjÞ,
i; j ¼ 1; 2; . . . ; jHierðcÞj.

For property p 2 NOðOÞ, the possible edges are

. ðp;HasSubProperty; psðiÞÞ, f o r psðiÞ 2 NOðOÞ \
HierðpÞ, i ¼ 1; 2; . . . ; jHierðpÞj;

. ðp;HasRange; pcðiÞÞ, for pcðiÞ 2 NOðOÞ \RangðpÞ,
i ¼ 1; 2; . . . ; jRangðpÞj; and

. ðpsðiÞ; HasPropertySibling; psðjÞÞ, for psðiÞ2NOðOÞ\
HierðpÞ, psðjÞ 2 NOðOÞ \HierðpÞ, and psðiÞ 6¼ psðjÞ,
i; j ¼ 1; 2; . . . ; jHierðpÞj.

Given two ontologies O1 and O2, we generate
DLG OðO1Þ and DLG OðO2Þ. The construction of
SPG OðO1; O2Þ is the same as that of the SPG in [46].

Fig. 4 shows an example of DLG O and SPG O. Fig. 4a is
the DLG Os of ontologies O1 and O2, and Fig. 4b is
SPG OðO1; O2Þ. In SPG O, nodes are entity pairs from two

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. X, XXXXXX 2009

Fig. 4. Example of DLG O and SPG O.



ontologies that have some structural relationship in common.
For example, “Reference” and “Entry” are two entities in O1

and O2. They are constructed into a node in SPG O because
they share the same relationship “HasProperty.”

4.2.2 Similarity Flooding in Ontology Alignment

In SF, for node ðx; yÞ in SPG O, �ðx; yÞ is used to denote the
similarity between x and y. We chose

�iþ1 ¼ 1

z
�0 þ �i þ ’ð�0 þ �iÞ
	 


; ð23Þ

’ð�0 þ �iÞ ¼
Xm
j¼1

wj�
i
j; ð24Þ

z ¼ max
x02SPG O

ð�iþ1Þ; ð25Þ

as the iteration equation to perform similarity propagation.
�0, �i, and �iþ1 are similarities at the initial time, the ith and
the ðiþ 1Þth iterations, respectively. �0 is the similarity
between two entities calculated by any ontology alignment
strategy or combination of multiple strategies. ’ðÞ is the
function to calculate the increase by considering the
similarities of related entities in the ðiþ 1Þth iteration. z is
a normalization factor defined in (25).
�ij is the entity similarity of node ðx0; y0Þ connected to node

ðx; yÞ in SPG O through property p. We simply define the
weight wj of each edge ððx; yÞ; p; ðx0; y0ÞÞ as the inverse of the
number of out-linking relationships for the source node ðx; yÞ.

Fig. 5 shows an iteration result for node (Reference,
Entry). It uses the similarity of its neighboring nodes
(Thing, Object) and (location, place). The similarity between
“Reference” and “Entry” after this iteration becomes 1.4
before the normalization.

5 STRATEGY SELECTION

Strategy selection is aimed at improving the alignment
accuracy for each individual alignment task by dynamically
composing the “right” strategies for it. The two similarity
factors we define play a key role in strategy selection.
Strategy selection works throughout the alignment process,
including linguistic alignment, similarity combination, and
similarity propagation.

5.1 Feature Selection in Vector Distance-Based
Strategy

Strategy selection in the VD-based strategy is used to
determine how label and structure information are used in

the current alignment task. Specifically, it determines

whether, and if so, what structure information is included

in the virtual document.
In the VD-based strategy, if F SS is larger than a

threshold "1 (currently, we set it with "1 ¼ 0:9, refer to

Section 6.2.1 for details), and F LS is smaller than another

threshold "2 (currently, we set it with "2 ¼ 0:4), it indicates

that the two ontologies are similar in the hierarchical structure

but different in label descriptions. In this case, ontology

alignment can rely more on the structure information.

5.1.1 Determination of Hierarchical Information Use

In this step, hierarchical structure information is used only

when F SS is greater than the threshold "1. Otherwise,

hierarchical information is not considered, and the virtual

document of an entity is generated by removing

[ej2HierðeÞMetaðejÞ for e 2 C or p 2 P from (21) and (22)

respectively.

5.1.2 Enhancement of Structure Information

When using the hierarchical structure information, we add

three types of structural features to the virtual document

vector of both the source and the target ontologies. The

three feature types represent the path length from the root

concept, the number of properties, and the number of

subconcepts of the current entity, respectively.
Take Fig. 2 as an example. In the alignment task from

Figs. 2b to 2a, because F SSða; bÞ ¼ 0, the hierarchical

information of the ontology will not be considered in the

VD-based strategy. However, for the alignment task from

Figs. 2c to 2a, because F SSða; cÞ ¼ 1, the hierarchical

information, the three structure features, will be added to

the entity document in the VD-based strategy.

5.2 Weight Calculation of Similarity Combination

We combine the similarities reported by different ontology

alignment strategies as follows:

simðe1; e2Þ

¼ wname� sim Nameðe1; e2Þð Þ þ wV ec� sim V ecðe1; e2Þð Þð Þ
ðwname þ wV ecÞ

;

ð26Þ

where simðe1; e2Þ is the combined similarity of e1 and e2.

wname and wV ec are the weights of different strategies. � is a

sigmoid function, �ðxÞ ¼ 1=ð1þ expð�5ðx� �ÞÞÞ, where �

is set as 0.5 empirically.
The weights of wname and wV ec are determined by

wname ¼F LS=maxðF LS; F SSÞ;
wvec ¼F SS=maxðF LS; F SSÞ:

When F LS is larger than F SS, the combination relies

more on the similarity calculated using the edit-distance-

based strategy. Otherwise, it relies more on the similarity

calculated using the VD-based strategy.

5.3 Selection of Similarity Propagation Strategy

A good similarity propagation method could enhance the

impact of structural information on the similarity between
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two entities. Strategy selection in similarity propagation is
aimed at selecting “right” propagation strategies.

We classify edges in a DLG O into three types: Concept-
Concept(CC), Concept-Property(CP), and Property-
Property(PP). CC edges include HasSubclass and
HasConceptSibling relations, CP edges include HasRange
and HasProperty relations, and PP edges include
HasSubproperty and HasPropertySibling relations. Both CC
and PP edges represent hierarchical relationships between
entities, while CP edges nonhierarchical relationships.
Correspondingly, we define three kinds of propagation
strategies: CC similarity propagation, PP similarity propa-
gation, and CP similarity propagation.

For strategy selection in the propagation, if the factor
F SS is larger than a threshold "3, then we perform
propagation on all edges: PP, CC, and CP edges (currently,
we set the threshold as "3 ¼ 0:25, refer to Section 6.2.1);
otherwise, we only do propagation on the CP edges.

5.4 Parameter Setting

As have discussed, there are in total three sets of parameters
and thresholds in RiMOM: 1) the two similarity factors
(F LS and F SS), 2) the two weights (wname and wV ec) and a
smoothing factor � for similarity scores obtained from
different alignment strategies, and 3) the three thresholds
("1, "2, and "3) in the dynamic strategy selection. For the first
two sets of parameters except �, we automatically calculate
them based on the characteristics of the source and the
target ontology in an ontology alignment task. For the set of
thresholds, we set them experimentally. Specifically, for
each threshold, we varied the value from 0 to 1 with an
interval 0.1, with the other thresholds fixed. Finally, we use
the threshold values that resulted in the best performance
on our test data. A learning-based method for automatically
finding the best setting of the thresholds would be a more
general solution. However, for ontology alignment, a
parameter setting learned from one alignment task may
be not hold in another task. How to accurately learn the
parameters in an unsupervised way and further how to
make the learned parameter adaptive to different alignment
tasks is interesting future work.

6 EVALUATION

We implemented RiMOM in Java and put it online (http://
keg.cs.tsinghua.edu.cn/project/RiMOM). We used
(OWL-API http://owl.man.ac.uk/index.shtml) to parse
the RDF and OWL files. All experiments were carried out
on a server running Windows 2003 with two Dual-Core
Intel Xeon processors (2.8 GHz) and 3 Gbytes of memory.

6.1 Test Sets and Evaluation Methods

6.1.1 Benchmark Data Set in OAEI 2006

We used the test sets from OAEI 2006 [19]. Its benchmark
dataset is in the domain of bibliography. Among the
52 ontologies provided in the benchmark data, one is target
ontology and the rest are source ontologies. The gold
standard results of each alignment task on all benchmark
data are available.

The test data are systematically generated by starting
from an original ontology and discarding various

information in order to evaluate how an algorithm

behaves when some information is missing [19]. There

are seven categories of alterations:

1. Name. Entity names are replaced by random strings,
synonyms, or other language text.

2. Comments. Comments are suppressed or translated
to another language.

3. Specialization hierarchy. It can be suppressed,
expended, or flattened.

4. Instances. They can be suppressed.
5. Properties. They can be suppressed.
6. Classes. They can be expanded or flattened.
7. Additions of four real ontologies of the same topic

provided by some other organizations.

We classify the source ontologies in the benchmark data

into five groups, as shown in Table 3.

6.1.2 Directory and Food Data Sets in OAEI 2006

In addition to the benchmark data, we chose two other data

sets from OAEI 2006 [19], directory and food, to evaluate

RiMOM.
The directory data consists of real world Web site

directories (similar to the open directory or Yahoo’s). Each

directory ontology is organized as taxonomy, with concept

names in a hierarchical structure.
In the food ontology test data, there are two ontologies.

One is the SKOS version of the United Nations Food

(AGROVOC) thesaurus, and the other is the SKOS version

of the United States National Agricultural Library (NAL)

Agricultural thesaurus. There are about 16,000 terms in

AGROVOC and 41,000 terms in NAL. For the data sets of

directory and food ontology, the golden standard results

are not publicly available. All results were evaluated by

domain experts. Each participant of OAEI 2006 was also

asked to evaluate part results of the other participants.

6.1.3 Evaluation Metrics

We use precision, recall, and F1-measure to evaluate the

alignment results.
Precision (P). It is the percentage of correctly discovered

alignments in all discovered alignments.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. X, XXXXXX 2009

TABLE 3
Description of Benchmark Data Set



Recall (R). It is the percentage of correctly discovered

alignments in all correct alignments:

P ¼ jma \mmj
jmaj

; R ¼ jmm \maj
jmmj

; ð27Þ

F1�measure ¼ 2� P �R
ðP þRÞ ; ð28Þ

where ma are alignments discovered by RiMOM, and mm

are alignments assigned manually.

6.2 Results on Benchmark Data Set

We first investigated the effect of the two similarity factors,

F SS and F LS. Then, we tested contributions of SF and

strategy selection, separately. Finally, we compared with a

few other systems participated in OAEI 2006 and OAEI

2007. Additionally, we examined the memory expense and

response time of our system.
Table 4 shows a summary of ontology alignment

strategies under comparison. As shown in Table 4, NA+VA

is the baseline method. In it, we employed only the

edit-distance-based strategy and the VD-based strategy

(cf., Section 4). We also tested RiMOM without similarity

propagation (RiMOM-SP) and RiMOM without strategy

selection (RiMOM-SS).

6.2.1 Effect of Similarity Factors

In our proposed system, F SS is an important factor to the

alignment performance. It is used in the VD-based strategy

and in the process of SF, and their corresponding thresholds

are "1 and "3, respectively. We used data sets 248-266 in

benchmark data set D4 to set F SS in the VD-based strategy

and SF. Data set D4 is different from the target in both label

description and hierarchical structure. Using it to set the

parameters could get the representative values that are

suitable for other alignment tasks. Fig. 6 shows the

performance of factor F SS in different processes. Figs. 6a

and 6b show the effect of F SS in the VD-based strategy
and the effect of F SS in SF, respectively.

As shown in Fig. 6b, when the threshold of F SS is set
to 1, all kinds of relationships are used in SF, and the
precision, recall, and F1-measure are about 84 percent,
62 percent, and 71 percent, respectively. When it is set to
0, no hierarchical information is used, and the precision,
recall, and F1-measure are 85 percent, 57 percent, and
68 percent. We can also see from this figure that the best
value of the threshold for F SS is 0.25 in SF, so "3 is set
to 0.25. In the same way, the best threshold for F SS is
0.9 ð"1 ¼ 0:9Þ in the VD-based strategy, at this time, F LS
is 0.4 ð"2 ¼ 0:4Þ. Fig. 6c further shows that when F SS is
set to 0.25 in SF and F SS is set to 0.90, we can get the
largest F1 measure.

In RiMOM, F LS is also used to determine which
candidate alignment strategy will be considered in the step
of alignment refinement. Our experiments show that when
F LS is less than 0.4, the pairs whose similarities are less
than 0.2 are not considered as candidate alignments. We can
get the best alignment result in this setting.

6.2.2 Effect of Similarity Flood-Based Strategy

With SF, some entity pairs without direct relationships or

with weak relationships could be connected indirectly
because of the relationship of their related entities.

Table 5 shows the effect of SF. We have following

observations:

1. The overall recall is increased from 78.6 percent to
88.6 percent, a 12.7 percent improvement with SF. On
the data sets of D2 and D4, the improvements are
especially significant (þ15.8 percent and þ47.0 per-
cent respectively on recall). This confirms that SF is
effective for ontology alignment, especially when two
ontologies have similar structures, as in D2 and D4.

2. When two ontologies have very similar structures,
the SF method can also improve the precision. For
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example, on data set D2, we obtain þ7.7 percent
improvement on precision, while on data set D4,
whose structure similarity is less than D2, the
improvement on precision is little.

6.2.3 Effect of Strategy Selection

We performed experiments to test the effect of strategy
selection[38], [39]. Table 6 shows the experimental results.
As shown in the table, strategy selection can improve the
performance of ontology alignment. The overall improve-
ment is increased from 93.5 percent to 95.9 percent in
precision (2.6 percent) and from 85.5 percent to 88.1 percent
in recall (3.0 percent).

6.2.4 Comparison with Other Participants

We compare our system with other systems participated in
OAEI 2006. Table 7 and Fig. 7 show the results for nine
participants, the data are provided in [19].

From the results, we see that RiMOM, Falcon, and Coma
are three best performers. Fig. 7a shows the precision and

recall graphs of OAEI 2006 on the benchmark [19]. It shows
that RiMOM can keep the highest precision in most areas of
the recall.

6.2.5 Time Performance and Memory Analysis

The response time of RiMOM mainly consists of the
following components:

1. calculation of the two similarity factors,
2. individual ontology strategy executions,
3. SF, and
4. postprocessing.

Since components 1-3 are of low computation cost, the
iterative process of SF is the dominating factor in the
response time. In our experiments with the benchmark data
set, the system response time ranges from 0.69 second to
6.70 seconds on the benchmark tests. It indicates that
RiMOM is efficient in ontology alignment tasks up to
hundreds of concepts and properties. In memory analysis,
we found that, for each benchmark task, roughly 50 Mbytes
of memory is needed.

6.2.6 Result on OAEI 2007

RiMOM took part in OAEI 2007 benchmark task with no
change in method [40]. There are 13 participants in this task.
ASMOV, Lily, and RiMOM are top three teams. The
precision and recall of these systems are respectively 0.95
and 0.90, 0.96 and 0.89, and 0.95 and 0.87. The result shows
that RiMOM are one of the most effective method among all
systems both in 2006 and in 2007 [19], [20], as shown in
Fig. 7b. At the same time, RiMOM faces the challenge by the
some other systems such as ASMOV, Lily, and Falcon in the
benchmark task.

6.3 Results on Directory and Food Data Sets

Different from the benchmark data set, the directory datasets
contain only the hierarchical and label information. More-
over, there are many synonyms in the labels. For dealing
with this, we integrated an alignment strategy based on
Wordnet [60]. As there is no property and instances in the
directory data, we use CCP for SF. These adjustments
resulted in the precision, recall, and F1-measure of 0.39, 0.40,
and 0.40, respectively. The matching result is in the second
place among all participants in OAEI 2006. In OAEI 2007, we
further incorporated a fine-tuning process into our SF
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specifically for the directory data. We thus achieved a better
result, with the precision, recall, and F1-measure improved
to 0.44, 0.71, and 0.55, respectively. It takes the fourth place
among all participants.

We also evaluated RiMOM on the Food data in OAEI
2006 and OAEI 2007. The ontologies in the Food data are
very large. For large-scale ontologies (e.g., with tens of
thousands of entities), RiMOM needs a large amount of
memory and a long execution time. We suppressed the
structure-based strategies and applied only a simple
version of the linguistic-based strategies to improve the
efficiency. RiMOM consumed 1 Gbyte of memory in this
task and took about eight hours to find the alignment
results. Finally, RiMOM takes the second on the Food data
in OAEI 2006. In OAEI 2007, we tried another approach
based on the background knowledge from Wikipedia. The
approach resulted in a precision of 62 percent and a recall of
42 percent.

6.4 Summary

In summary, our experiments show the following results on
RiMOM:

1. High performance. In OAEI 2006, on the benchmark
data sets, RiMOM showed the best performance; on
the three tasks of the food data, RiMOM got one first
and two second places in OAEI 2006; for the Food
data of OAEI 2007, we tried another alignment
method based on background knowledge but ob-
tained unsatisfactory results. On the directory data,
RiMOM won the second place in OAEI 2006 and the
fourth place in OAEI 2007.

2. Effectiveness of strategy selection. The proposed strat-
egy selection method can effectively improve the
performance of ontology alignment. On the bench-
mark data set, the average improvement by strategy
selection isþ2.6 percent in precision andþ3.0 percent
in terms of recall. For data sets D4, where the
differences of label and hierarchy are quite large,
the average improvement isþ5.5 percent in precision
and þ8.9 percent in recall.

3. Contribution of the SF strategy. SF can significantly
improve the recall without hurting precision and
can sometimes improve the precision as well. On
the benchmark data set, SF improves RiMOM by
þ12.1 percent in recall and þ1.5 percent in precision.

4. Inefficiency for dealing with large-scale ontologies.
RiMOM still needs a large amount of memory and
a long time for finding the alignments of large
ontologies. How to improve the efficiency of
RiMOM is also one of our ongoing work.

7 RELATED WORK

Schema matching is a similar work to ontology alignment.
There are several surveys on schema matching and
ontology alignment [18], [22], [23], [31], [55], [57], [61].
Examples of research work related to schema/ontology
alignment include alignment debugging [44], alignment
ranking [12], ontology merging [54], and semantic data
translation [1], [45]. In this section, we review the related

work on schema matching, ontology alignment, and the
structure-based strategies.

7.1 Schema Matching

Much research work has addressed the schema matching
problem [9], [11], [33], [34], [41], [42]. Different methods, for
example, similarity-based method, statistics-based method,
and composite method have been proposed.

For example, COMA [9], Rondo [47], and Cupid [41] are
three composite methods for schema matching. COMA is a
schema matching tool supporting multiple schema types
[9]. It provides a library of matching algorithms and a
framework for combining matching algorithms. It allows
the user to use different algorithms and combination
strategies, but it is still done manually.

Rondo is a software environment for modeling engineer-
ing. It provides many unit primitives for manipulating
models (e.g., extract, restrict, and delete) [47]. Rondo mainly
uses entity names and taxonomy structures to determine
alignments. Its recent work was focused on handling more
expressive matching [3].

Cupid implements a generic schema matching algorithm
combining linguistic and structural schema matching
techniques. It computes the normalized similarity with the
assistance of a precompiled thesaurus [41].

All of the three methods focus on how to combine
different strategies so as to improve the accuracy of
matching. They provide ways to adjust the weight of each
strategy or to remove a strategy from the composition.
However, they do not consider how to dynamically find the
optimal configuration for different alignment tasks.

Some other efforts have been made for constructing a
global “view” for multiple schemas. For example, Rodriguez-
Gianolli and Mylopoulos have developed a tool, named
DIXSE, to support the integration of XML Document Type
Definitions (DTDs) into a common conceptual schema [56].
The tool integrates traditional approaches and provides a
semiautomatic fashion for help the user to create the common
schema.

He and Chang try to provide a unified user interface for
querying multiple sources on the deep Web [27]. They
propose a unified framework (MGS) for finding alignment
among multiple schemas using statistical techniques.

Castano et al. propose an affinity-based unification
method for global view construction [5]. The method first
assesses the so-called affinity level of semantic relationship
between elements in different schemas and then classifies
schema elements by the affinity levels using clustering
procedures; finally, constructs global views starting from
selected clusters by unifying representations of their
elements; see also [13], [36], and [62].

This type of work tries to construct a common schema
from multiple data sources. The motivation differs in nature
from ours, as we focus on dynamic selecting strategies for a
given alignment task. Our framework can be adapted to
dynamic strategies selection in the construction of the
global view for multiple schemas.

Another type of work tries to find the interscheme
between different schemas. For example, Palopoli et al.
propose a method to find similarities or dissimilarities
among scheme objects (called interscheme properties) [52].
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The method combines both textual information and the
structural information. A graph-based technique for a
uniform derivation of interscheme properties including
synonymies, homonymies, type conflicts, and subscheme
similarities. As for the similarity strategies, the methods in
[52] are close to those in our work. The difference is that we
not only combine different strategies but also propose a
method for automatic strategy selection.

Generally, in comparison with schema matching, ontol-
ogy alignment has its own unique characteristics [43], [60].
First, comparing with database schemas, ontologies provide
higher flexibility and more explicit semantics for defining
data. Second, database schemas are usually defined for a
specific database, whereas ontology is by nature reusable
and sharable. Third, ontology development is becoming a
more and more decentralized procedure. Finally, in ontol-
ogy, the number of knowledge representation primitives is
much larger and more complex, e.g., cardinality constraints,
inverse properties, transitive properties, disjoint classes,
and type-checking constraints.

As a result, in ontology alignment, we can use more and
detailed information than in database schemas, for example,
both hierarchical and non hierarchical information, as well
as description information. It provides more choices on
what information to be used in the alignment and also
requires more specific considerations on each type of
information. In this paper, we use such information to
empower the VD-based strategy and multiple SF strategies.

7.2 Ontology Alignment and the Combination of
Multiple Ontology Alignment Strategies

Existing work [28], [58] makes use of one type of
ontological information or one kind of method for finding
ontology alignment. Some previous method [32] uses
information-flow theory or a bootstrapping method to find
the alignment. These methods can obtain good results on
some alignment tasks but may fail on some others as they
cannot make use of all kinds of information available in
ontologies. Combination of the different alignment strate-
gies has been investigated, aiming at achieving better
alignment performance.

For example, GLUE aims at automatically finding
ontology alignment for data integration [10], [11]. It uses
machine learning techniques to combine different align-
ment methods. Specifically, it first applies statistical
analysis on distributions to generate a similarity matrix.
Next, it uses “constraint relaxation” to obtain an alignment.

FOAM [16] achieves high-quality results through a
combination of a rule-based approach, a machine learning
approach, and the intelligent selection of candidate align-
ments. It also provides a mechanism to let users set the
parameters for a specific alignment task and select the
alignment when doubtable alignments are produced.

COMA++ [2] is an advanced version of COMA [9]. It
includes new approaches and offers a comprehensive
infrastructure to solve large real-world match problems.
In addition, COMA++ provides a user friendly interface for
improving the practicability and effectiveness of the system.
Based on COMA++, eTuner is proposed to automatically
tune a schema matching system using synthetic schemas
that have the ground-truth matching [37]. Falcon-AO [29],
[53] is an automatic tool for aligning ontologies. There are

two alignment strategies in Falcon-AO, LMO and GMO.
LMO is a matcher based on linguistic matching for
ontologies, and GMO is a matcher based on graph matching
for ontologies.

Ehrig and Staab propose a Parameterizable Alignment
Methods (PAM) [15]. They have developed a bootstrapping
approach for acquiring the parameters of different strate-
gies through machine learning techniques.

RiMOM differs from these combination methods in the
following aspects. First, some proposed combination
strategies [2], [9]], [10], [37] such as GLUE focused on the
learning of the combination weights of individual align-
ment methods either from the training data or using a
specific combination of matching results for different
alignment tasks. In RiMOM, the combination weights are
automatically determined by the characteristics of similarity
between two ontologies in linguistic and structural in-
formation. Second, many proposed ontology alignment
methods are combined after each individual alignment
strategy has gotten the candidate alignment results, for
example, COMA++ [2]. In comparison, RiMOM first
determines what parts of information are reliable and then
selects the information to be used in different ontology
alignment strategies according to the characteristics of
ontology alignment tasks.

A few work has been conducted for adaptive integration
of different strategies and different features for a matching
task, which is very relevant to our work. For example,
Castano et al. propose the H-Match algorithm for perform-
ing ontology matching [6]. The H-Match algorithm can
dynamically integrate different ontology features for a
matching task. Different from this work, we focus on the
dynamic integration of multiple matching strategies, while
H-Match focuses on the dynamic integration of different
features in one matching strategy.

Boukhebouze et al. further propose a method to
automate tuning the combination parameters (e.g., weights
of different strategies) in schema matching [4]. However,
the idea is based on a strict assumption that an algorithm
that obtains a good performance in one alignment task (e.g.,
on the benchmark) with a tuned parameter configuration
will also obtain good performances in the other context. On
the contrary, we more intend to find the dynamic
configuration for every alignment task.

Some other efforts have been made to find alignment
beyond one-to-one matching. For example, Euzenat and
Valtchev define a universal measure for comparing the
entities of two ontologies based on similarities of entity and
its related definitions (such as superclasses, properties,
instances, etc.) [17]. They propose a method to find the one-
to-many relationships between entities by using local
matching of entity sets and iterative computation of
recursively dependent similarities. Our proposed method
can be extended to dynamically detect the utility of
different strategies in the one-to-many alignment context.

Giunchiglia et al. propose a method to find the
“semantic” mapping between nodes of two graph-like
structure (e.g., XML schemas and taxonomies) [24]. They
focus on finding semantic relationships (e.g., “equivalent”
and “super concept”) between nodes. Different from the
work, we focus on dynamically combining different
strategies.
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Recently, utilizing search engines to help find the
alignment is another type of method [25]. For example,
Gligorov et al. [25] proposes a method based on the search
results from Google to find the alignment between
ontologies.

7.3 Structure-Based Ontology Alignment

Structural information is proved to be very useful in
ontology alignment. Many structure-based ontology
alignment/schema matching methods have been investi-
gated. The simplest method is to add the structural
information into the linguistic alignment strategies. Such
examples include COMA and GLUE.

Another method is to view the schema or ontology as a
graph, thus the ontology alignment is converted as a task of
graph matching. Such examples are GMO in Falcon and the
method of SF. Falcon uses directed bipartite graphs to
represent ontologies and measures the structural similarity
between graphs. The input of GMO can be a set of matched
pairs previously found by other approaches.

SF is proposed to propagate similarities between two
entities. It takes the assumption that, if two entities are
similar, the entities near them are also similar. It runs an
iteration procedure to reflect the influence of similarities of
their neighboring entities.

There are two processes in RiMOM in which structural
information is exploited. It is used in different ways from
the existing structure-based ontology alignment methods.
First, we use hierarchical information in the VD-based
strategy when the structure similarity between two ontol-
ogies is larger than a threshold. Second, most ontology
alignment methods used structure information statically. In
RiMOM, structure information is used dynamically in the
alignment algorithm. For example, when the structure
similarity is less than a threshold, only the nonhierarchical
information are considered in SF. Third, RiMOM takes the
information defined in an ontology and proposes three
different flooding strategies for ontology alignment tasks.

There are also many methods proposed to address
other issues in the ontology alignment. For example,
several systems rely on semantics to find alignment [7].
QOM addresses the efficiency problem of alignment [14].
Euzenat [21] and Johnson et al. [30] focus on evaluation of
ontology alignment. In addition, some works study how to
align database schema to ontology, e.g., [48]; see also [35],
[51], and [59].

7.4 Relationship with Other Alignment Methods

As shown in previous sections, there are some similar
methods related to our proposed method. Here, we
compared several most relevant methods to our framework.
In particular, we compared these methods based on the
information and the strategies used for ontology alignment.
Specifically, the information used for finding ontology
alignment includes textural content of metadata (T),
structure of metadata (S), ontological instances (I), and
domain background knowledge (K). Strategies designed for
ontology alignment primarily include learning based (L),
similarity matching based (M), and reasoning based (R).
Table 8 shows the comparison of several state-of-the-art
methods and our proposed method. We see that most of the

methods combine the structure and textural content of
metadata, and the instance information. Several of them also
make use of the domain background information. As for the
alignment strategies, most of those methods employ
similarity matching-based strategies, some utilize machine
learning for ontology alignment, and a few methods use
reasoning-based strategies. However, none of these methods
considers the dynamic strategy configuration for ontology
alignment, which is the key difference of the proposed
framework in this paper from the existing methods.

8 CONCLUSION

In this paper, we have proposed a multistrategy framework,
RiMOM, to automatically and dynamically compose strate-
gies for individual ontology alignment tasks. We consider
both textual and structural similarities in ontologies and
compose alignment strategies to be suitable for different
similarity characteristics. Experimental results show that
our proposed approach can significantly outperform both
single strategies and statically combined methods. Further-
more, experimental results on the data sets from OAEI 2006
and OAEI 2007 demonstrate that our system performs
better than most of the participants and is among the top
three performers on the benchmark data sets.
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