
Typicality-Based Collaborative Filtering
Recommendation

Yi Cai, Ho-fung Leung, Qing Li, Senior Member, IEEE, Huaqing Min, Jie Tang, and Juanzi Li

Abstract—Collaborative filtering (CF) is an important and popular technology for recommender systems. However, current CF

methods suffer from such problems as data sparsity, recommendation inaccuracy, and big-error in predictions. In this paper, we

borrow ideas of object typicality from cognitive psychology and propose a novel typicality-based collaborative filtering recommendation

method named TyCo. A distinct feature of typicality-based CF is that it finds “neighbors” of users based on user typicality degrees in

user groups (instead of the corated items of users, or common users of items, as in traditional CF). To the best of our knowledge, there

has been no prior work on investigating CF recommendation by combining object typicality. TyCo outperforms many CF

recommendation methods on recommendation accuracy (in terms of MAE) with an improvement of at least 6.35 percent in Movielens

data set, especially with sparse training data (9.89 percent improvement on MAE) and has lower time cost than other CF methods.

Further, it can obtain more accurate predictions with less number of big-error predictions.

Index Terms—Recommendation, typicality, collaborative filtering

Ç

1 INTRODUCTION

COLLABORATIVE filtering (CF) is an important and popular
technology for recommender systems. There has been a

lot of work done both in industry and academia. These
methods are classified into user-based CF and item-based
CF. The basic idea of user-based CF approach is to find out
a set of users who have similar favor patterns to a given
user (i.e., “neighbors” of the user) and recommend to the
user those items that other users in the same set like, while
the item-based CF approach aims to provide a user with the
recommendation on an item based on the other items with
high correlations (i.e., “neighbors” of the item). In all
collaborative filtering methods, it is a significant step to find
users’ (or items’) neighbors, that is, a set of similar users (or
items). Currently, almost all CF methods measure users’
similarity (or items’ similarity) based on corated items of
users (or common users of items). Although these recom-
mendation methods are widely used in E-Commerce, a
number of inadequacies have been identified, including:

. Data Sparsity. The data sparsity problem is the
problem of having too few ratings, and hence, it is
difficult to find out correlations between users and
items [1]. It occurs when the available data are
insufficient for identifying similar users or items. It

is a major issue that limits the quality of CF
recommendations [2].

. Recommendation accuracy. People require recommen-
der systems to predict users’ preferences or ratings
as accurately as possible. However, some predictions
provided by current systems may be very different
from the actual preferences or ratings given by users
[2]. These inaccurate predictions, especially the big-
error predictions, may reduce the trust of users on
the recommender system.

With the above-mentioned issues, it is clear that a good
mechanism to find “neighbors” of users is very important.
A better way to select “neighbors” of users or items for
collaborative filtering can facilitate better handling of the
challenges.

We note that using rated items to represent a user, as in
conventional collaborative filtering, only captures the user’s
preference at a low level (i.e., item level). Measuring users’
similarity based on such a low-level representation of users
(i.e., corated items of users) can lead to inaccurate results in
some cases. For example, suppose Bob has only rated five
typical war movies with the highest ratings while Tom has
rated other five typical war movies with his highest ratings.
If we use traditional CF methods to measure the similarity
between Bob and Tom, they will not be similar at all, for the
reason that there is no corated items between Bob and Tom.
However, such a result is intuitively not true. Even though
Bob and Tom do not have any corated items, both of them
are fans of war movies and they share very similar
preference on war movies. Thus, we should consider them
to be similar to a high degree. Besides, the more sparse the
user rating data is, the more seriously traditional CF
methods suffer from such a problem.

In reality, people may like to group items into categories,
and for each category there is a corresponding group of
people who like items in the category [3]. Cognitive
psychologists find that objects (items) have different

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. X, XXXXXXX 2014 1

. Y. Cai and H. Min are with the School of Software Engineering, South
China University of Technology, Panyu District, Guangzhou 510006,
Guangdong, China.

. H.-f. Leung is with the Department of Computer Science, The Chinese
University of Hong Kong, Shatin, Hong Kong, China.

. Q. Li is with the Department of Computer Science, City University of
Hong Kong, Hong Kong, China.

. J. Tang and J. Li are with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China.

Manuscript received 1 June 2011; revised 24 Feb. 2012; accepted 26 Dec. 2012;
published online 4 Jan. 2013.
Recommended for acceptance by L. Khan.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2011-06-0309.
Digital Object Identifier no. 10.1109/TKDE.2013.7.

1041-4347/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

typicality degrees in categories in real life [4], [5], [6]. For
instance, people may consider that a sparrow is more
typical than a penguin in the concept of “bird,” and
“Titanic” is a very typical romance movie, and so on.
Similarly, different people may have different degrees of
typicality in different user groups (i.e., sets of persons who
like items of particular item groups). For instance, Raymond
is a very typical member of the concept “users who like war
movies” while not so typical in the concept “users who like
romance movies.” The typicality of users in different user
groups can indicate the user’s favor or preference on
different kinds of items. The typicality degree of a user in a
particular user group can reflect the user’s preference at a
higher abstraction level than the rated items by the user.

Thus, in this paper, we borrow the idea of object
typicality from cognitive psychology and propose a typi-
cality-based CF recommendation approach named TyCo.
The mechanism of typicality-based CF recommendation is
as follows: First, we cluster all items into several item
groups. For example, we can cluster all movies into “war
movies,” “romance movies,” and so on. Second, we form a
user group corresponding to each item group (i.e., a set of
users who like items of a particular item group), with all
users having different typicality degrees in each of the user
groups. Third, we build a user-typicality matrix and
measure users’ similarities based on users’ typicality
degrees in all user groups so as to select a set of “neighbors”
of each user. Then, we predict the unknown rating of a user
on an item based on the ratings of the “neighbors” of at user
on the item.

A distinct feature of the typicality-based CF recommen-
dation is that it selects the “neighbors” of users by
measuring users’ similarity based on user typicality degrees
in user groups, which differentiates it from previous
methods. To the best of our knowledge, there has been no
prior work on using typicality with CF recommendation.
TyCo provides a new perspective to investigate CF
recommendations. We conduct experiments to validate
the TyCo and compare it with previous methods. Experi-
ments show that typicality-based CF method has the
following several advantages:

. It generally improves the accuracy of predictions
when compared with previous recommendation
methods.

. It works well even with sparse training data sets,
especially in data sets with sparse ratings for each
item.

. It can reduce the number of big-error predictions.

. It is more efficient than the compared methods.

This paper is organized as follows: Section 2 introduces
the background and related work. The typicality-based CF
method is introduced in details in Section 3. In Section 4, we
evaluate the proposed typicality-based CF method using
the MovieLens1 data set as well as Netflix data set,2 and
compare it with previous methods. The differences among
TyCo and existing recommendation methods are discussed
in Section 5. We conclude the paper in Section 6.

2 BACKGROUND AND RELATED WORK

2.1 Prototype View and Typicality

In cognitive psychology, object typicality is considered as a
measure of the goodness degree of objects as exemplars in
concepts [4]. It depends on salient properties shared by
most of the objects of that concept, which generally include
salient properties that are not necessary for defining the
concept [3], as well as those that are.

In the prototype view of concepts [7], a concept is
represented by a best prototype abstracted by the property
list that consists of the salient properties of the objects that
are classified into this concept. The salient properties
defining the prototype include both necessary and unne-
cessary properties. It has been found that typicality of an
instance can be determined by the number of its properties
which it shares with the concept prototype. For example,
the property “can-fly” will probably appear in the proto-
type of the concept “bird” because most birds can fly. So
birds that can fly will be judged as more typical than those
that cannot. A prototype of a concept is considered as the
best example of the concept, and is abstracted to be a feature
list. Although the prototype view can explain many
different aspects of how concepts and properties are
represented in human’s mind, there are also situations in
which it fails to give a thorough explanation. For example,
there is virtually no prototype to represent the concept
“animal.” It cannot explain the co-occurring relations
among properties of an instance, either.

An object is considered as more typical in a concept if it
is more similar to the prototype of the concept. Vanpaemel
et al. [8] propose a model that extends the prototype view.
They consider that a concept is represented by some
abstractions (prototypes) deduced from exemplars of the
concept. An object is considered to be an instantiation of an
abstraction that is most similar to it. Typicality of an object
is determined by matching its properties with those of the
abstraction that is most similar to it. Vanpaemel et al. show
that both the prototype model and exemplar model are
special cases of the model they propose, and such a
combined model is better than the prototype model and
exemplar model.

Barsalou [9] measures two factors named central tendency
and frequency of instantiation, which affect the object
typicality in a concept. Central tendency is the degree of
an object’s “family resemblance.” The more an object is
similar to other members of the same concept (and the less
it is similar to the members of the other concepts), the more
typical it is in the concept. Frequency of instantiation of a
cluster of similar objects in a concept is an estimate of how
often people experience, or consider, objects in the cluster as
members of a particular concept. Objects of a cluster with
higher frequency of instantiation in a concept are more
familiar to people, and thus are considered as more typical
in the concept.

There are some works on measuring object typicality in
computer science. Rifqi [10] proposes a method to calculate
object typicality in large databases, which is later extended
by Lesot et al. [11]. In their works, the typicality of an object
for a category depends on its resemblance to other members
of the category, as well as its dissimilarity to members of

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. X, XXXXXXX 2014

1. http://www.grouplens.org/.
2. http://www.netflixprize.com/.

other categories. Au Yeung and Leung [12] have formalized
object typicality in a model of ontologies, in which the
typicality of an object in a concept is the degree of similarity
matching between the object property vector and the
prototype vector of the concept. All these works focus on
developing methods to calculate object typicality in con-
cepts. There has been no work on integrating typicality in
collaborative filtering recommendation.

2.2 Recommender Systems

There have been many works on recommender systems
and most of these works focus on developing new methods
of recommending items to users (e.g., works in [13], [14]).
The objective of recommender systems is to assist users to
find out items which they would be interested in. Items can
be of any type, such as movies, jokes, restaurants, books,
news articles, and so on. Currently, recommendation
methods are mainly classified into collaborative filtering
(CF), content based (CB), and hybrid methods [2]. For the
reason that we are focusing on proposing a new CF
method, we will introduce the related works about CF
methods in more details.

2.2.1 Content-Based Recommender Systems

The inspiration of this kind of recommendation methods
comes from the fact that people have their subjective
evaluations on some items in the past and will have the
similar evaluations on other similar items in the future.

The descriptions of items are analyzed to identify
interesting items for users in CB recommender systems.
Based on the items a user has rated, a CB recommender
learns a profile of user’s interests or preferences. According
to a user’s interest profile, the items which are similar to the
ones that the user has preferred or rated highly in the past
will be recommended to the user. For CB recommender
systems, it is important to learn users’ profiles. Various
learning approaches have been applied to construct profiles
of users. For example, Mooney and Roy [15] adopt text
categorization methods in LIBRA system to recommend
books. A detailed discussion about CB recommender
systems is given by Pazzani and Billsus [16].

2.2.2 Collaborative Filtering

CF recommendation methods predict the preferences of
active users on items based on the preferences of other
similar users or items. For the reason that CF methods do
not require well-structured item descriptions, they are more
often implemented than CB methods [2], and many
collaborative systems are developed in academia and
industry. There are two kinds of CF methods, namely
user-based CF approach and item-based CF approach [2].

The basic idea of user-based CF approach is to provide
recommendation of an item for a user based on the
opinions of other like-minded users on that item. The
user-based CF approach first finds out a set of nearest
“neighbors” (similar users) for each user, who share similar
favorites or interests. Then, the rating of a user on an
unrated item is predicted based on the ratings given by the
user’s “neighbors” on the item.

The basic idea of item-based CF approach is to provide a
user with the recommendation of an item based on the

other items with high correlations. Unlike the user-based
CF, the item-based CF approach first finds out a set of
nearest “neighbors” (similar items) for each item. The item-
based CF recommender systems try to predict a user’s
rating on an item based on the ratings given by the user on
the neighbors of the target item. For example, Sarwar et al.
[17] discuss different techniques for measuring item
similarity and obtaining recommendations for item-based
CF; Deshpande and Karypis [18] present and evaluate a
class of model based top-N recommendation algorithms
that use item-to-item or item set-to-item similarities for
recommendation.

For both user-based CF and item-based CF, the measure-
ment of similarity between users or items is a significant
step. Pearson correlation coefficient, cosine-based similar-
ity, vector space similarity, and so on are widely used in
similarity measurement in CF methods [2].

There are some hybrid methods such as [13]. Besides,
Huang et al. [1] try to apply associative retrieval techniques
to alleviate the sparsity problem. Hu et al. [19] explore
algorithms suitable for processing implicit feedbacks.
Umyarov and Tuzhilin [20] propose an approach for
incorporating externally specified aggregate ratings infor-
mation into CF methods.

Recently, latent factor model has become popular. A
typical latent factor model associates each user u with a
user-factor vector pu, and each item i with an item-factor
vector qi. The prediction is done by taking an inner product:brui ¼ bui þ pTu qi. The more involved part is parameter
estimation. Some recent works such as [21] have suggested
modelling directly only the observed ratings to avoid
overfitting through an adequate regularized model. Zhang
et al. [22] explore matrix factorization method by flexible
regression priors. However, latent factor models such as
SVD face real difficulties to explain predictions. Backstrom
et al. [23] adopt supervised random walks for predicting
and recommending links in social networks. Lee et al. [24]
rank entities on Graph by random walks for multidimen-
sional recommendation. Zhou et al. [25] propose a method
named functional matrix factorization to handle the cold-
start problem. Ma et al. [26] use a collective probabilistic
factor model for website recommendation. Leung et al. [27]
propose a collaborative location recommendation frame-
work based on coclustering.

2.2.3 Hybrid Recommender Systems

Several recommender systems (e.g., [28] and [29]) use a
hybrid approach by combining collaborative and content-
based methods, so as to help avoid some limitations of
content-based and collaborative systems. A naive hybrid
approach is to implement collaborative and CB methods
separately, and then combine their predictions by a
combining function, such as a linear combination of ratings
or a voting scheme or other metrics. Melville et al. [28] use a
CB method to augment the rating matrix and then use a CF
method for recommendation.

Some hybrid recommender systems combine item-based
CF and user-based CF. For example, Ma et al. [13] propose
an effective missing data prediction (EMDP) by combining
item-based CF and user-based CF.

CAI ET AL.: TYPICALITY-BASED COLLABORATIVE FILTERING RECOMMENDATION 3

3 TYPICALITY-BASED COLLABORATIVE FILTERING

In this section, we propose a typicality-based collaborative

filtering approach named TyCo, in which the “neighbors”

of users are found based on user typicality in user groups

instead of co-rated items of users. We first introduce

some formal definitions of concepts in TyCo in Section 3.1.

The mechanism of TyCo is then described in Section 3.2.

We introduce its technical details in Sections 3.3, 3.4, 3.5,

and 3.6.

3.1 Preliminaries

Assume that in a CF recommender system, there are a set U

of users, and a set O of items. Items can be clustered into

several item groups and an item group is intuitively a set of

similar items. For example, movies can be clustered into

action movies, war movies, and so on. Each movie belongs

to different movie groups to different degrees. The choice of

clustering method is application domain dependent, and is

out of the scope of this paper. For instance, based on the

keyword descriptions of movies, we can use Topic Model-

based clustering [30], [31] for the task of obtaining movie

groups and the degrees of movies belonging to movie

groups. In other application domains, other clustering

approaches (such as [32], [33]) can also be used. In this

paper, we will not discuss clustering methods further.
The formal definition of an item group is given in the

following.

Definition 3.1. An item group denoted by ki is a fuzzy set of

objects, as following:

ki ¼
�
O
wi;1
1 ; O

wi;2
2 ; . . . ; O

wi;h
h

�
;

where h is the number of items in ki, Ox is an item, and wi;x is

the grade of membership of item Ox in ki.

Users who share similar interests on an item group could

form a community, and we name such a community as a

user group. Users have different typicality degrees in

different user groups. In other words, for each item group

ki, we define a corresponding user group (i.e., a fuzzy set of

users who like objects in ki) to some degrees. For instance,

Bob and Raymond are very interested in war movies but

not so interested in romance movies, while Amy and Alice

like romance movies very much but do not like war movies.

Thus, Bob and Raymond are typical users in the user group

of users who like war movies, but not typical users in the

user group corresponding to romance movies; while Amy

and Alice are typical users in the user group of users who

like romance movies but not typical in that of war movies.
We consider a user group gi corresponding to an item

group ki as a fuzzy concept “users who like the items in ki.”

Note that users may have different typicality degrees

in different gi. The following is the formal definition of a

user group.

Definition 3.2. A user group gi is a fuzzy set of users, as

follows:

gi ¼
�
U
vi;1
1 ; U

vi;2
2 ; . . . ; Uvi;m

m

�
;

where m is the number of users in the group gi, Ux is a user,
and vi;x is the typicality degree of user Ux in user group gi.

The relations among users, user groups, and item groups
are as shown in Fig. 1. Users possess different typical
degrees in different user groups: the darker a user is in Fig. 1,
the more typical it is in that user groups. For examples, U1

andUk are typical in user group gk but not typical in g1, while
U2 and Um are typical in g1 but not typical in gk.

For the reason that users have different typicality
degrees in different user groups, we represent a user by a
user typicality vector defined below:

Definition 3.3. A user typicality vector U
!

j of a user Uj is a
vector of real numbers in the closed interval ½0; 1�, defined by

U
!

j ¼ ðv1;j; v2;j; . . . ; vn;jÞ;

where n is the number of user groups and vi;j is the typicality
degree of user Uj in the user group gi.

Thus, for all users, we can obtain a user-typicality matrix
as follows.

Definition 3.4. A user-typicality matrix, denoted by M� , is a
matrix with the ith row being user typicality vector of user Ui:

M� ¼
U
!

1

� � �
U
!

m

8<
:

9=
; ¼

v1;1; v2;1; . . . ; vn;1
� � �

v1;m; v2;m; . . . ; vn;m

8<
:

9=
;;

where m is the number of users, n is the number of user groups
and U
!

i is the user typicality vector of user Uj.

Fig. 2 shows an example user-typicality matrix.

3.2 Mechanism of TyCo

The mechanism of TyCo is as follows: given a set O ¼
fO1; O2; . . . ; Ohg of items and a set U ¼ fU1; U2; . . . ; Umg of
users, a set K ¼ fk1; k2; . . . ; kng of item groups is formed.
For each item group ki, there is a corresponding user group
gi. Users have different typicality degrees in each gi. Then, a
user typicality vector U

!
i is built for each user, from which

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. X, XXXXXXX 2014

Fig. 1. The relations among users, user groups, and item groups.

user-typicality matrix M� is obtained. After obtaining users’
similarity based on their typicality degrees in user groups, a
set N
!

i of “neighbors” is obtained for each user. Then, we
predict the rating of an active user on an item based on the
ratings by “neighbors” of that user on the same item.

Selecting “neighbors” of users by measuring users’
similarity based on their typicality degrees is a distinct
feature, which differentiates our approach from previous
CF approaches. In TyCo, we measure the similarity of two
users Ua and Ub based on the comparison of their typicality
vectors in M� . For example, according to Fig. 2, U1 and Uk
are similar users. The reason is that U1 and Uk possess
similar typicality degrees in all user groups g1 to g6.
Similarly, U2 is similar to Um. In previous CF methods,
similarity of two users depends on the comparison of
corated items of them (i.e., the more similar ratings of two
users on corated items are, the more similar the two users
are). Fig. 3 shows an example user-item rating matrix in the
traditional CF approach.

In TyCo, as a user is described by a user typicality vector,
each element in the vector can be considered as a feature of
a user. Such a representation can indicate the user’s
preference on items at a higher abstraction level than
representing a user by a set of rated items. Furthermore,
measuring users’ similarity based on users’ typicality can
overcome the limitation of traditional CF mentioned in
Section 1. Let us reconsider the example of Bob and Tom in
Section 1. In that example, Bob has only rated five typical
war movies with the highest ratings while Tom has only
rated other five typical war movies with the highest ratings.
Using TyCo we can find that Bob and Tom are very typical
users in the user group “users who like war movies” and
not typical users in other user groups (because they have
not rated any other kinds of movies in their histories). Then,
we can find that Bob and Tom are very similar by
comparing their typicality vectors. Such a result is
intuitively more reasonable than that of traditional CF.

We present details of measuring user typicality, selecting
“neighbors” of users, and predicting ratings in the follow-
ing sections.

3.3 Item Typicality Measurement

As introduced above, the typicality of an object in a concept
depends on the central tendency of the object for the
prototype of the concept. In other words, if an object is more
similar to the prototype of a concept, it has a higher
typicality degree in the concept. Generally, an item is

represented by a set of properties, which, following our
previous work [34], we shall call item property vector. For
example, keywords, actors, directors, and producers are
properties of a movie and these properties can form an item
property vector to represent a movie. For each item group
kj, we can extract a prototype to represent the item group.
The prototype of kj is represented by a set of properties
denoted by the prototype property vector of kj t

!
kj , as follows:

t
!

kj ¼ ðpkj;1 : rkj;1; pkj;2 : rkj;2; . . . ; pkj;m : rkj;mÞ;

where m is the number of the properties of the prototype
of concept (item group) kj, and rkj;i is a real number
(between 0 and 1), which indicates the degree the
prototype of concept kj possesses the property pkj;i.

3 The
typicality of an item Oy in an item group kj, denoted by
wj;y, depends on the similarity between the item Oy and the
prototype of kj), i.e.,

wj;y ¼ Sim
�
t
!

kj ; p
!

Oy

�
;

where t
!

kj is the prototype property vector of item group kj,
p!Oy

is the item property vector of Oy, and Sim is a
similarity function. We shall present some possible similar-
ity functions in Section 3.5.

We regard an item group as a fuzzy set and there is only
one prototype to represent an item group (i.e., a cluster of
similar items). Thus, the frequency of instantiation of the
unique prototype for the item group is 1, and the typicality
degree of an item in an item group only depends on
the central tendency. Based on the works in [36] and [9], the
central tendency of an object to a concept is affected by the
degrees of the internal similarity and external dissimilarity.
Internal similarity is the similarity of the object property
vector of the item and the prototype property vector of the
item group. External dissimilarity is the similarity of the
object property vector of the item and prototype property
vectors of other item groups.

In TyCo, the similarity between a prototype of a concept
c and an object a is calculated by the following function:

Sim : P � T �! ½0; 1�;

where T is the set of all prototype vectors, and P is the set
of all object property vectors. For the dissimilarity between
the unique prototype of a concept c and an object a in

CAI ET AL.: TYPICALITY-BASED COLLABORATIVE FILTERING RECOMMENDATION 5

Fig. 2. An example of user-typicality matrix in TyCo. Fig. 3. An example of user rating matrix in traditional CF.

3. Following [4] and [35], we consider the prototype as the mean of a
cluster.

our method, we define it as the complement of similarity,
as follows:

Dissimilarð p!a; t
!

cÞ ¼ 1� Simð p!a; t
!

cÞ:

The output of the Sim function is a real number in the
range of ½0; 1�. The object a is identical to the prototype of
concept c if Simð t!c; p

!
aÞ ¼ 1. If Simð t!c; p

!
aÞ ¼ 0, then the

object a is not similar to the prototype of concept c at all.
The internal similarity of object a for concept c, denoted

by �ð p!a; t
!

cÞ, is determined as follows:

�ð p!a; t
!

cÞ ¼ Simð p!a; t
!

cÞ:

In our method, the external dissimilarity �ð p!a; t
!

cÞ is
considered as the average of dissimilarities of the object and
other concepts excluding c, and is defined as follows:

�ð p!a; t
!

cÞ ¼
P

x2C=fcgDissimilarð p!a; t
!

xÞ
Nc � 1

;

where C is the set of concepts in the domain, and Nc is the
number of concepts.

The central tendency of an object a to concept c, denoted
by �ð p!a; t

!
cÞ, is defined as an aggregation of internal

similarity and external dissimilarity of a for c:

�ð p!a; t
!

cÞ ¼ Aggrð�ð p!a; t
!

cÞ; �ð p!a; t
!

cÞÞ;

where Aggr is an application-dependent aggregation func-
tion [11] used to combine the effects of internal similarity
and external dissimilarity, as discussed in [36]. The
following is a possible function as an example to aggregate
the internal similarity and external dissimilarity:

�
�
p!a; t
!

c

�
¼ �

�
p!a; t
!

c

�
� �
�
p!a; t
!

c

�
: ð1Þ

3.4 User Typicality Measurement

The prototype of a user group is computed from the
properties describing users [4]. Most data sets of existing
recommender systems have little information related to
users’ interests, and the ratings of users on items are the
main related information for describing users’ interests. For
the reason that a user group gx is a fuzzy concept “users
who like the items in the corresponding item group kx,” we
regard a prototype of a user group gx as consisting of two
properties. One property is “having rated items in the
corresponding item group kx to the highest degrees,”
denoted by pgx;r, and another property is “having frequently
rated items in the corresponding item group kx,” denoted
by pgx;f . Thus, we abstract the prototype of a user group gx
to be represented by a prototype property vector of gx, denoted
by t
!

gx , as follows:

t
!

gx ¼ ðpgx;r : 1; pgx;f : 1Þ:

The value 1 means that the prototype possesses both the
properties pgx;r and pgx;f to the degree of 1.

To measure the typicality of a user Ui in a user group gx,
we need to build a user property vector for Ui and compare
it with the prototype of the user group gx to obtain its
central tendency. According to the prototype property
vector t

!
gx , the central tendency degree of a user Ui for a

user group gx depends on the ratings of the user Ui on items

in the corresponding item group kx and the number of
items that user Ui has rated in kx. For users in a user group
gx, the higher the ratings of a user on items in the
corresponding item group are, and the more frequently
the user rates items in gx, the more typical the user is as a
member in gx.

We also need to build for each user group a user property

vector to represent a user, so that we can compare it with the
prototype property vector of the user group. The user
property vector of a user Ui for a user group gx is denoted
by p!i;gx , and given by

p!i;gx ¼
�
pgx;r : sigx;r; pgx;f : sigx;f

�
;

where sigx;r and sigx;f are the degrees to which the user Ui
possesses the property pgx;r and pgx;f , respectively.

We consider that sigx;r is the weighted sum average
aggregation of all ratings of Ui on items in kx which
corresponds to gx, and is given by

sigx;r ¼
Pn

y¼1 wx;y � Ri;y

n �Rmax
;

where n is the number of items user Ui has rated in the item
group kx, Ri;y is the rating of Ui on item Oy, wx;y is the
degree of Oy belonging to item group kx, and Rmax is the
maximal rating value. Besides, sigx;f is the degree of
oftenness of the user’s rating items in item group kx, which
is calculated as follows:

sigx;f ¼
Nx;i

Ni
¼ Nx;iPn

y¼1 Ny;i
;

where n is the number of item groups (i.e., the number of
user groups), Nx;i is the number of items having been rated
by user Ui in the item group kx, and Ni is the number of
items having been rated by Ui in all item groups.

The typicality of a user Ui in a user group gx depends on
the comparison of user property vector p!i;gx and prototype
property vector t

!
gx . Since all values of properties in t

!
gx are

1, the typicality of user Ui in gx, denoted by vi;x, is calculated
by a combination function �gxðUiÞ of sigx;r and sigx;f . Here, we
present a possible combination function4 as follows:

�gxðUiÞ ¼
sigx;r þ s

i
gx;f

2
:

Higher values of sigx;r and sigx;f indicate higher similarity
between the user property vector and the prototype
property vector, and thus, the Ui is more typical in gx.

3.5 Neighbors Selection

We select a fuzzy set of “neighbors” of user Uj, denoted by
Nj
�!

, by choosing users who are sufficiently similar to Uj, i.e.,

Nj
�! ¼ fUi j SimðUi; UjÞ � �g;

where SimðUi; UjÞ is the similarity of Ui and Uj and � is a
threshold to select users who are qualified as “neighbors”
of user Uj.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. X, XXXXXXX 2014

4. There are other possible functions to combine sigx;r and sigx;f , but here
we only present a simple one which is also used in our experiment. Please
refer to [37] for more details.

The neighbor selection is a very important step before
prediction because the prediction ratings of an active user
on items will be inaccurate if the selected neighbors are not
sufficiently similar to the active user. Instead of selecting
the top-k neighbors, we set a threshold � for selecting
neighbors. If the similarity of a candidate user Ui and the
active user Uj is greater than or equal to the threshold �, Ui
will be selected into Nj

�!
(i.e., the set of “neighbors” of Uj).

The choice of similarity functions depends on applica-
tions. There have been a number of methods proposed to
calculate the similarity between two objects, as discussed in
[38]. Here, we consider three methods, namely, distance-
based similarity, cosine-based similarity, and correlation-
based similarity.

Distance-based similarity. According to [38], similarity
between two objects is derived from the distance between
them through decreasing functions. The distance between
two users depends on matching of their corresponding
properties. The similarity between Ui and Uj is measured as
follows:

SimðUi; UjÞ ¼ exp �

ffiXn
y¼1

jvi;y � vj;yj2
vuut

0
@

1
A;

where n is the number of user groups, and

ffiXn
y¼1

jvi;y � vj;yj2
vuut

is the euclidean distance between U
!

i and U
!

j.
Cosine-based similarity. In TyCo, a user is represented by a

user typicality vector. In this case, the similarity between
users Ui and Uj is calculated by computing the cosine of the
angle between these two vectors, i.e.,

SimðUi; UjÞ ¼
Pn

x¼0 vx;ivx;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
x¼0 v

2
x;i

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

x¼0 v
2
x;j

q ;

where “�” is the dot-product operator of two vectors, and
vi;x is the typicality degree of user Ui in the user group gx.

Correlation-based similarity. Pearson Correlation is very
popular for measuring similarity of users or items in
existing CF methods. The similarity between users Ui and
Uj is calculated as follows:

SimðUi; UjÞ ¼
Pn

x¼0ðvx;i � viÞ � ðvx;j � vjÞffiPn
x¼0ðvx;i � viÞ

2
q

�
ffiPn

x¼0ðvx;j � vjÞ
2

q ;

where vi;x is the typicality degree of user Ui in the user
group gx, and vi is the average typicality of users Ui in all
user groups.

We evaluate experimentally in Section 4 the different
effects of these three similarity functions on recommenda-
tion quality.

3.6 Prediction

Having obtained the set of “neighbors” of each user, we can
predict the rating of an active user Ui on an item Oj,
denoted by RðUi;OjÞ, based on the ratings of all “neigh-
bors” of Ui on Oj, as follows:

RðUi;OjÞ ¼

P
Ux2Ni
�!RðUx;OjÞ � SimðUx; UiÞP

Ux2Ni
�! SimðUx; UiÞ

;

where Ux is a user in the set of “neighbors” of Ui, RðUx;OjÞ
is the rating of user Ux on item Oj, and SimðUx; UiÞ is the
similarity between Ux and Ui. This function calculates a
weighted sum of all ratings given by the “neighbors” of Ui
on Oj.

4 EXPERIMENTS

We report the results obtained from experiments conducted
to compare the typicality-based CF (TyCo) with other
current CF methods. We want to address the following
questions:

1. How does TyCo compare with other current CF
methods?

2. Does TyCo have a good performance with sparse
training data?

3. Can TyCo obtain a good result with less big-error
predictions?

4. Is TyCo more efficient than other existing methods?
5. How does the number of user groups affect the

recommendation quality?
6. How do the similarity function and threshold �

affect the recommendation results?

4.1 Experimental Setting

4.1.1 Data Set Description

To evaluate our recommendation method, we use the
MovieLens data set in the experiments, as this data set has
been widely used in previous papers such as [17], [39].
From the MovieLens data set, we obtain 100,000 ratings,
assigned by 943 users on 1,682 movies. Each user has rated
at least 20 movies, and the ratings follow the 1 (bad) to 5
(excellent) numerical scale. The sparsity level of the data set
is 1� 100;000

943�1;682 , which is 0.9369. Another data set we use is
the Netflix data set, which contains 100,480,507 ratings that
480,189 users have given to 17,770 movies. The sparsity
level of Netflix data set is 1� 100;480;507

480;189�17;770 , which is 0.9882.
We extract keywords of movies from the Internet Movie
Database (IMDB),5 and regard such keywords as the
descriptions of movies.

4.1.2 Metrics

To measure statistical accuracy, we use the mean absolute
error (MAE) metric, which is defined as the average absolute
difference between predicted ratings and actual ratings [2].
MAE is a measure of deviation of recommendations from
real user-rated ratings, and it is most commonly used and
very easy to interpret. It is computed by averaging the all
sums of the absolute errors of the n corresponding ratings-
prediction pairs, and can be formally defined as follows:

MAE ¼
Pn

i¼1 jfi � hij
n

;

where n is the number of rating-prediction pairs, fi is an
actual user-specified rating on an item, and hi is the

CAI ET AL.: TYPICALITY-BASED COLLABORATIVE FILTERING RECOMMENDATION 7

5. http://www.imdb.com/interfaces.

prediction for a user on an item given by the recommender
system. A lower MAE value means that the recommenda-
tion method can predict users’ ratings more accurately.
Thus, for MAE values of a recommendation method, the
smaller the better.

Another metric for evaluation is Coverage. Coverage
measures the percentage of items for which a recommender
system is capable of making predictions [2]. For example, if
a recommender system can predict 8,500 out of 10,000
ratings on items to be predicted, the coverage is 0.85. So a
larger Coverage means that the recommendation method
can predict more ratings for users on unrated items. Thus,
for Coverage values of a recommendation method, the
larger the better.

4.1.3 Experiment Process

For TyCo, we first use the Topic model-based clustering [30]
to cluster the movies described by keywords. Based on the
clustering results for item groups, we then form a
corresponding user group for each item group and build
a prototype for each user group. To evaluate TyCo
thoroughly. Similar to previous works such as [40], [14]
and [13], we conduct two experiments.

The objective of the first experiment is to explore the
impact of group number, recommendation quality, and the
performance with sparse data, by comparing TyCo with
several classic baseline methods. We adopt several classic
recommendation methods for the comparison, which
include a content-based method with cosine similarity
function, a user-based CF with Pearson Correlation Coeffi-
cient (UBCF), an item-based CF with Pearson Correlation
Coefficient (IBCF), a naive hybrid method, and a CF method
with effective missing data prediction in [13]. We divide the
data set into two parts, the training set and the test set. We
obtain the recommendation predictions based on the
training set and use test set to evaluate the accuracy of
TyCo. We randomly choose user-movie-rating tuples to
form the training and test sets. Besides, we try to test the
sensitivity of different scales of the training set and the test
set on recommendation results. We adopt a variable named
train/test ratio denoted by �, as introduced in [17], to denote
the percentage of data used as the training and test sets. A
value of � ¼ 0:9 means that 90 percent of data are used as
the training set and the other 10 percent of data are used
as the test set. The smaller the value of � is, the more sparse
the training data are. We conduct a fivefold cross validation
and take the average MAE.

In the second experiment, we compare TyCo with
some state-of-the-art methods to further demonstrate the

advantages of TyCo on improving the recommendation
quality. The compared state-of-the-art methods include a
cluster-based Pearson Correlation Coefficient method
(SCBPCC) [40], weighted low-rank approximation (WLR)
[41], a transfer learning-based collaborative filtering (CBT)
[42], and SVD++ [43]. In this experiment, similar to previous
works [40], [42], we extract a subset of 500 users from the
data set, and select the first 100, 200, and 300 users to form
the training sets, named as ML100, ML200, and ML300,
respectively (the remaining last 200 users are used as test
users). As to the active (test) users, we vary the number of
rated items provided by the test users in training from 5, 10,
to 20, and give the name Given5, Given10, and Given20,
respectively. To evaluate TyCo furthermore, we also
compare TyCo with SVD++ using Netflix data.

The experiment is conducted using a PC with a
Pentium 4 3.2-GHz CPU, 2-GB memory, Windows XP
Professional operating system, and Java J2SE platform.

4.2 Experimental Results

4.2.1 Impact of Number of User Groups

In TyCo, the number of user groups is the same as the
number of item groups. To test the sensitivity of different
number of user groups (i.e., n), we run experiments for
various n from 5 to 30, and the best results (with the most
suitable parameter �) on MAE and coverage are shown in
Tables 1 and 2, respectively. According to Tables 1 and 2,
we find that the number of user groups has little effect on
the recommendation results. Although the MAE values for
some n (e.g., n ¼ 25) are a little bigger than those for other n
(e.g., n ¼ 20), their coverage values are still bigger. Thus, we
regard recommendation quality under different n as stable
by setting an appropriate �.

4.2.2 Comparison on Recommendation Quality

As mentioned in Section 4.1.3, we adopt three existing
recommendation methods as baselines, which are user-
based collaborative filtering with Pearson Correlation
Coefficient, item-based collaborative filtering with Pearson
Correlation Coefficient, and the EMDP method [13], to
compare with the novel typicality-based CF method. Figs. 4
and 5 show the comparison results of TyCo (we set the
number of user groups n ¼ 20 and � ¼ 0:6) with the
baseline methods with different train/test ratios on MAE
and coverage, respectively.

From Fig. 4, we can find that TyCo outperforms all other
three baseline methods in all train/test ratios on MAE. For
example, for train/test ratio � ¼ 0:9, the MAE of TyCo is
0.735 while that of EMDP (the second best result when

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. X, XXXXXXX 2014

TABLE 1
Sensitivity of n on MAE with Different Train/Test Ratios

TABLE 2
Sensitivity of n on Coverage with Different Train/Test Ratios

� ¼ 0:9) is 0.804; for � ¼ 0:3, the MAE of TyCo is 0.7757
while that of IBCF (the second best results when � ¼ 0:3) is
0.8803 only. It shows clearly that typicality-based CF
method has higher recommendation accuracy than all
compared methods.

As mentioned in Section 4.1.2, coverage measures the
percentage of items for which a recommender system is
capable of making predictions. According to Fig. 5, EMDP
can obtain the highest coverage with all train/test ratios
among all the methods. For UBCF and IBCF, they only
achieve a coverage around 0.4 with � ¼ 0:1 and around 0.8
with � ¼ 0:3. For TyCo, it can obtain stable coverage
around 0.98 with all train/test ratios. TyCo, thus, outper-
forms UBCF and IBCF, and it is comparable to EMDP in
obtaining the high coverage. In other words, TyCo and
EMDP can predict more ratings for users on unrated items
than UBCF and IBCF.

4.2.3 Performance on Sparse Data

Another interesting finding is that using TyCo can obtain
good MAE and coverage values even with low train/test
ratio �. For instance, according to Figs. 4 and 5, the MAE
value is 0.8125 and coverage value is 0.9685 using TyCo,
even with a very low train/test ratio � ¼ 0:1. Such results
are comparable to those results obtained by EMDP method
with a high train/test ratio � ¼ 0:7. For the baseline
methods in our evaluation, the best MAE is 0.9073 obtained
by IBCF with � ¼ 0:1, while the best coverage is 1 obtained
by EMDP. From Fig. 4, it is clear that TyCo can produce
more accurate recommendations than the compared meth-
ods with sparse data sets. According to Fig. 5, TyCo and
EMDP can predict much more ratings for users on unrated
items than other compared methods.

Table 3 shows the improvement of TyCo over the
compared methods with sparse training data on MAE and
coverage, respectively. TyCo outperforms the compared
methods by at least 9.89 percent on MAE (with � ¼ 0:1 for
IBCF) and as much as 17.56 percent (with � ¼ 0:1 for

EMDP). Besides, TyCo obtains a coverage value close to 1
for all train/test ratios. It outperforms IBCF and UBCF on
coverage with improvement of up to 59.78 percent and at
least 16.75 percent. Yet TyCo is comparable to EMDP on
coverage: the coverage value of EMDP is 1 and that of TyCo
is around 0.987 for all �.

For the cases with small train/test ratios, it is difficult for
traditional CF methods to find out enough qualified
“neighbors” of a user or an item. The reason is that there
may be very few corated items of two users (or few
common users for two items) in sparse data sets. Thus, the
recommendation accuracy is low for traditional collabora-
tive filtering when training data are sparse. However, for
our typicality-based CF, the user-typicality matrix built is a
dense matrix even when the training data are sparse
because all users have different typicality degrees in
different user groups. The “neighbors” are selected by
measuring users’ similarity based on their typicality
degrees in each user group and the number of user groups
is usually not large (for example, the number of user groups
is 20 in our experiment). In other words, the 1,682 (or 943)
dimensions for the traditional user-based CF (item-based
CF) to be compared are reduced to only 20 dimensions.
Thus, we can obtain a small MAE and large coverage values
even with small train/test ratios.

4.2.4 Comparison on Prediction Errors (PEs)

Predictions with big error may reduce the users’ trust and
loyalty of recommender systems. Therefore, in our experi-
ments, we also evaluate the prediction errors of the TyCo
recommendation method. Fig. 6 compares TyCo with
distance-based similarity (we set n ¼ 20 and � ¼ 0:6) and
other current methods on prediction error, with the train/
test ratio � ¼ 0:9. For other train/test ratios (i.e., � < 0:9),
the comparison results are similar and are not shown here.

For the MovieLens data set, the user ratings are from 1 to
5. In Fig. 6, PE ¼ 0 means that there is no error and the

CAI ET AL.: TYPICALITY-BASED COLLABORATIVE FILTERING RECOMMENDATION 9

Fig. 4. Comparison on MAE using ML data set.

Fig. 5. Comparison on Coverage using ML data set.

TABLE 3
Improvement of TyCo for Other Methods with Sparse

Training Data on MAE and Coverage

Fig. 6. Comparison on prediction errors.

prediction rating is the same as the ratings given by users;
PE ¼ 1 means that the difference between prediction rating
and user’s rating is 1, so on and so forth. The biggest
prediction error is 4.

From Fig. 6, it can be seen that TyCo has the most number
of small-error prediction ratings among all the methods
(i.e., 38.96 percent of the predictions with PE ¼ 0 and
49.46 percent with PE ¼ 1). Besides, there are 9.93 percent of
the prediction ratings with PE ¼ 2, 1.58 percent with PE ¼
3 and 0.07 percent with PE ¼ 4 using the TyCo method. For
the cases of PE � 2, there are 11.58 percent for predictions
by typicality-based method TyCo, 16 percent for EMDP, and
about 17 percent for IBCF and UBCF.

It is clear that TyCo can obtain good results with less
number of big-error predictions than compared methods.

4.2.5 Comparison on Efficiency

We also compare the time cost of TyCo with that of other
methods. Fig. 7 shows the comparison of the time used to
generate recommendations by different methods with
different train/test ratios.

From Fig. 7, we can see that TyCo is faster than the other
methods. UBCF and IBCF need to find out a set of “nearest
neighbors” of items or users based on user-item-rating
matrix. As the Movielens data set has 943 users and 1,682
movies, we need to build a 943� 1; 682 matrix. It means that
we need to compare values in 1,682 dimensions for UBCF,
and in 943 dimensions for IBCF. For TyCo, we only need to
compare values in n dimensions (n ¼ 20 in our experi-
ments). EMDP is the slowest because it predicts missing
data first and then combines the ratings obtained by a user-
based method and an item-based method.

With the increase of train/test ratio, the time cost of
TyCo increases slightly. The reason is that most time cost of
TyCo is attributed to the computation of user typicality
degrees in user groups. Once the user-typicality matrix is
built, TyCo can predict the unknown ratings quickly.

4.2.6 Impact of Similarity Functions and �

In Section 3.5, we presented three similarity functions that
are distance-based similarity, cosine-based similarity func-
tion, and Pearson correlation similarity function. Besides,
we set a similarity threshold � in our “neighbors” selection.
We conduct experiments here to evaluate the effect of
different similarity functions and that of different thresh-
olds on recommendation quality.

Fig. 8 shows the best MAE results (with the best setting
of �) of different similarity functions with different train/
test ratios. According to Fig. 8, the distance-based similarity
can achieve smallest MAE values in all train/test ratio.
Thus, we consider that the distance-based similarity is more
appropriate for typicality-based CF and adopt it in the
comparison experiments.

To evaluate the effect of similarity threshold �, we
conduct experiments by setting � from 0.1 to 0.9 on
different n. Fig. 9 shows the comparison of different � for
n ¼ 10, n ¼ 20, and n ¼ 30. For each n, there is a best
similarity threshold �. With the increase of n, the best �
decreases for obtaining the best result. For example, the
best value for � is 0.7 when n ¼ 10 and it decreases to 0.5
when n ¼ 30. We think that the reason is as follows: for
smaller n (e.g., n ¼ 5), users belong to user groups with
higher degrees because the prototype of each cluster is not
so specific; while for larger n (e.g., n ¼ 35), users belong to
user groups with a lower degrees because the prototype of
each cluster is more specific.

When we increase � to a value that is much greater than
the best value, MAE increases quickly. The reason is that
the requirement to be “neighbors” of a user is more strict as
� increases and there is not enough qualified “neighbors”
for each user with large �. A small set of “neighbors” is not
good enough to assist predicting unknown ratings for users
and may cause big-error predictions.

4.2.7 Comparison with State-of-the-Art Methods

We also compare our method with some state-of-the-art
methods on MAE. Table 4 shows the comparison of TyCo

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. X, XXXXXXX 2014

Fig. 7. Comparison of different methods on time to generate
recommendations.

Fig. 8. Impact of different similarity functions on MAE.

Fig. 9. Impact of different � on MAE.

with state-of-the-art methods.6 According to Table 4, TyCo

outperforms the other methods in all configurations. Even

with sparse data (e.g., ML100 and Given15), TyCo can

obtain MAE values that are lower than those by the other

methods with less sparse data (e.g., ML300 and Given15).

CBT method is the best baseline method among all four

baseline methods, which is only a little bit worse than TyCo

on the Movielens data set.
To evaluate TyCo further, we also compare TyCo with

SVD++ because SVD++ method has a good performance on
Netflix data set [21]. We adopt the whole Netflix data set,
which is much larger than Movielens, and the experiment
setting on Netflix data set are the same as that for the
Movielens data set. The comparison results are shown in
Fig. 10. The x-axis shows the train/test ratios and the y-axis
shows the MAE (RMSE) values. From Fig. 10a, we can see
that TyCo outperforms SVD++ on Movielens data with all
train/test ratios. For small train/test ratios, for example,
from 0.1 to 0.3, TyCo has lower MAE values and obviously
outperforms SVD++. For train/test ratios from 0.4 to 0.8, the
MAE values of TyCo are still lower than SVD++, but they are
very close and the improvement is not so significant.
According to Fig. 10b, TyCo outperforms SVD++ on MAE
using Netflix data set as a whole. For small train/test ratios
(from 0.1 to 0.4), the MAE values of TyCo and SVD++ are
very close. However, when train/test ratio is greater than or
equal to 0.5, as the train/test ratio increases, the improve-
ment of TyCo over SVD++ becomes more and more
significant. Furthermore, we can get similar directionality
using RMSE by comparing TyCo and SVD++. According to
Fig. 10c, the RMSE values of TyCo and SVD++ are very close
from � ¼ 0:1 to � ¼ 0:6. As the train/test ratio increases
(� � 0:7), it is clear that TyCo outperforms SVD++.7 By the
comparison of TyCo and SVD++ on both Movielens and
Netflix data set, both TyCo and SVD++ have good perfor-
mance on recommendation, and TyCo outperforms SVD++
to some extent.

5 DISCUSSIONS

In this section, we analyze the intuition of our method and
discuss the differences among TyCo and current methods.

5.1 Differences between TyCo and Cluster-Based
CF Methods

There are several cluster-based CF methods (such as [44]).
The first difference between TyCo and cluster-based CF
methods is the way of discovering neighbors of users.
Cluster-based methods cluster users into several clusters
and such clustering is based on the ratings of users, instead
of user interests. In these methods, all users are clustered
into several clusters and each user belongs to exactly one
cluster only, then the users similar to a specific user a are
those in the same cluster with a.

There are some cluster-based smoothing CF methods. For
example, SCBPCC [40] uses cluster to refine the prediction
of users’ ratings on items. It predicts and refills the sparse
matrix based on the ratings on all items by all users in the
same cluster, thereby obtaining a nonsparse matrix. Top-k
similar users are selected based on Pearson correlation for
conducting CF prediction. Fig. 11 shows the mechanism of
discovering similar users in SCBPCC method.

In our method, similar users are not discovered by
comparing their item ratings. Fig. 12 shows the mechanism
of discovering similar users in TyCo. Different from cluster-
based CF methods (e.g., coclustering and cluster-based
smoothing CF methods), we conduct fuzzy clustering on
users and form several fuzzy clusters instead of crisp
clusters, then construct a user-typicality matrix. Similar
users to a specific user a are discovered by similarity match
based on the user typicality in all groups in the user-
typicality matrix.

Another difference between TyCo and existing cluster-
based CF methods are in user representation. In existing
cluster-based CF methods, a user is represented by a vector
of ratings by the user on items, and such a vector is often
sparse because there are many unrated items. Obviously,
clustering users based on their ratings on all items is not
reasonable enough and will suffer the rating sparsity
problem. In TyCo, we consider a user’s typicality in all
user groups. In other words, a user is represented at a
higher (categorical) level as opposed to item level, which is
more informative and closer to human’s point of view and
thinking. Representing a user by a user group typicality
vector instead of item vector can be regarded as a
dimension reduction on user representation.

5.2 Differences among TyCo and Other Methods

The difference between TyCo and previous user-based
collaborative filtering is that TyCo finds a user’s neighbors
based on their typicality degrees in all user group, instead
of based on users’ ratings on items in previous methods. For
item-clustering-based CF, they are based on clustering
items, while TyCo is based on users’ typicality. That is,
item-clustering-based CF is item-based recommendation
while TyCo is user-based recommendation. Current hybrid
methods are based on combining both collaborative filter-
ing and content-based methods, for example, using some
aggregation to aggregate the recommendation results of
CF method and content-based method, while TyCo is a
neighbor-based recommendation. Latent factor methods
(e.g., pLSA and SVD++) use latent factors or concepts to

CAI ET AL.: TYPICALITY-BASED COLLABORATIVE FILTERING RECOMMENDATION 11

TABLE 4
Comparison with State-of-the-Art Methods on MAE

6. The results of other methods have been reported in [43].
7. We obtain a higher value of RMSE using SVD++ than that claimed in

[21] because the train/test ratios are different. According to Netflix Prize
specification, the train/test ratio in [21] is fixed as 0.9859 while we varied it
from 0.1 to 0.9 to show the performance of TyCo in different sparsity.

find neighbors instead of pure rating. The idea behind such
models is to characterize both items and users by vectors of
factors inferred from item rating patterns. High correspon-
dence between item and user factors leads to a recommen-
dation. A key to these models is abstracting users by an
intermediate layer of user factors. This intermediate layer
separates the computed predictions from past user actions
and complicates explanations [45]. Different from these
latent factor models, TyCo discovers users’ neighbors based
on typicality and predicts ratings based on neighbors’
actual ratings.

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we investigate the collaborative filtering
recommendation from a new perspective and present a
novel typicality-based collaborative filtering recommenda-
tion method named TyCo. In TyCo, a user is represented
by a user typicality vector that can indicate the user’s
preference on each kind of items. A distinct feature of TyCo
is that it selects “neighbors” of users by measuring users’
similarity based on their typicality degrees instead of
corated items by users. Such a feature can overcome several

limitations of traditional collaborative filtering methods. It
is the first work that applies typicality for collaborative
filtering. We conduct experiments to evaluate TyCo and
demonstrate the advantages of TyCo. In TyCo, there are
some preprocessing procedures, such as constructing user
prototype by clustering and measuring user typicality in
user groups. The cost of these preprocessing procedures
depends on the particular clustering method used. In real-
life applications, these procedures can be processed offline.
While users’ prototypes are constructed, the remained
recommendation process which is based on user typicality
will be efficient. For large scale applications, we can also
first conduct the above preprocessing offline, and then
adopt some parallel computing methods (e.g., MapReduce)
to speed up the computing.

There are several possible future extensions to our work.
In TyCo, we do not specify how to cluster resources so as to
find out item groups and the corresponding user groups.
One possible future work is to try different clustering
methods and see how the recommendation results are
affected. How to using parallel computing methods (e.g.,
MapReduce) to handle the large scale applications is also
one of the possible future works.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. X, XXXXXXX 2014

Fig. 12. Mechanism of discovering similar users in TyCo.

Fig. 10. Comparison of TyCo and SVD++.

Fig. 11. Mechanism of discovering similar users in SCBPCC.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers and

Mr. Hao Han. The research was supported by National

Natural Science Foundation of China (Grant No. 61300137),

Guangdong NSFC (S2011040002222 and S2013010013836),

the Fundamental Research Funds for the Central Univer-

sities, SCUT (2014ZZ0035).

REFERENCES

[1] Z. Huang, H. Chen, and D. Zeng, “Applying Associative Retrieval
Techniques to Alleviate the Sparsity Problem in Collaborative
Filtering,” ACM Trans. Information Systems, vol. 22, no. 1, pp. 116-
142, 2004.

[2] G. Adomavicius and A. Tuzhilin, “Toward the Next Generation of
Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions,” IEEE Trans. Knowledge and Data Eng., vol. 17,
no. 6, pp. 734-749, June 2005.

[3] K.M. Galotti, Cognitive Psychology In and Out of the Laboratory, third
ed. Wadsworth, 2004.

[4] G.L. Murphy, The Big Book of Concepts. MIT Press, 2002.
[5] L.W. Barsalou, Cognitive Psychology: An Overview for Cognitive

Scientists. Lawrence Erlbaum Assoc., 1992.
[6] S. Schiffer and S. Steele, Cognition and Representation. Westview

Press, 1988.
[7] D.L. Medin and E.E. Smith, “Concepts and Concept Formation,”

Ann. Rev. of Psychology, vol. 35, pp. 113-138, 1984.
[8] W. Vanpaemel, G. Storms, and B. Ons, “A Varying Abstraction

Model for Categorization,” Proc. Cognitive Science Conf. (CogSci
’05), pp. 2277-2282, 2005.

[9] L.W. Barsalou, “Ideals, Central Tendency, and Frequency of
Instantiation as Determinants of Graded Structure in Categories,”
J. Experimental Psychology: Learning, Memory, and Cognition, vol. 11,
no. 4, pp. 629-654, Oct. 1985.

[10] M. Rifqi, “Constructing Prototypes from Large Databases,” Proc.
Int’l Conf. Information Processing and Management of Uncertainty
(IPMU ’96), pp. 301-306, 1996.

[11] M.-J. Lesot, L. Mouillet, and B. Bouchon-Meunier, “Fuzzy
Prototypes Based on Typicality Degrees,” Proc. Int’l Conf. Eighth
Fuzzy Days ’04, 2005.

[12] C.M.A. Yeung and H.F. Leung, “Ontology with Likeliness and
Typicality of Objects in Concepts,” Proc. 25th Int’l Conf. Conceptual
Modeling, pp. 98-111, 2006.

[13] H. Ma, I. King, and M.R. Lyu, “Effective Missing Data Prediction
for Collaborative Filtering,” Proc. 30th Ann. Int’l ACM SIGIR Conf.
Research and Development in Information Retrieval (SIGIR ’07),
pp. 39-46, 2007.

[14] J. Wang, A.P. de Vries, and M.J.T. Reinders, “Unifying User-
Based and Item-Based Collaborative Filtering Approaches by
Similarity Fusion,” Proc. 29th Ann. Int’l ACM SIGIR Conf.
Research and Development in Information Retrieval (SIGIR ’06),
pp. 501-508, 2006.

[15] R.J. Mooney and L. Roy, “Content-Based Book Recommending
Using Learning for Text Categorization,” Proc. Fifth ACM Conf.
Digital Libraries (DL ’00), pp. 195-204, 2000.

[16] M.J. Pazzani and D. Billsus, “Content-Based Recommendation
Systems,” The Adaptive Web: Methods and Strategies of Web
Personalization, pp. 325-341, Springer-Verlag, 2007.

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-Based
Collaborative Filtering Recommendation Algorithms,” Proc. 10th
Int’l Conf. World Wide Web (WWW ’01), pp. 285-295, 2001.

[18] M. Deshpande and G. Karypis, “Item-Based Top-N Recommenda-
tion Algorithms,” ACM Trans. Information Systems, vol. 22, no. 1,
pp. 143-177, 2004.

[19] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative Filtering for
Implicit Feedback Datasets,” Proc. IEEE Eighth Int’l Conf. Data
Mining (ICDM ’08), pp. 263-272, 2008.

[20] A. Umyarov and A. Tuzhilin, “Improving Collaborative Filtering
Recommendations Using External Data,” Proc. IEEE Eighth Int’l
Conf. Data Mining (ICDM ’08), pp. 618-627, 2008.

[21] Y. Koren, R. Bell, and C. Volinsky, “Matrix Factorization
Techniques for Recommender Systems,” Computer, vol. 42, no. 8,
pp. 30-37, Aug. 2008.

[22] L. Zhang, D. Agarwal, and B.-C. Chen, “Generalizing
Matrix Factorization through Flexible Regression Priors,” Proc.
Fifth ACM Conf. Recommender Systems (RecSys ’11), pp. 13-20,
2011.

[23] L. Backstrom and J. Leskovec, “Supervised Random Walks:
Predicting and Recommending Links in Social Networks,” Proc.
Fourth ACM Int’l Conf. Web Search and Data Mining (WSDM ’11),
pp. 635-644, 2011.

[24] S. Lee, S.-i. Song, M. Kahng, D. Lee, and S.-G. Lee, “Random Walk
Based Entity Ranking on Graph for Multidimensional Recom-
mendation,” Proc. Fifth ACM Conf. Recommender Systems
(RecSys ’11), pp. 93-100, 2011.

[25] K. Zhou, S.-H. Yang, and H. Zha, “Functional Matrix Factoriza-
tions for Cold-Start Recommendation,” Proc. 34th Int’l ACM SIGIR
Conf. Research and Development in Information Retrieval (SIGIR ’11),
pp. 315-324, 2011.

[26] H. Ma, C. Liu, I. King, and M.R. Lyu, “Probabilistic Factor Models
for Web Site Recommendation,” Proc. 34th Int’l ACM SIGIR Conf.
Research and Development in Information Retrieval (SIGIR ’11),
pp. 265-274, 2011.

[27] K.W.-T. Leung, D.L. Lee, and W.-C. Lee, “CLR: A Collaborative
Location Recommendation Framework Based on Co-Clustering,”
Proc. 34th Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval (SIGIR ’11), pp. 305-314, 2011.

[28] P. Melville, R.J. Mooney, and R. Nagarajan, “Content-Boosted
Collaborative Filtering for Improved Recommendations,” Proc.
18th Nat’l Conf. Artificial Intelligence, pp. 187-192, 2002.

[29] I.M. Soboroff and C.K. Nicholas, “Combining Content and
Collaboration in Text Filtering,” Proc. IJCAI ’99 Workshop Machine
Learning for Information Filtering, pp. 86-91, 1999.

[30] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
Extraction and Mining of Academic Social Networks,” Proc. 14th
ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining
(KDD ’08), pp. 990-998, 2008.

[31] T. Hofmann, “Probabilistic Latent Semantic Analysis,” Proc. Conf.
Uncertainty in Artificial Intelligence (UAI ’99), pp. 289-296, 1999.

[32] R. Xu and D. Wunsch, “Survey of Clustering Algorithms,”
IEEE Trans. Neural Network, vol. 16, no. 3, pp. 645-678, May
2005.

[33] C. Li and G. Biswas, “Unsupervised Learning with Mixed
Numeric and Nominal Data,” IEEE Trans. Knowledge and Data
Eng., vol. 14, no. 4, pp. 673-690, July/Aug. 2002.

[34] Y. Cai, C. man Au Yeung, and H. fung Leung, Fuzzy Computational
Ontologies in Context. Higher Education Press and Springer, 2012.

[35] D.L. Medin and E. Rosch, “Context Theory of Classification
Learning,” Psychological Rev., vol. 85, pp. 207-238, 1978.

[36] Y. Cai, H.F. Leung, and A.W.C. Fu, “Multi-Prototype Concept and
Object Typicality in Ontology,” Proc. 21st Int’l Florida Artificial
Intelligence Research Soc. Conf., pp. 470-475, 2008.

[37] R.R. Yager, “On Ordered Weighted Averaging Aggregation
Operators in Multicriteria Decisionmaking,” IEEE Trans. Systems,
Man and Cybernetics, vol. SMC-18, no. 1, pp. 183-190, Jan./Feb.
1988.

[38] S. Santini and R. Jain, “Similarity Matching,” Proc. Asian Conf.
Computer Vision (ACCV), pp. 571-580, 1995.

[39] M.G. Vozalis and K.G. Margaritis, “Unison-CF: A Multiple-
Component, Adaptive Collaborative Filtering System,” Proc. Third
Int’l Conf. Adaptive Hypermedia and Adaptive Web-Based Systems
(AH), pp. 255-264, 2004.

[40] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen,
“Scalable Collaborative Filtering Using Cluster-Based Smooth-
ing,” Proc. 28th Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR ’05), 2005.

[41] N.S. Nati and T. Jaakkola, “Weighted Low-Rank Approxima-
tions,” Proc. 20th Int’l Conf. Machine Learning, pp. 720-727, 2003.

[42] B. Li, Q. Yang, and X. Xue, “Can Movies and Books
Collaborate?: Cross-Domain Collaborative Filtering for Sparsity
Reduction,” Proc. 21st Int’l Joint Conf. Artifical Intelligence (IJCAI),
pp. 2052-2057, 2009.

[43] Y. Koren, “Factorization Meets the Neighborhood: A Multi-
faceted Collaborative Filtering Model,” Proc. 14th ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining
(KDD ’08), pp. 426-434, 2008.

[44] A.N.K. Honda and H. Ichihashi, “Collaborative Filtering by User-
Item Clustering Based on Structural Balancing Approach,” Int’l J.
Computer Science and Network Security, vol. 8, no. 12, pp. 190-195,
2008.

CAI ET AL.: TYPICALITY-BASED COLLABORATIVE FILTERING RECOMMENDATION 13

[45] Y. Koren, “Factor in the Neighbors: Scalable and Accurate
Collaborative Filtering,” ACM Trans. Knowledge Discovery from
Data, vol. 4, pp. 1:1-1:24, Jan. 2010.

Yi Cai received the PhD degree in computer
science from The Chinese University of Hong
Kong. He is currently an associate professor in
the School of Software Engineering, South
China University of Technology, Guangzhou,
China. His research interests include recom-
mendation system, personalized search, Se-
mantic Web, and data mining.

Ho-Fung Leung is currently a professor and
the chairman in the Department of Computer
Science and Engineering, The Chinese
University ng Kong, China. He has been active
in research on intelligent agents, multiagent
systems, game theory, and Semantic Web.

Qing Li is a professor at the City University of
Hong Kong. His research interests include
object modeling, multimedia databases, social
media, and recommender systems. He is the
chairperson of the Hong Kong Web Society, and
is a steering committee member of DASFAA,
ICWL, and WISE Society. He is a fellow of the
IET, a senior member of the IEEE, a member of
the ACM SIGMOD and the IEEE Technical
Committee on Data Engineering.

Juanzi Li received the PhD degree from
Tsinghua University in 2000. She is a full
professor at Tsinghua University, China. Her
primary research interest is to study the
semantic technologies by combining natural
language processing, Semantic Web, and data
mining. She has published about 90 papers in
many international journals and conferences
such as WWW, the IEEE Transactions on
Knowledge and Data Engineering, SIGIR, SIG-

MOD, SIGKDD, ISWC, JoWS, and so on.

Jie Tang is an associate professor of Tsinghua
University, China. His main research interests
include data mining algorithms and social net-
work theories. He has published more than
100 research papers in major international
journals and conferences including: KDD, IJCAI,
WWW, SIGMOD, ACL, the Machine Learning
Journal, the ACM Transactions on Knowledge
Discovery from Data, the Transactions on
Knowledge and Data Engineering, and the

Journal of Web Semantics.

Huaqing Min is a professor and the dean of
School of Software Engineering, South China
University of Technology, China. His research
interests include artificial intelligence, machine
learning, database, data mining, and robotics.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. X, XXXXXXX 2014

