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Triadic Closure Pattern Analysis and Prediction
in Social Networks
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Abstract—We study the problem of group formation in online social networks. In particular, we focus on one of the most important
human groups—the triad—and try to understand how closed triads are formed in dynamic networks, by employing data from a large
microblogging network as the basis of our study. We formally define the problem of triadic closure prediction and conduct a systematic
investigation. The study reveals how user demographics, network characteristics, and social properties influence the formation of
triadic closure. We also present a probabilistic graphical model to predict whether three persons will form a closed triad in a dynamic
network. Different kernel functions are incorporated into the proposed graphical model to quantify the similarity between triads. Our
experimental results with the large microblogging dataset demonstrate the effectiveness (+10% over alternative methods in terms of
F1-Score) of the proposed model for the prediction of triadic closure formation.
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1 INTRODUCTION

Online social networks (OSNs) are becoming a bridge that con-
nects our physical daily life with the online world. For example,
as of July 2014, Facebook has 1.3 billion users, which makes
Facebook the second biggest “country” in the world. Twitter has
0.65 billion users, who “tweet” 1 billion times every five days.
These connections produce a huge volume of data, including not
only the content of their communications, but also user behavioral
logs. The popularity of the social web and the availability of social
data offer us opportunities to study interaction patterns among
users, and to understand the generative mechanisms of different
networks, which were previously difficult to explore, due to the
unavailability of data. A better understanding of user behavior
and underlying network patterns could enable an OSN provider to
attract and keep more users, and thus increase its profits.

In social networks, group formation – the process by which
people come together, seek new friends, and develop communities
– is a central research issue in the social sciences. Examples of
interesting groups include political movements and professional
organizations [1].

A triad is a group of three people. It is one of the simplest
human groups. Roughly speaking, there are two types of triads:
closed triads and open triads. In a closed triad, for any two persons
in the triad, there is a relationship between them. In an open triad,
there are only two relationships, which means that two of the three
people are not connected with each other.

One interesting question is how a closed triad develops from
an open triad. The problem is referred to as the triadic closure
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process. It is a fundamental mechanism in the formation and
evolution of dynamic networks [5]. Understanding the mechanism
of triadic closure can help in predicting the development of ties
within a network, in showing the progression of connectivity,
and in gaining insight into decision-making behavior in global
organizations [8], [20].

The triadic closure process has been studied in many fields.
Sociologists first used the triadic closure process to study hu-
man friendship choices – i.e., whether people may choose new
acquaintances who are the friends of friends [13] – and found
that friends of friends tend to become friends themselves [13],
[40]. In computer science, empirical studies have shown that triads
tend to aggregate, creating interest groups of widely varying size,
but of small diameter. For example, these tightly knit groups
indicated a common topic for hyperlinks [9] on the World Wide
Web. Literature [10], [20], [35], [45] proposed network generative
models based on triadic closure principles. Milo et al. [28] [29]
defined the recurring significant patterns of interconnections as
“network motifs” and emphasized their importance. But these
studies focused only on uses of the triadic closure process, without
clarifying the underlying principles of triadic closure.

Romero et al. [33] studied the problem of triadic closure
process and developed a methodology based on preferential at-
tachment, for studying how directed ”feed-forward” triadic closure
occurs. Moreover, Lou et al. [27] investigated how a reciprocal
link is developed from a parasocial relationship and how the
relationships develop into triadic closure in a Twitter dataset.
However, these studies only examined some special cases of the
triadic closure process. Many challenges are still open and require
further methodological developments. First, how do user demo-
graphics, network characteristics, and social properties influence
the formation of triadic closure? Moreover, how can we design a
unified model for predicting the formation of triadic closure? In
particular, how can we quantify correlation (similarity) between
triads?

In this paper, employing a dataset from a large microblogging
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network, Weibo1, as the basis of our study, we examine patterns
in triadic closure process in order to better understand factors that
trigger the formation of groups among people. Our contributions
are multifold:

• We first investigate the triadic closure patterns in the mi-
croblogging network from three aspects: user demographics,
network characteristics, and social perspectives. We find some
interesting phenomena; for example, men are more willing to
form triadic closures than women; celebrities are more likely
to form triadic closures (with a probability 421× as high)
than ordinary users. Furthermore, we find that interactions
like retweeting play an important role in the establishment
of friendship and in triadic closure formation.

• Based on our observations, we tackle the issue of triadic
closure prediction. We present a probabilistic triad factor-
graph model (TriadFG) combined with different kernel func-
tions, which quantify the similarity between triads to predict
triadic closure. Compared with alternative methods based on
SVM and Logistic Regression, the presented model achieves
significant improvement (+7.43%, p� 0.01) in triadic closure
prediction.

• We compare the observations obtained from the Weibo dataset
with those from the Twitter dataset. Interestingly, although
there are common patterns – e.g., “the rich get richer” –
underlying the dynamics of the two networks, some distinct
patterns (and corresponding users’ motivations) exist, po-
tentially reflecting cultural differences of behaviors between
Weibo and Twitter users.

• One straightforward application of our findings is friend rec-
ommendation. We apply our proposed triadic closure predic-
tion model to the Weibo dataset to evaluate the effectiveness
of friend recommendation. The online A/B test demonstrates
that our method can achieve an advantage of +10% over the
existing recommendation algorithm. Other potential applica-
tions include group formation [1], [33], social search, and user
behavior modeling.

This study is an extension of [15]. In this work, we refor-
mulate the problem by considering user interaction information.
In addition, we extend our experimental setting with a larger
Weibo dataset. Furthermore, we propose two variant models that
incorporate different kernel functions, that better quantify the
similarity between triads based on the one in [15] and achieve
significant performance improvement.

Organization The rest of this paper is organized as follows. Sec-
tion 2 formulates the problem; Section 3 introduces the datasets
used in our study and our observations regarding the Weibo
network. Section 4 presents the proposed model and describes
the algorithm we use to evaluate the model; Section 5 presents
our results and discusses them, and Section 6 gives related works.
Section 7 concludes.

2 PROBLEM DEFINITION

Let G = (V,E) denote a static network, where V =
{v1, · · · , v|V |} is a set of users and E ⊂ V × V is a set of
relationships connecting those users. Notation evivj ∈ E (or
simply eij) denotes there is a relationship between users vi and

1. Weibo.com, the most popular microblogging service in China, with more
than 560 million users.
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Fig. 1. Open Triads and Closed Triads. The number below is the index
of each triad. Triad 0 – Triad 5 are open triads and Triad 6 – Triad 12 are
closed triads. A, B and C represent users.

TABLE 1
How open triad forms triadic closure.

Open
Triad

A→C−−−−→
Closed
Triad

Open
Triad

A←C−−−−→
Closed
Triad

Open
Triad

A↔C−−−−→
Closed
Triad

0 A→C−−−−→6 0 A←C−−−−→6 0 A↔C−−−−→10

1 A→C−−−−→6 1 A←C−−−−→7 1 A↔C−−−−→9

2 A→C−−−−→8 2 A←C−−−−→9 2 A↔C−−−−→11

3 A→C−−−−→6 3 A←C−−−−→6 3 A↔C−−−−→8

4 A→C−−−−→9 4 A←C−−−−→10 4 A↔C−−−−→11

5 A→C−−−−→11 5 A←C−−−−→11 5 A↔C−−−−→12

vj . The network evolves over time. Let us denote the network at
time t as Gt. To begin with, we give the definitions of closed triad
and open triad in a static social network based on ”following”
relationships.

Definition 1. [Closed Triad] For three users ∆ = (A,B,C),
if there is relationship between any two users – i.e.,
eAB , eBC , eAC ∈ E – then we say that ∆ is a closed triad.

Definition 2. [Open Triad] For three users ∆ = {A,B,C}, if we
have only two relationships among them – e.g., eAB , eBC ∈
E ∧ eAC /∈ E – then we call the triad ∆ an open triad.

The triads are formed in a dynamic process. We use function
t(eAB)→ 1, 2, · · · to define the timestamp at which the relation-
ship eAB was formed between A and B. For simplicity, we use t
to denote the timestamp. In this paper, we try to understand how
an open triad becomes a closed triad. The problem exists in both
directed and undirected networks. For example, in a co-author
network at time t, if B coauthored with A and C respectively, but
A and C did not coauthor, we say (A,B,C) is an open triad. If
later, A and C also have a coauthorship, we say A, B, and C form
a closed triad. In directed networks, the problem becomes more
complicated. In some sense, the problem in undirected networks
can be considered a special case of the problem in directed
networks. In this paper we focus on directed networks like Twitter
(i.e., follower networks) and Weibo (Chinese Twitter).

Figure 1 shows all the possible examples of open and closed
triads in a directed network. Table 1 shows how these open triads
become closed triads when a following action happens between A
and C . For each entry in the table, left and right numbers indicate
the index of triads in Figure 1. The expression above the arrow
indicates the action that a new link between A and C is created.
For example, 0

A→C−−−→ 6 means if at time t′ A follows C , then
open triad 0 becomes an isomorphous of closed triad 6.

The situation becomes more complex if we further consider
the time when each relationship was formed in the (open/closed)
triads. To simplify the following explanation, and without loss of
generality, we assume that in an open triad ∆ = (A,B,C), the
relationship between B and C was established (at time t2) after
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the establishment (at time t1) of a relationship between A and B
– i.e., t2 > t1. Given this, our goal is to predict whether an open
triad will become a closed triad at time t3(t3 > t2). Formally, we
have the following problem definition.

Problem 1. Triadic Closure Prediction. Given a network Gt =
(V,E) at time t and historical information regarding all exist-
ing relationships. To every candidate open triad we associate a
hidden variable yt. Our goal is to use the historical information
to train a function f , so that we can predict whether an open
triad in Gt will become a closed triad (yt = 1) at some time
t′(t′ > t) or not (yt = 0) – i.e.,

f : ({Gα, Y α}α=1,··· ,t)→ Y t
′
,

where Y t = {yti} denotes the set of all values of the hidden
variables at time t.

We also study how interaction between users can help the
formation of triadic closure. We consider retweeting behavior
in a microblogging network. In particular, for an open triad
(A,B,C), if retweeting happens both between A and B, and
B and C , suppose the action between B and C happens after the
action between A and B (which is called candidate relationship-
interaction open triad (R-I open triad)), will this retweeting help
A and C to build a relationship?

Please note that the interaction can be in different forms;
for example, the abovementioned retweeting; “mention” (“@” in
Twitter or Weibo); or “reply.” To simplify the analysis, we focus
on retweeting.

We could extend Problem 1 as follows: Given a network Gt =
(V,E) at time t. To every candidate R-I open triad, we associate
a hidden variable ytRI . Our goal is to train a function f , so that
we can predict whether an open triad in Gt will become a closed
triad at time t′(t′ > t) – i.e.,

f : ({Gα, Y αRI}α=1,··· ,t)→ Y t
′

RI ,

where Y tRI denotes all values of the hidden variables at time t.
We further consider the formation of implicit triads through

social interactions alone. In other words, still considering retweet-
ing as the interaction, if retweeting happens between A and B,
and between B and C , will retweeting happen between A and
C? Before formally defining the problem, we introduce two new
definitions of triads:

Definition 3. [Interaction Closed Triad] For three users ∆ =
(A,B,C), if for any two users, there exists an interaction,
then we say that ∆ is an interaction closed triad.

Definition 4. [Interaction Open Triad] For three users ∆ =
(A,B,C), if an interaction happens between A and B and
another interaction happens between B and C , but there is no
interaction between A and C , we call the triad (A,B,C) an
interaction open triad.

Based on the definition of interaction open and closed triads,
we can define the problem of Interaction Triadic Closure Predic-
tion as below.

Problem 2. Interaction Triadic Closure Prediction Given a
network Gt = (V,E) at time t and historical information
regarding the formation of all interactions (e.g., all retweet-
ing behaviors). For every candidate interaction open triad
we associate a hidden variable yt. Our goal is to use the
historical information to train a function f , so that we can

predict whether an interaction open triad in Gt will become
an interaction closed triad at a later time t′(t′ > t) – i.e.,

f : ({Gα, Y αI }α=1,··· ,t)→ Y t
′

I ,

where Y tI denotes the set of all values of the hidden variables
at time t.

Notice that in Problem 2 we consider implicit triads formed by
social interactions only; we do not consider relationships between
individuals in the network. For example, at time t1 user A retweets
user B, and at time t2(t2 > t1) user C retweets user B. For
Problem 2, we want to predict whether C will retweet A at time
t3(t3 > t2), without considering whether there is a relationship
between A and B, B and C, or A and C. While in extended
Problem 1, our prediction is based on the relationship network
of users.

Theoretically, Problem 1 and Problem 2 can be solved using
the same technique. In the following sections, we will mainly
concentrate on Problem 1.

3 DATA AND OBSERVATION

3.1 Data Collection
One objective of the study is to reveal the fundamental factors
that influence triadic closure formation in social networks. We
use Weibo data as the basis for our study. Triadic closure process
is the formation of a directed triad (also referred to as directed
closure process [27], [33]). To obtain the dynamic information, we
crawl a network with dynamic updates from Weibo. The dataset
was crawled in the following ways. To begin with, 100 random
users were selected; then their followees and followees’ followees
were collected as seed users. The crawling process produced in
total 1, 776, 950 users and 308, 489, 739 following links among
them, with an average of 200 out-degree per user, 317, 555
new links and 745, 587 newly formed closed triads per day.
We also crawled the profiles of all users, which contains name,
gender, location, verified status, and posted microblogs. Finally,
the resultant dynamic networks span a period from September
29th, 2012 to October 29th, 2012. Table 2 gives statistics of the
dataset. In addition, considered that our dataset is a sample of
the whole network, we validate the crawled dataset to address
sampling issues in Section 5.4 and Section 5.5.

We construct a network based on the following relationships,
which is different from a co-author network or friendship network.
The former is a directed network, while the latter is an undirected
network. The main difference between the two is the directed
nature of a Weibo relationship, which is like a Twitter relationship.
In a co-author network or a message network (MSN), a link
represents a mutual agreement by users, while on Weibo a user
is not obligated to reciprocate followers by following them. Thus
a path from one user to another may follow different hops, or not
exist in the reverse direction [18].

3.2 Observations
We view the network at the first day (September 28th, 2012,
denoted as T0) as the initial network, and then every four days2

as a timestamp (denoted as T1, T2, ..., T7). The number of newly
formed links per timestamp period is shown in Figure 2(a), and

2. We followed the work in [27], where they used four days as a timestamp
period to study triadic closure patterns in Twitter. In addition, we also
investigated other timestamps in Section 5.6 to see the effects of timestamps.
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TABLE 2
Data statistics of the Weibo dataset.

Item Number
#Users 1,776,950

#Following-relationships 308,489,739
#Original-microblogs 300,000

#Retweets 23,755,810
#New links per day(average) 317,555

#New open triads per day(average) 6,203,842,388
#New closed triads per day(average) 745,587

the number of newly formed open triads per timestamp period
is shown in Figure 2(b). In Figure 2(c), we have the cumulative
distribution function of newly formed triadic closures per day,
from which we can see that within 8 days, about 60% triadic clo-
sures are formed. In order to obtain fair and balanced observations
among the limited samples, we only consider the triadic closures
generated in 8 days3 after the open triad formed. Figure 2(d) shows
the triadic closure probability in different timestamp periods, from
which we can see that time slightly affects the closure probability
of T1, T2, T3 and T5, (i.e., PT1

≈ PT2
≈ PT3

≈ PT5
).

Exceptions occurred in timestamp period T4 (open triads
formed from Oct. 11st to Oct. 14th and triadic closure formed
from Oct. 12nd to Oct. 20th) and T6 (open triads formed from
Oct. 22nd to Oct. 25th and triadic closures formed from Oct.
23rd to Oct. 31st). Coincidentally, on October 11st, the news
that Mo Yan (a Chinese writer) won a Nobel prize in literature
2012 began to spread over Weibo. In the following days, an
increasing number of people focused on this topic because Mo
Yan was the first Chinese citizen to win the Nobel prize in its
111-year history. Maybe it is partly the reason that the closure
probability in timestamp period T4 is much higher than that in
other timestamp periods. For simplicity, we only show the overall
observations in our later discussion without considering the status
of each timestamp period.

Since we are interested in the major factors that contribute
to triadic closure formation, we first investigate the impact of
different factors from three aspects: user demographics, network
characteristics, and social perspectives. For user demographics, we
consider location, gender, and user’s verified status. For network
characteristics, we focus on the network structure before and
after the triadic closure. For social perspectives, we focus on
the popularity of the people within the triads, people who span
”structural holes”, the gregariousness of users, and status theory.
We also consider the effects of social interaction.

3.2.1 User Demographics

Location From user profiles, we can obtain location information
(province and city that the user comes from). We test whether a
user’s location will influence the closure of a triad. We can see
from Figure 3(a), if three users all come from the same province,
the probability that the open triads will be closed is much larger
(about 4 times as large) than the case for which all users are from

3. As shown in Figure 2(c), about 60% open triads closed in eight days, and
80% open triads closed in 13 days. Since we only have one month’s worth of
observations, eight days seems to be a better choice than 13 days: first, eight
days corresponds to two timestamp periods, which is easy for calculating;
second, we can get more effective observations with eight days if we choose
all samples with the same observed time period. For example, if we select 12
days, triads in the last two timestamp periods can only be observed in two
timestamp periods, so their observations are not complete. Thus, eight days
yields more observations than 12 days.
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Fig. 2. Overall observation. (a) Y-axis: the number of new formed links in
different timestamp periods. (b) Y-axis: the number of new formed open
triads in different timestamp periods. (c) Y-axis: Cumulative distribution
function of new formed triadic closures per day. (d) Y-axis: probability
that open triads form triadic closures.

different province. Even if two of the three users are from the same
province, the probability is obviously greater than the NULL case,
where all three users are from different provinces. If we consider
city scale, the result is more definitive; the probability of closure
for three persons from the same city is 8 times as high as that of
the NULL case. Although online social networks make distances
between people smaller, location is still one important factor that
influences the formation of triadic closure.

Gender We test whether or not gender homophily affects triadic
closure formation. We use three-bit binary codes to indicate the
gender status of a triad – i.e., (XXX)X = 0 or 1, where 0
means female and 1 means male. As shown in Figure 3(b), we can
see that if the three users are all male, triadic closures is about 6
times more likely to form than the case in which all three users are
female. We also notice that with more male users in a triad, the
triad will have a higher probability to become closed. For example,
for any case (such as 001) in Figure 3(b), if we replace one female
user of “0” with a male user (“1”), the probability that the triad
will close will increase to 0.6-1 times higher.

Verified Status In Weibo, users can choose to verify their real
status; e.g., organization, company, famous people, media, active
users, etc. In some sense, a verified user could be regarded as
a celebrity. Among the 1.7 million users in our sample, about 0.7
million users have verified their status. On the other hand, we have
21,622,013 closed triads, among which we have 7,608,598 closed
triads with two verified users and 8,995,533 with three verified
users.

Here we check whether verified status affects triadic closure
formation. We use three-bit binary codes (XXX)(X = 0 or 1,
where 0 means status is not verified, and 1 means status is verified)
to represent triad status. As shown in Figure 3(c), we can see that if
the middle user (i.e., user B) verified his/her status, it has negative
influence on triadic closure (P (X0X) > P (X1X)), while if the
other users verified their status, an open triad is more likely to
become closed(P (XX1) > P (XX0), P (1XX) > P (0XX)).
For example, if users A and C verified their status, the probability
that an open triad will close is about 70 times higher than the case
in which only user B verified his/her status.
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(c) Verified status correlation
Fig. 3. User Demographics. Y-axis: probability of triadic closures. The status of the third link – the new formed link is presented in a different color;
e.g., blue means the third link is accomplished by user A, who follows user C. (a) X-axis: represents whether certain users are from the same
province; e.g., AB means that only A, B are in the same province. NULL means users in a triad all come from different provinces. (b) X-axis:
represents genders in the triad; 0 means female and 1 means male. (c) X-axis: represents the verified status of the triad; 0 means the user hasn’t
been verified and 1 means the user is verified.

3.2.2 Network Characteristics
We then check the correlation between characteristics of the
microblogging network and the formation of triadic closure. In a
directed network, there are 13 possible three-node subgraphs [29]
as shown in Figure 1 – if isomorphous subgraphs are only counted
once – among which there are 6 open triads and 7 closed triads.

Among all the open triads, open triad 3 is the most frequent,
which is around 95% of all open triads. The case corresponds to
the tendency of users in Weibo to follow “super stars”, such as
a famous person or news media, to get information. Figure 4(a)
shows the distribution of new triadic closures. We can see that
triad 6 has the largest number among all the closed triads, while
triad 7 has the smallest number.

Figure 4(b) shows the probability that each open triad forms
triadic closure. We can see that open triad 5 has the highest
probability of becoming closed, which means if there exist two
two-way (reciprocal) relationships in an open triad, it is likely that
the triad becomes closed. Meanwhile, open triad 3 is the least
likely to form triadic closure, as there are large numbers of this
kind of open triads(94.9%). Figure 4(c) shows the probability for
each type of open triad to change from into each type of closed
triad. We can see that a one-way relationship is much easier to
build than a two-way relationship; e.g., P5→11 > P5→12.

3.2.3 Social Perspectives
We turn now to several social metrics, to check how they influence
triadic closure formation. These include: popularity, structural
hole, gregariousness, status, and interaction.

Popularity For popularity, we test this question: If one of the
three users in an open triad is a popular user (e.g., an opinion
leader, a celebrity), how likely is the open triad to become closed?
Here we employ Pagerank [32] to estimate the users’ popularity in
the network, based on which the top-1%-ranked users4 are defined
as “popular” users while the rest are viewed as ordinary ones.
Among all the 21,622,013 closed triads, we have 5,918,130 with
any popular users, and 461,396 with three popular users.

We also test popularity using other metrics, like in-degree, and
find similar patterns. We use three-bit binary codes (XXX)(X =
0 or 1) to represent a user’s status: 0 for an ordinary user and 1
for a popular user. Figure 5(a) shows the correlation between
users’ popularity and the proportion of triadic closures to total

4. We follow the work [41] which has shown that less than 1% of Twitter
users produce 50% of its content, and [27], which also uses the top-1%-ranked
users to study triadic closure in Twitter.

open triads. We can see that if the middle user – i.e., user B –
is a popular user, the probability to close the open triads is small.
We explain this phenomenon thus: User B can be a super star,
a politician, or an official account, which has a lot of followers
and relatively few followees, and plays a more important role than
ordinary users in the network; meanwhile ordinary users, such as
A and C , follow them, but are unlikely to interact with each other,
so the probability to close the open triads is small in these cases.
But if the three users are all popular users, the probability that the
open triads will close is high.

Social Structural Hole The theory of structural holes [4]
suggests that individuals would benefit from filling the holes
(called “structural hole spanners”) between people or groups that
are otherwise disconnected [26]. We further test whether users
who span structural holes will have different influences on the
formation of closed triads. Again, we use three-bit binary codes
(XXX)(X = 0 or 1) to represent triad status: 0 indicates an
ordinary user and 1, a structural hole spanner. Figure 5(b) shows
the correlation between users’ social structural hole properties and
the proportion of triadic closures to total open triads. We can see
from this figure that if only user B is a structural hole spanner,
the open triad is not likely to become closed. In another case, if
A or C is a structural hole spanner, A and C are more willing to
connect with each other to get more resource for themselves [31],
[34], [36], so the open triads are more likely to become closed.

Gregariousness Gregariousness represents the degree that a user
is social and enjoys being in crowds. In sociology, gregariousness
is often simply represented by out-degree; i.e., a high out-degree
reflects a strong desire to be socially active and accepted. Here we
examine whether gregariousness will play some role in triadic
closure formation. Similarly, we view the top-1%-ranked out-
degree users as gregarious. Among all the 21,622,013 closed
triads, we have 1,105,892 closed triads with two gregarious users
and 109,030 with three gregarious users.

We still use three-bit binary codes (XXX)(X = 0 or 1) to
represent the triad status: 0 refers to a common user and 1 refers
to a gregarious user. Figure 5(c) shows the correlation between
users’ gregariousness and the ratio of triadic closures to the total
open triads. We can see from this figure that if three users are all
common users (000), open triads are less likely to become closed.
On the other hand, if the three users are all gregarious (111), the
open triads have a high probability of becoming closed – almost
39 times as high as that of case 000. We also notice that with more
gregarious users in a triad, the triad will have a higher probability
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(c) Gregariousness correlation
Fig. 5. Social Perspectives. Y-axis: probability that triadic closures form. The status of a newly formed link is presented in a different color; e.g., blue
represents the fact that a third link is accomplished by user A, who follows user C. (a) X-axis: represents the popularity of the triad. 0 represents an
ordinary user and 1 represents a popular user. (b) X-axis: represents the structural hole spanner status of the triad. 0 means an ordinary user and 1
means a structural hole spanner. (c) X-axis: represents the gregariousness of the triad. 0 indicates an ordinary user and 1 is used for a gregarious
user.
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Fig. 6. Random test for gregarious users. Blue bars represent the case
with gregarious users while red bars represent the case with random
users. X-axis: represents the gregariousness of the triad. 0 indicates an
ordinary user and 1 is used for a gregarious user.

to become closed. For example, for any case (such as 001) in
Figure 5(c), if we replace one user of “0” with a gregarious user
(“1”), the probability that the triad becomes closed will double or
triple.

Especially, in order to check whether gregariousness is cor-
related with activity, we conduct a random test. We generate a
random version of users that allocate the same number of ties with
gregarious users and find that at one timestamp the probability
that three gregarious users close is 5.66% while the probability
that random users close is 0.08%. We also test other cases and the
results are shown in the Figure 6, which shows gregarious users
are more likely to close.

Transitivity Transitivity [22], [40] is an important concept that
attaches many social theories to triadic structures. One social
relation among three users A, B, and C , is transitive if the
relations A → B, B → C , and A → C are present. Extending
this definition, a triad is said to be transitive if all the relations it

contains are transitive. For example, where A’s friends’ friends are
A’s friends as well. In Weibo, it is more likely (98.8%) for users
to be connected in a transitive way.

Social Interaction We next consider the effects of interaction
information upon the triads – say, retweet information. For each
user, the crawler collected the 1, 000 most recent microblogs
(including tweets and retweets). Since we focus on retweet be-
haviors in the microblogging network, we select 300, 000 popular
microblog diffusion episodes from the dataset. Each diffusion
episode contains the original microblog and all its retweets. On
average, each microblog has been retweeted about 80 times.
The sampled dataset ensures that for each diffusion episode, the
active (retweet) statuses of followees in one τ -ego network5 is
completed. The dataset was previously used for studying social
influence in the diffusion process [44]. With this retweeting data,
we study how triadic closure formation has been influenced by the
retweeting behaviors.

First, let us define some notations: tRBC
denotes the time that

a retweeting behavior happens between B and C; tRAB
denotes

the time that a retweet happens between A and B. If there are
several actions, tRBC

, tRAB
denotes the time that the first action

happens; tLAC
denotes the time that link AC is established. For

retweeting behaviors, according to the time ordering of retweeting
behaviors, we have the following four cases:

I) User B posted one tweet, then users A and C retweeted
it respectively. Given that A retweeted it earlier than C ,
we have tRBC

> tRAB
;

5. A τ -ego network means a subnetwork formed by the user’s τ -degree
friends in the network; τ ≥ 1 is a tunable integer parameter that controls the
scale of the ego network.
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Fig. 8. Distribution of our observations. X-axis: Cases. Y-axis: probability
for each type of closed triads. Legends: represents the status of the
triad. 1 represents typical user(Male, verified user, popular user, struc-
ture hole spanner, and gregarious user) and 0 represents ordinary user.

II) Assume that A has retweeted some tweets posted by B
and C has retweeted some tweets posted by B. Suppose
A did it earlier than C; then we have tRBC

> tRAB
;

III) User A posted one tweet, then user B and C retweeted it
respectively. Given that B retweeted it earlier than C , we
have tRBC

> tRAB
;

IV) Assume that B has retweeted some tweets posted by A
and C has retweeted some tweets posted by B. Suppose
A did it earlier than C; then we have tRBC

> tRAB
.

Our intent is to study whether one kind of retweeting will
influence triadic closure formation.

Figure 7 shows the probability of triadic closure in different
cases. We see that if the connecting node B is the first to post
a tweet (case I and II), regardless of whether others retweet the
tweet or once retweeted his tweets, the retweeting behavior has
little influence on triadic closure formation. However, if user A is
the initial user who posts a tweet (case III and IV), the open triads
are more likely (about 3 times as probable) to become closed.

3.2.4 Summary
The distribution of our observations is shown in Figure 8. We
summarize our observations as below:

• Male users trigger triadic closure formation. The probabil-
ity that three male users form a closed triad is 6× as high
as that of three female users.

• Gregarious users help form closed triads. The probability
that three gregarious users form a closed triad is 39× as
high as that of three ordinary users.

• Celebrity users are more likely to form closed triads. Three
users with high Pagerank scores are 421× as likely to form

closed triads as three ordinary users. We also find similar
patterns in the study for verified status users.

• Structural hole spanner is eager to close an open triad for
more social resources (> 10× higher than that of three
ordinary users). On the other hand, they are also reluctant
to have two disconnected friends to be linked together.

• Interaction among users plays an important role in forming
closed triads. An open triad is 3× as likely to become
closed if there is interaction among the users in certain
cases, than if there is none.

• In general, the closing action is often done by the third
user (Figure 3(b), Figure 5(c)); since the third user is
the last “active” user, he or she is more willing than the
other users to connect the link. However, if the user has
some social position, like “celebrity” or “resource holder,”
then ordinary users are more likely to connect with them
(Figures 3(c), 5(a) and 5(b)) and close the triad.

4 TRIADIC CLOSURE PREDICTION

Based on the observations in section 3, we see that the closure
of an open triad not only depends on the demographics of the
users involved in the triad, but is also influenced by the structural
position and social position of the users within the triad in the
network. Technically, the challenge in triadic closure prediction
is how to integrate all relevant information in a unified model. In
this paper, we present a Triad Factor Graph (TriadFG) model and
its variations (TriadFG-BF, TriadFG-KF, TriadFG-EKF) for triadic
closure prediction. A similar model has been studied in [27] for
reciprocal relationship prediction.

4.1 Modeling
For a given network Gt = {V,E,X, Y } at time t, we first extract
all candidate open triads and define features for each triad. Here
we use Tr to denote candidate open triads; X to denote features
defined for candidate open triads – e.g., the demographics of users
as analyzed in Section 3; Y indicates whether open triads become
closed or not. With this information, we can construct a TriadFG
model.

For simplicity, we remove the superscript t if there is no
ambiguity. Therefore, according to the Bayes theorem, we can
get the posterior probability of P (Y |X, G) as below:

P (Y |X, G) =
P (X, G|Y )P (Y )

P (X, G)
∝ P (X|Y ) · P (Y |G) (1)

where P (Y |G) denotes the probability of labels, given the struc-
ture of the network, and P (X|Y ) denotes the probability of gen-
erating the attributes X associated with each triad Tr, given their
label Y . Assuming that the generative probability of attributes,
given the label of each triad, is conditionally independent, then

P (Y |X, G) ∝ P (Y |G)
∏
i

P (xi|yi) (2)

P (xi|yi) =
∏
j

Fj(xij , yi), (3)

where P (xi|yi) is the probability of generating attributes xi given
the label yi, Fj(xij , yi) is jth factor function defined for attribute
xi.

The problem is how to instantiate the probabilities P (Y |G)
and Fj(xij , yi). In principle, they can be instantiated in different
ways. In this work, we instantiate them in the following three
ways.
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4.1.1 TriadFG-BF
Straightforwardly, we model these factor functions in a Markov
random field, and by the Hammersley-Clifford theorem [12], we
have

FBFj (xij , yi) =
1

Z1
exp{αjfj(xij , yi)} (4)

P (Y |G) =
1

Z2
exp{

∑
c

∑
d

µdhd(YTrc)}, (5)

where Z1 and Z2 are normalization factors. Eq. 4 indicates that
we define a feature function fj(xij , yi) for each attribute xij
associated with each triad, where αj is the weight of the jth

attribute. Eq. 5 represents that we define a set of correlation feature
functions {hd(YTrc)}d over each triad Trc in the network, where
µd is the weight of the dth correlation feature function, and YTrc
is correlation attribute associated with triad Trc.

For factor functions fj(xij , yi), and hd(YTrc), it can be
defined as a binary function. For example, if three users in
one triad come from the same city, then a featurefj(xij , yi) is
specified as 1; otherwise it is 0. Note that such a feature definition
is often used in graphical models such as Conditional Random
Fields [19].

We call this approach, Triad Factor Graph with Binary Func-
tion (TriadFG-BF).

4.1.2 TriadFG-KF
Generally speaking, the binary feature function can discriminate
closed triads and open triads. However, it cannot accurately
capture correlation between features. To this end, we propose
a variant of the TriadFG model: TriadFG with Kernel Function
(TriadFG-KF). Given some attribute samples X, we want to choose
feature function F so that (X, F ) is as similar as possible to
the training samples. In this sense, we can use a kernel function
as a similarity measure/weighting function to estimate variable
density. Kernel methods like SVM have led to generalizations of
algorithms in the machine learning field, and to successful real-
world applications [3], [38], [42]. In this paper, we use kernel-
density estimate (KDE) [39] to estimate the density functions of
samples X.

To form a kernel-density estimate, we need to place a kernel –
a smooth, strongly peaked function – at the position of each data
point, then add up the contributions from all kernels to obtain a
smooth curve, which can be evaluated at any point along the x
axis. For instance, for a network structure feature, we have six
open triads, and we want to obtain some functions to see which
kind of open triads are more likely to become closed. In order
to use kernel-density estimates, we need to know the distance
between the incoming samples. To this end, we define the distance
metric based on the similarity of open triads.

We set a 3 × 3 matrix with rows and columns labeled by
vertices for every open triad, with a 1 or a 0 in position (mi,mj),
according to whether there is a link from mi to mj . So we have
the matrix representations of open triads in Figure 9. Hence, we
can define the similarity of triads using a Pearson’s correlation
coefficient as follows:
Definition 5. [Triad Similarity] Suppose triad i has matrix

representation I and triad j ’s matrix representation is J ; then
the similarity Sim(i, j) of triad i and triad j is

Sim(i, j) =

∑
n(In − Ī)(Jn − J̄)√∑

n(In − Ī)2
√∑

n(Jn − J̄)2
, (6)

1

A B C
A
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C 0 0 0
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A B C
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Fig. 9. Matrix representation of open triads.
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Fig. 10. Kernel-density estimation for structure information

where n is the number of entries in the matrix, Ī = 1
n

∑
n In,

J̄ = 1
n

∑
n Jn.

Since the distance function is required to satisfy the four
conditions [37]: non-negativity, identity of indiscernibles, sym-
metry, and triangle inequality, we define the triad similarity-based
distance function as follows:

Definition 6. [Triad Distance] Suppose the similarity between
triad i and triad j is Sim(i, j); we define the distance
Dis(i, j) between these two triads as

Dis(i, j) =
√

1− Sim(i, j) (7)

Suppose that the region that encloses the N examples is a
hypercube with sides of length β centered at the estimation point
x; then its volume is given by V = βD , where D is the number
of dimensions. We can use kernel function k(·) to find the number
of examples that fall within this region. The total number of points
inside the hypercube is then

Q =

N∑
n=1

k(
x− xn
β

) (8)

So the structure feature function can be rewritten as

FKFj (xij , yi) =

N∑
i=1

1

β
k(
x− xij
β

), j = s; (9)

where k(·) is the kernel function – e.g., Gaussian kernel k(x) =
1√
(2π)

exp(− 1
2x

2), β is the kernel bandwidth, and s represents

the structure feature. The kernel-density estimates of structure
information using the Gaussian kernel is shown in Figure 10
(green curve), and the histogram of the distance to open triad 3
is shown in Figure 10 (blue part).
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For other factors, we model them similarly in TriadFG-BF.
Thus, we have

FKFj (xij , yi) =


N∑
i=1

1

β
k(
x− xij
β

), j = s,

exp{αjfj(xij , yi)}, j 6= s

(10)

We name this approach, Triad Factor Graph with Kernel Function
(TriadFG-KF).

4.1.3 TriadFG-EKF
With the discoveries regarding network structure, and taking
TriadFG-BF into account, we can use the kernel function together
with an exponential function to rewrite Fj(xij , yi) as follows:

FEKFj (xij , yi) =

 exp{αj
N∑
i=1

1

β
k(
x− xij
β

)}, j = s

exp{αjfj(xij , yi)}, j 6= s
(11)

We call this approach, Triad Factor Graph with Exponential Kernel
Function (TriadFG-EKF).

Objective Function Based on the above equations, we can
define the following log-likelihood objective function O(θ) =
logPθ(Y |X, G)

O =

|Tr|∑

i

{
|fe|∑

j

αjFj(xij , yi) +
∑

c

∑

d

µdhd(YTrc)}

− logZ

, (12)

where Z is a normalization factor to guarantee that the result is
a valid probability; |Tr| denotes the number of candidate (open)
triads in the network; |fe| is the number of features defined for the
triads (more details for feature definition are given in Section 4.2);
xij is the jth feature value of the ith triad; c corresponds to a
correlation function; and Trc indicates a set of all related triads in
the correlation function.

Example To provide a concrete understanding of the proposed
model, we give a simple example of TriadFG in Figure 11. The
left part is the input network, where we have five users and four
kinds of following links among them. From the input network we
can derive six open triads – e.g., (v1, v2, v3) and (v1, v3, v4). In
the prediction task, we view each open triad as a candidate; thus
we have six candidates, which are illustrated as blue ellipses in
the right-hand model. All features defined over open triads are
denoted as such – i.e., f(v1, v2, v3). In addition, we also consider
social correlation. For example, the closure of (v1, v2, v3) may
imply a higher probability that (v1, v3, v4) will also be closed at
time t+ 1. Given this, we build a correlation function h(·) among
related triads. Based on all the considerations, we construct the
TriadFG (as shown in Figure 11).

4.1.4 Comparison of Different Methods
Now we intuitively compare the three methods in this paper. In
our model, we extract the feature functions from our observations.
The main differences among these three approaches lie mainly
in how we instantiate the structure feature and the probability
of generating attributes xi, given the label yi, say P (xi|yi).
For TriadFG-BF, we choose binary function for each feature.
For TriadFG-KF, we instantiate this probability P (xi|yi) within
kernel-density estimation; but for TriadFG-EKF, we instantiate the
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Triads
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3 4 5( )h y ,y ,y

1 2 3 1( )f v ,v ,v ,y
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3 4( )1v ,v ,v

1 3 5( )v ,v ,v
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Fig. 11. Graphical representation of the TriadFG model. There are five
users in the input network. Candidate open triads are illustrated as
blue ellipses in the bottom right. White circles indicate hidden variables
yi. f(v1, v2, v3) represents the attribute factor function, and h(.), the
correlation function among triads.

feature function fj(xij , yi) with kernel-density estimation. The
kernel-density estimation for structure information is shown in
Figure 10. From the figure, we can see that kernel-density estimate
yields the green curve, so that for every open triad, we have one
estimation value, which gives more information for the estimation
task, resulting in better prediction performance. We summarize the
main differences in the Table 3.

4.2 Feature Definitions

We now depict how we define the factor functions in our
models. According to the observations in the previous section,
we define 11 features of five categories: Network Structure(N),
Demographics(D), Verified Status(V), Social Information(S), and
Social Interaction(I).

Network Structure According to Figure 4(b), we notice open
triads 2, 4, 5 are more likely to be closed than others, so for
TriadFG-BF, we define one feature: whether the open triad is of
open triad 2, 4, or 5. For TriadFG-KF and TriadFG-EKF, we use
a kernel-density estimate to get the feature value.

Demographics Here we consider location and gender features.
For location, we define one feature: whether the three users come
from the same place; for gender, we define two features: whether
all three users in one triad are female or male.

Verified Status We define two features for verified status: whether
the connecting user verified her status or not; other users have the
opposite status (cases 010 and 101).

Social Information We consider popularity, structural hole
spanning, and gregariousness here. For popularity, we define one
feature: whether all the three users in the triad are popular users.
For structural hole spanning, we define one feature: whether user
A and user B are structural hole spanners. For gregariousness,
we define two features: whether all three users are gregarious
users, and whether the three users follow the pattern: A and C
are gregarious users while user B isn’t.

Social Interaction For the problem of triadic closure prediction
with interaction information, we define one feature for social
interaction: whether a retweeting action happens among the three
users in one triad.
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4.3 Learning and Prediction
We then want to estimate a parameter configuration of the TriadFG
model θ = ({αj}, {µd}) that maximizes the log-likelihood
objective function, θ = arg maxO(θ). We employ a gradient
descent method for model learning. The basic idea is that each
parameter – e.g., µd – is assigned an initial value, and then the
gradient of each µd with regard to the objective function is derived.
Finally, the parameter with learning rate η is updated. The details
of the learning algorithm can be found in [27].

With the estimated parameters θ, we can predict the la-
bels of unknown variables yi =? by finding a label config-
uration that maximizes the objective function – i.e., Y ? =
arg maxO(Y |X,G, θ). To do this, we use the learned model
to calculate the marginal distribution of each open triad with
unknown variable P (yi|xi, G), and assign each open triad a label
of the maximal probability.

5 EXPERIMENTS AND DISCUSSIONS

5.1 Experiment Setup
We use the dataset described in Section 3 in our experiments.
To quantitatively evaluate the effectiveness of the proposed model
and the methods for comparison, we divide the network into seven
timestamp periods, by viewing every four days as a timestamp
period. For each timestamp period, we divide the network into
two subsets by using the first two-thirds of the data as a training
set and the rest as a test set. Our goal is to predict whether an open
triad will become closed in the test set.

Comparison Methods and Evaluation Measures We compare
the proposed three approaches with two alternative baselines.

SVM Uses the same attributes associated with each triad
as features to train a classification model, and then uses the
classification model to predict triadic closure in the test data.

Logistic Similar to the SVM method. The only difference is
that it uses a logistic regression model as the classification model.

TriadFG-BF Represents the proposed TriadFG model with
binary feature functions (Cf. § 4.1.1).

TriadFG-KF Represents the proposed TriadFG model with
kernel feature functions (Cf. § 4.1.2).

TriadFG-EKF Represents the proposed TriadFG model with
exponential kernel functions (Cf. § 4.1.3).

For SVM and Logistic, we use Weka [11]. All the TriadFG
models are implemented in C++, and all experiments are per-
formed on a PC running Windows 7 with an AMD Opteron(TM)
Processor 6276(2.3GHz) and 4GB memory. We evaluate the
performance of different approaches in terms of accuracy, preci-
sion, recall, and F1-Measure.

5.2 Triadic Closure Prediction

Prediction Performance We now list the performance results
for different methods in Table 4. It can be seen that our pro-
posed TriadFG-BF outperforms the other two comparison methods
(SVM and Logistic), and TriadFG-EKF performs the best among
all the methods. In terms of F1-Measure, TriadFG-BF achieves
a +7.43% improvement over SVM, and +7.85% over Logistic.
TriadFG-KF achieves a +6.93% improvement over TriadFG-BF,
+14.88% over SVM, and +15.32% over Logistic. TriadFG-EKF
achieves a +1.24% improvement over TriadFG-KF, +8.26% over
TriadFG-BF, +16.31% over SVM, and +16.76% over Logistic.

TABLE 4
Triadic closure prediction performance

Algorithm Accuracy Precision Recall F1-score
Logistic 0.7394 0.7657 0.7393 0.7316

SVM 0.7422 0.7683 0.742 0.7344
TriadFG-BF 0.7523 0.6989 0.9068 0.7890
TriadFG-KF 0.8426 0.8102 0.8613 0.8482

TriadFG-EKF 0.8444 0.8360 0.9084 0.8564
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Fig. 12. Factor contribution analysis. TriadFG-S denotes ignoring social
information when we use TriadFG model, TriadFG-SD denotes ignoring
social information and demographics while TriadFG-SDV denotes fur-
ther ignoring verified status information.

Our proposed algorithm is much better than SVM and Logistic
in terms of F1-Measure. TriadFG-BF perform slightly better than
they do because it uses binary feature functions that do not capture
the similarities/correlations between different features. That is why
we propose TriadFG-KF and TriadFG-EKF, which incorporate
kernels to quantity the similarities. Meanwhile, the new proposed
methods also do better on recall, which is partly because TriadFG
can detect some cases by leveraging transitive correlation and
homophily correlation.

Factor Contribution Analysis For triadic closure prediction,
we examine the contribution of four different factor functions:
Network Structure(N), Demographics(D), Verified Status(V), and
Social Information(S). We first rank the individual factors by re-
spectively each factor from our model and evaluating the decrease
in prediction performance. Thus, a larger decrease means a higher
predictive power for the removed factor. We thus rank these factors
according to predictive power as follows: Network Structure(N)>
Verified Status(V)> Demographics(D)> Social Information(S).

We then remove them one by one in reverse order of their
prediction power. We denote TriadFG-S as removing social in-
formation and TriadFG-SD as removing demographics, finally
removing verified status, denoted as TriadFG-SDV. As shown in
Figure 12, we can observe a slight performance decrease when
ignoring social information and demographics, which means these
factors contribute significantly to predicting triadic closure.

Prediction Performance on Triads We now consider the predic-
tion performance for each of the triads shown in Table 5. We can
see that for triad 3, the prediction performance is much better than
others, while for triad 1, the performance is the worst. This may
be because triad 3, which corresponds to the case in which two
fans follow one popular user, can be trained with a large number
of features in our model, such as social information, which gives
better prediction results than for other kinds of triads. However,
the closure of triad 1, which has some transitive cases, can not be
easily predicted using our features, and shows worse prediction
performance than triad 3.
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TABLE 3
Comparison of different methods

TriadFG-BF TriadFG-KF TriadFG-EKF

Feature function for structure F1 =

{
1, for open triad 5;
0, for others.

F2 =
∑N
i=1

1
β
k(
x−xij
β

) F3 =
∑N
i=1

1
β
k(
x−xij
β

)

Instantiate function g1 = 1
Z1

exp{αjF1} g2 = 1
Z1
αjF2 g3 = 1

Z1
exp{αjF3}

TABLE 5
Triadic closure prediction performance of each open triads

Triads Accuracy Precision Recall F1-score
0 0.5479 0.5533 0.5478 0.5335
1 0.5320 0.5472 0.5322 0.4695
2 0.5894 0.6085 0.5895 0.5797
3 0.6420 0.7058 0.6420 0.6097
4 0.5988 0.6145 0.5990 0.5823
5 0.5551 0.5562 0.5552 0.5503
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Fig. 13. Convergence analysis of the learning algorithm.

Convergence Property We now conduct an experiment to see
the effect of the number of the loopy belief propagation iterations,
shown in Figure 13 (for TriadFG-KF and TriadFG-BF; TriadFG-
EKF has similar properties). We can see that on average, the
performance of the algorithm becomes stable after about 120
iterations, which suggests that the learning algorithm converges
well.

Computation Time We then conduct an experiment to see the
computation cost in terms of time, shown in Table 6. We can see
that Logistic Regression runs the fastest. For TriadFG, it converges
the slowest. This is because factor graph inference is relatively
complicated, so it takes more time to converge. However, its F1-
Measure is significantly better than others (shown in Table 4).

Effects of Different Kernel Functions Now we will see whether
kernel functions will play some role in triadic closure. Specifically,
we compare six different kernels: Gaussian, tophat, epanechnikov,
exponential, linear, and cosine. The kernel density estimate within
different kernel functions is shown in Figure 14. The prediction
performance within different kernel functions is shown in Table 7.
We can see from the table that all the kernel functions performs
almost the same, but the Gaussian kernel function performs
slightly better than the others in terms of F1-measure.

Effects of Training Sets Ratios Now we will see whether
the ratio of training sets plays some role in triadic closure.
Specifically, we compare five different training sets: 66%, 50%,
40%, 30%, and 20%. The prediction performance within different
training sets is shown in Table 8. We can see from the table that
TriadFG-KF is very sensitive to the ratio of training sets, while
other algorithms are insensitive to the ratio of training sets.

Prediction on Specific Users Now we will see prediction

TABLE 6
Computation Time

Algorithm Logistic SVM TriadFG
-BF -KF -EKF

Time 0.385 13.1075 12.302 10.356 11.044
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Fig. 14. Kernel density estimates within different kernel functions.

performance with different types of users. Specifically, we select
two types of users: verified users and popular users. The prediction
performance is shown in Table 9. We can see from the table that for
specific type of users, especially for popular users, the prediction
performance is much better than that for random ones. This may be
partly because for these specific users, we get enough features for
training, which is quite different from the random case in which
some feature functions may be sparse.

5.3 Triadic Closure Prediction With Interaction Informa-
tion

Prediction Performance Now we consider the triadic closure
prediction problem with interaction information. Here, we con-
sider retweeting behavior as interaction information.

Since TriadFG-EKF performs the best on problem 1, we use
TriadFG-EKF here to study this extended problem. The perfor-
mance of TriadFG-EKF and TriadFG-EKF-I (with interaction
information) is shown in Table 10. We can see that our pro-
posed TriadFG-EKF-I outperforms TriadFG-EKF. In terms of F1-
Measure, TriadFG-EKF-I achieves a +7.55% improvement over
TriadFG-EKF, which indicates that interaction information, such
as retweeting behavior, plays an important role. We will further
discuss how much it contributes to triadic closure prediction.

Factor Contribution Analysis In this section, we again examine
the contribution of five different factor functions, especially the
retweeting function: Network Structure (N), Demographics (D),
Verified Status (V), Social Information (S) and Interaction (I).
According to predictive power of each factor, we rank these factors
as follows: Interaction (I) > Network Structure (N)> Verified
Status (V)> Social Information (S)> Demographics (D). We then
remove them one by one in reverse order of their prediction
power. TriadFG-D denotes removing Demographics; TriadFG-SD
denotes removing Social Information from that set; TriadFG-SDV
signifies removing Verified Status from that; and TriadFG-SDVN
denotes removing Network Structure.
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TABLE 7
Triadic closure prediction performance within different kernel functions

Method Kernel Accuracy Precision Recall F1-score
Gaussian 0.8426 0.8102 0.8613 0.8482

TriadFG Tophat 0.8370 0.8308 0.8548 0.8420
-KF Epanechnikov 0.8418 0.8343 0.8594 0.8463

Exponential 0.8430 0.8386 0.8551 0.8464
Linear 0.8370 0.8311 0.8537 0.8418
Cosine 0.8384 0.8307 0.8594 0.8446

Gaussian 0.8444 0.8360 0.9084 0.8564
TriadFG Tophat 0.8307 0.7894 0.9108 0.8457

-EKF Epanechnikov 0.8385 0.7994 0.9106 0.8513
Exponential 0.8450 0.8103 0.9063 0.8556

Linear 0.8342 0.7961 0.9070 0.8478
Cosine 0.8348 0.7975 0.9078 0.8490

TABLE 8
Triadic closure prediction performance within different training sets

Method 66% 50% 40% 30% 20%
Logistic 0.7316 0.733 0.734 0.738 0.708

SVM 0.7344 0.736 0.736 0.740 0.740
TriadFG-BF 0.7890 0.7819 0.7799 0.7778 0.7831
TriadFG-KF 0.8482 0.6014 0.2568 0.0466 0.0067

TriadFG-EKF 0.8564 0.8501 0.8482 0.8505 0.8515

As shown in Figure 15, we observe a slight performance de-
crease when ignoring Social Information and Demographics, but
a large performance decrease when ignoring Network Structure –
which means Network Structure information also contributes a lot
to the prediction of triadic closure. However, Interaction informa-
tion has the strongest predictive power here, which indicates that
Interaction information is a good feature in this microblogging
service, and plays an important role in the establishment of
friendship.

5.4 Effects of Dataset Size

In order to verify whether dataset size would influence our
observations, we sample several subsets. In the subset, we random
select 5 users, and then their followees and followees’ followees,
from our original dataset. We repeat this process 3 times and get
3 sample subsets.

We repeat our observations as in Section 3.2, and find most
observations are consistent, as the observations of the subset are
similar to those of the full dataset. For example, for location
distribution, the distribution of three samples is shown in Fig-
ure 16(a). When compared with Figure 3(a), we can see that the
three observations have almost the same pattern. We also check
the other observations and find nearly the same characteristics.
Due to space limitations, we omitted the detailed statistics here.
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Fig. 15. Factor contribution analysis. TriadFG-D denotes ignoring Demo-
graphics when we use the TriadFG model; TriadFG-SD denotes ignoring
Social Information and Demographics; while TriadFG-SDV denotes also
ignoring Verified Status information; and TriadFG-SDVN denotes further
ignoring Network sSructure information.

TABLE 9
Triadic closure prediction performance on specific users

User Type Methods Accuracy Precision Recall F1-score
SVM 0.854 0.861 0.854 0.852

Verified Logistic 0.855 0.861 0.855 0.853
Users TriadFG-BF 0.8355 0.788 0.9416 0.858

TriadFG-KF 0.7655 0.7021 0.9655 0.813
TriadFG-EKF 0.8815 0.8556 0.933 0.8926

SVM 0.993 0.993 0.993 0.993
Popular Logistic 0.993 0.993 0.993 0.993
Users TriadFG-BF 0.9979 0.9958 1.0000 0.9979

TriadFG-KF 0.9967 0.9935 1.0000 0.9967
TriadFG-EKF 0.9981 0.9962 1.0000 0.9981

TABLE 10
Triadic Closure Prediction Performance with Interaction Information

Accuracy Precision Recall F1-score
TriadFG-EKF 0.6805 0.6834 0.7075 0.6953

TriadFG-EKF-I 0.7276 0.7149 0.7838 0.7478
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(b) crawl bias correlation
Fig. 16. Location correlation for samples. X-axis: Samples. Y-axis: prob-
ability that triadic closure occurs. Expressions attached to each bar indi-
cate whether certain users are from the same city – e.g., AB represents
only A, B are in the same city. NULL means users in a triad all come
from different cities.

5.5 Effects of Crawling Bias

It has been empirically observed that incomplete BFS is biased
toward high-degree nodes, which may affect the measurements.
In this section, we will check whether this crawling method will
affect our observations. We select weights of random samples
from the crawled users, where selection probability is inversely
correlated to their in-degree.

We select three random samples, and repeat our observations
as in Section 3.2. We find most observations are consistent, as
the observations of the subset are similar to those of our crawled
dataset. For example, for location distribution, the distribution of
three samples is shown in Figure 16(b). Comparing them with
Figure 3(a), we can see that the three observations have almost the
same pattern.

Although distributions are slightly different for some corre-
lations, they do not affect our prediction performance, since our
TriadFG-model leverages the feature functions that qualify the
similarities between features to do prediction. In this sense, we
can draw obvious features from our observations, regardless of
observations of crawled samples or bias-corrected sub-samples,
since there are clear differences between them.

5.6 Effects of Timestamp

In our sampled data, the network is dynamic. On average, there
are 6,203,842,388 new open triads every day. If we consider each
new tie as a new event, the computation cost will increase beyond
our computation capability, so we use a time window – every
four days as a timestamp period. In order to see the effects of
timestamp periods, here we choose one day as a timestamp period
to predict triadic closure. The performance is shown in Table 11,
which shows that the prediction performance is much worse than
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TABLE 11
Triadic closure prediction performance with one-day-timestamp

Algorithm Accuracy Precision Recall F1-score
Logistic 0.730 0.761 0.730 0.722

SVM 0.732 0.770 0.732 0.723
TriadFG-BF 0.6932 0.6275 0.9537 0.7570
TriadFG-KF 0.5781 0.5430 0.9959 0.7028

TriadFG-EKF 0.7630 0.7029 0.9127 0.7942

when we use four days as a timestamp period. One possible
explanation could be that when the time window is smaller, the
correlation factors of each triad are less independent, thus making
the prediction performance worse.

5.7 Comparison with Twitter Observations
We compare the results with a similar study about popularity
within triads on Twitter [14] and find:

• Both results demonstrate the phenomenon of “the rich get
richer” – i.e., P (1XX) > P (0XX), which validates the
mechanism of preferential attachment in both networks
(Twitter and Weibo).

• In Twitter, popular users play an important role in forming
closed triads – i.e., P (X1X) is about three times as
high as P (X0X), while in Weibo, the result is opposite.
Possibly it is because Weibo provides more features to
help users interact with each other, and ordinary users
have more chances to connect with others. In China,
Weibo is a combination of Twitter and Facebook, and
integrates the features of both. For example, for the
#IceBucketChallenge, between July 29 and August 13,
about 135 thousand tweets were posted in Twitter6; how-
ever, in Weibo, more than 1.55 million tweets were posted
between July 29 and August 207.

• The probability P (111) for popular users in Weibo is
much higher than that in Twitter. In Twitter, P (111) is
twice as high as P (000); while in Weibo, P (111) is eight
times as high, which implies that popular users in China
have more closeness connections.

6 RELATED WORK

In terms of related work, we identify two areas: triadic closure and
link prediction in social networks. We will discuss them in detail
as follows:

Triadic Closure Study There are many studies on triadic closure
study. They mainly focus on the following three aspects:

1) Network evolution/formation. One of the fundamental is-
sues of social networks is to reveal the possible generic laws
governing the formation/evolution of networks. Since it is un-
realistic to get global information for preferential attachment
processes to establish new social ties, the triadic closure principle,
whose assumption is that a node’s linking dynamics only rely
on its neighbors or next neighbors is relevant to social network
formation. Klimek et al. [17] and Li et al. [23] both declared that
triadic closure could be identified as one of the fundamental dy-
namic principles in social multiplex network formation/evolution.
[6], [7], [20] also provided some triadic-closure-based network
generation models.

6. http://www.bostonglobe.com/business/2014/08/15/facebook-million-
icebucketchallenge-videos-posted/ 24D8bnxFlrMce5BRTixAEM/story.html

7. http://media.people.com.cn/n/2014/0821/c120837-25512105.html

2) Network structure. Milo et al. [28] [29] defined recurring
significant patterns of interconnections as ”network motifs” and
emphasized the importance of these patterns, which included 6
open triads and 7 closed triads, which we use in this paper.
Romero et al. [33] studied the problem of triadic closure and
developed a methodology based on preferential attachment for
studying the directed triadic closure process. Zhang et al. [43]
use triadic structures to study link diffusion process.

3) Triadic closure formation. Lou et al. [27] investigated how
a reciprocal link is developed from a parasocial relationship, and
how the relationships further develop into triadic closure, in a
Twitter dataset. Zignani et al. [46] studied the triadic closure
problem on undirected networks like Facebook and Renren.

However, none of these works systematically studied triadic
closure formation and prediction in real large-scale directed net-
works.

Link Prediction Our work is also related to the link prediction
problem, which is one of the core tasks in social networks.
Existing work on link prediction can be broadly grouped into two
categories, based on the learning methods employed: unsupervised
link prediction and supervised link prediction. Unsupervised link
prediction usually assigns scores to potential links based on
intuition – the more similar the pair of users are, the more
likely they are to be linked. Various similarity measures of users
are considered, such as preferential attachment [30], and the
Katz measure [16]. [25] presented a flow-based method for link
prediction. A survey of unsupervised link prediction research can
be found in [24].

There are also a number of works that employ supervised
approaches to predict links in social networks, such as [2], [21],
[25]. [2] proposed a supervised random walk algorithm to estimate
the strength of social links. [21] employed a logistic regression
model to predict positive and negative links in online social
networks.

However, unlike link prediction studies, we focus only on
triadic closure, which means we only focus on the last “link”
that constitutes the closed triad. Moreover, our model is dynamic
and can learn from the evolution of the Weibo network. We also
combine social theories into the semi-supervised learning model.

7 CONCLUSION

In this paper, we study an important phenomenon of triadic
closure formation in dynamic social networks. Employing a large
microblogging network (Weibo) as the source in our study, we
formally define the problem and systematically study it. We
propose a probabilistic factor model for modeling and predicting
whether three persons in a social network will finally form a
triad. Our experimental results on Weibo show that the proposed
model can more effectively predict triadic closure than alternative
methods, in terms of F1 measurement.
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