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VEGAS: Visual influEnce GrAph Summarization
on Citation Networks
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Abstract—Visually analyzing citation networks poses challenges to many fields of the data mining research. How can we summarize a
large citation graph according to the user’s interest? In particular, how can we illustrate the impact of a highly influential paper through
the summarization? Can we maintain the sensory node-link graph structure in the representation while revealing the flow-based
influence patterns and preserving a fine readability? The state-of-the-art influence maximization algorithms can detect the most
influential node in a citation network, but fail to summarize a graph structure to account for this influence. On the other hand, existing
graph summarization methods fold large graphs into clustered views, but can not reveal the hidden influence patterns underneath the
citation network. In this paper, we first formally define the Influence Graph Summarization problem on citation networks. Second, we
propose a matrix decomposition based algorithm pipeline to solve the IGS problem. Our method can not only highlight the flow-based
influence patterns, but also easily extend to support the rich attribute information. A prototype system called VEGAS implementing this
pipeline is also developed. Third, we present a theoretical analysis on our main algorithm, which is equivalent to the kernel k-mean
clustering. It can be proved that the matrix decomposition based algorithm can approximate the objective of the proposed IGS problem.
Last, we conduct comprehensive experiments with real-world citation networks to compare the proposed algorithm with classical graph
summarization methods. Evaluation results demonstrate that our method significantly outperforms the previous ones in optimizing both
the quantitative IGS objective and the quality of the visual summarizations.

Index Terms—influence summarization, visualization, citation network.

F

1 INTRODUCTION

C ITATION networks are indispensable in understanding
modern research activities and have become a fun-

damental resource for the data mining field to analyze
the interplay of researchers, venues and publications (e.g.,
their communities, research topics and trends, etc.). How
to make sense of an individual’s influence in the context
of the citation network? Specially, how to summarize the
underlying citation graph to represent this influence? This
is referred to as the Influence Graph Summarization (IGS)
problem we aim to address in this paper. Here an individual
in the citation network can be a scientific paper, an author or
a venue (conference, journal, etc.), also known as the source
node in the citation graph. The term of citation graph is used
interchangeably with the citation network, both represent
a set of individuals (nodes) connected by directed citation
links (edges).

While there have been quite a few measures to quantify
an individual’s influence in research communities, notably
the total number of citations and the H-index [1], the graph-
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based summarization can deliver new insights to better
understand the scientific advancements and evolutions. For
example, how does a highly-cited paper impact the research
community to raise several topic threads; and consequen-
tially, how do these topics interact with each other and lead
to a new multi-disciplinary research direction? How does
a senior researcher contribute to multiple research areas by
influencing others? All these questions point to the visual
summarization in a similar form to Figure 1 which can
characterize the influence flows from the source node over
the entire citation graph.

Although closely related, the IGS problem on citation
networks bears some subtle differences from the existing
work in graph mining and visualization. We briefly review
three most relevant topics. First (graph summarization), many
interesting work has been done in the context of graph
clustering and aggregation. These works typically look for
coherent regions in the graph by optimizing a pre-defined
loss function (e.g., minimizing the inter-cluster connections
[2], maximizing the intra-cluster attribute homogeneity [3],
minimizing the total description cost [4], etc). Despite their
own success, most, if not all, of these graph summarization
algorithms tend to group the graph nodes with a direct
linkage together, but fails to reveal the influence flows
important for the IGS problem. Second (social graph simpli-
fication), in the scenario of information diffusion over social
networks such as Twitter and Facebook, researchers have
studied the problem of extracting the most important social
paths based on information propagation logs to optimize
applications such as viral marketing [5]. This is significantly
different from the IGS problem considered here. On citation
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Fig. 1. The visual influence graph summarization on [Faloutsos SIGCOMM’1999] (#Cluster = 20). Paper citation relationship and venue information
are integrated. Node label gives the cluster size and summary on paper title+abstract. Link thickness indicates the normalized flow rate.

networks, there is hardly an underlying social network (at
least difficult to acquire or predict), over which the influence
propagates. A new researcher can cite seminal papers in
his field without connecting to the authors in person. In
this sense, IGS is more an “unsupervised” summarization
problem. Third (influence maximization), in the past decades,
many elegant algorithms have been proposed for the so-
called influence maximization problem [6]. While effective
in identifying who are the most influential in the network,
the question of what makes them influential largely remains
open. We outline three design objectives that differentiate
the IGS problem from existing works.

• D1. Flow Rate Maximization. The primary goal of IGS is
to summarize the influence flows from a source node
in citation graphs. For the effective visualization, it is
defined as the objective of maximizing the overall flow
rate given the number of flows to display. The consis-
tency within the generated node cluster is not defined
by the dense internal connection any more, but rather
by the high topological similarity of all the nodes in
the cluster. Under this objective, more edges will be
cut across clusters than traditional methods, so as to
highlight the inter-cluster flows that outline the influence
patterns.

• D2. Localized Summarization. While a full citation graph
can span millions of nodes and prohibit any readable
visual summarization, in the IGS objective, we switch
to summarize the influence of a single source node. This
localized summarization problem is at least as important
as the global summarization. Consider a user navigating
the citation graph of computer science papers, after an
overview of the entire field, most likely she will drill
down to a few key papers and examine their influences
separately.

• D3. Rich Information. The citation graphs have rich node
attributes (e.g., the venue, research topic of a paper)
and often evolve over time (e.g., the publication date).

Incorporating these information to optimize the summa-
rization result poses additional challenges to our work.
We should note that the definition of flows here is

quite different from the flow network in graph theory
[7], which physically mimics a source-to-destination trans-
portation network. Our flow denotes the primitive form
of connections from one group of nodes to another group.
On citation graphs, the influence flows are reversed citation
link groups. Figure 1 gives a visual summarization over the
influence graph of the famous power-law paper presented
at SIGCOMM’99. With this summarization, we can track the
evolution of research topics, beyond simply detecting the
hot topics through traditional graph clusterings.

To solve the IGS problem, we propose an algorithm
pipeline, and over which, build a prototype system called
VEGAS, to generate flow-based, localized Visual influEnce
GrAph Summarization over large-scale citation networks.
The algorithm pipeline is flexible and admits many ex-
isting graph mining algorithms for each of its building
blocks. Meanwhile, the theoretical analysis shows that our
main algorithm, which is equivalent to the kernel k-mean
clustering, can approximate the IGS objective on the flow
rate maximization with a carefully designed kernel matrix.
Finally, we conduct comprehensive empirical evaluations to
validate the effectiveness of the proposed algorithm. The
main contributions of this paper can be summarized as:
• Problem Definition, to fulfill the design objectives for the

IGS problem (Section 2);
• An Algorithm Pipeline, to solve the IGS problem (Section

3), and the prototype VEGAS system implementing this
pipeline (Section 5, Section 7);

• Theoretical Analysis, to reveal the intrinsic relationship
between the IGS problem and the matrix decomposition
based main algorithm (Section 4);

• Comprehensive Evaluation, to demonstrate the effective-
ness and efficiency of the proposed algorithm (Section
6).
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TABLE 1
Notations.

SYMBOL DESCRIPTION
I citation influence graph as input
f source node selected by user or algorithm
G maximal influence graph of f in I
vi, N(i), n nodes, neighbor set and # of nodes in G
A, aij topology adjacency matrix of G and its entries
AD , aDij node attribute adjacency matrix of G and its entries
S graph summarization of G
πc, |πc|, k clusters, cluster size and # of clusters in S
ξs, r(ξs), l flows, flow rate and # of flows in S
πc(s), πd(s) the source and target cluster of flow ξs

2 PROBLEM DEFINITION

Table 1 lists the notations used throughout the problem
definition. There are two input data in our problem: the in-
fluence graph I , which is defined by the underlying citation
graph after reversing all the citation links; and the source
node f , which can be the paper/author/venue selected by
the user or detected by existing influence maximization al-
gorithms. To summarize the influence of f on I , it is enough
to consider a maximal influence graph G, which is the
induced subgraph of I containing all the nodes reachable
from f in I (including f ). The maximality here states that
G includes all the nodes directly or indirectly influenced
by the source node f . Let G have n nodes, denoted by
{vi}ni=1. G can be represented by its topology adjacency
matrix A = {aij}ni,j=1 in which aij denotes the link weight,
aij > 0 indicates there is a nontrivial link from vi to vj .

2.1 Flow Rate Maximization
Before defining the IGS problem, we first introduce two
important terminologies.

Definition 1: The graph summarization of G, denoted
by S, is a super node-link graph of G. The node set of
S contains k disjoint and exhaustive node clusters of G,
denoted by {πc}kc=1 where |πc| indicates the number of
nodes in the cluster πc. The link set of S contains l flows
between the nodes in S (i.e., clusters in G), denoted by
{ξs}ls=1. Each flow ξs represents the collection of all the
links in G from nodes in cluster πc(s) to nodes in cluster
πd(s), where c(s) and d(s) denote the source and destination
cluster index of ξs.

Note that S can be a partial summarization of G, with
fewer flows (l < k2) than a complete summarization
(l = k2). This is desirable in generating readable influence
graph visualizations where a huge number of flows can
cause unpleasant visual clutters due to the edge crossing.

Definition 2: The normalized flow rate of ξs is defined
by

r(ξs) =

∑
vi∈πc(s),vj∈πd(s) aij√
|πc(s)||πd(s)|

(1)

In the remaining paper, we will refer to r(·) as the flow rate
for brevity.

Problem 1: The primitive IGS problem is defined as
finding a graph summarization S of the maximal influence
graphG, with k clusters and l flows, to maximize a objective
function equaling the sum of flow rates:

max

l∑
s=1

r(ξs) (2)

π1 π3π2

π1 π2 π3

π1 π3π2

π1 π2 π3

0.8

0.45

0.8

0.45 1.15 1.15

0.66

Fig. 2. The difference between the IGS objective and the traditional
graph clustering objective. Each dash box in the original graph G be-
comes a square node (i.e., cluster) in the summarization S. (a) the
graph clustering leading to large intra-cluster flows; (b) the influence
graph summarization exposing both large intra- and inter-cluster flows.
In S, the flow rate is labeled above each link and is mapped to the link
thickness visually. We assume a uniform link weight of one in the original
graph G.

Note that the flow rate defined in equation (1) can not be
unnormalized, otherwise the IGS objective in equation (2)
will be constant in a complete summarization. The rationale
of the equation (2) can be explained in comparison to the
objective function of the traditional ratio association graph
clustering method, as shown below.

max

k∑
c=1

∑
i,j∈πc

aij
|πc|

=

k∑
c=1

r(ξc) (3)

Without loss of generality, ξc denotes the intra-cluster flow
from πc to itself, listed as the first k flows by index.

It is clear that the IGS objective in equation (2) is to max-
imize the sum of flow rates in l largest intra- or inter-cluster
flows, corresponding to l densest blocks in the adjacency
matrix. On the other hand, the ratio association objective
maximizes the sum of flow rates in all the k intra-cluster
flows, referring to k diagonal matrix blocks. In other words,
the IGS objective is designed to detect a node clustering
that maximizes the rate of all the l visible flows in the
summarization which fits well the goal to reveal the flow-
based influence patterns on the citation graph, while the
traditional graph clustering is designed to detect a cluster-
ing with the densest internal connections. An illustrative
example is given in Figure 2.

Through experiments on the primitive IGS objective, we
find that in most cases, it can achieve the desired flow
patterns through the summarization. However, in quite a
few cases, there appears a redundant graph structure near
the source node in the summarization, which is called the
fragmented flows. As shown in Figure 3(a) on a small
citation graph, two single-node clusters π2 and π3 have
the same topological position in the graph, but they are
not grouped together in the summarization. This effect can
be exaggerated in larger graphs where most of the clusters
by the primitive IGS are these single-node clusters in one-
hop to the source node. We propose a simple yet effective
improvement to the primitive IGS objective by applying a
square function on each flow rate.
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Fig. 3. The influence graph leading to fragmented flows near the source
node in the summarization (k = 5, l = 4): (a) By the primitive IGS objec-
tive, the summarization has two identically-positioned clusters (π2, π3),
the flow rate by equation (1) is labeled in red, favoring the primitive IGS
summarization by a sum of 3.89 > 3.70; (b) Applying the squared IGS
objective, the two identical clusters will be merged and a finer-grained
structure of the influence graph is revealed. The squared flow rate by
equation (4) is labeled in blue parentheses, favoring the squared IGS
summarization by a sum of 3.83 > 3.80. (best viewed in color)

Problem 2: The squared IGS problem is defined as
finding a graph summarization S of the maximal influence
graph G, with k clusters and l flows, to maximize the
objective function:

max

l∑
s=1

r(ξs)
2 (4)

From the perspective of highlighting influence flows, the
squared IGS objective is consistent with the primitive IGS.
Importantly, no extra gain in the objective function is ob-
tained by fragmenting these one-hop nodes apart, as il-
lustrated in Figure 3. Moreover, the squared IGS objective
favors large flows more than the primitive IGS objective. In
this sense, it is better for the influence graph visualization
scenario which has a tightly bounded flow number.

2.2 Incorporating Node Attributes
In the citation network, the network node often carries some
additional information, such as the venue and publication
date of a scientific paper, the research topic of an author. This
information, beyond the network topology, can be critical
in many scenarios. For example, the flow of information
among papers in the same venue or in the adjacent years can
be seen as more consistent when we summarize the internal
evolution of certain research field. In contrast, to summarize
the interdisciplinary advancement, we can prioritize the
flows among papers/authors on different research topics.
To serve this need, we propose a variant of the IGS problem
by extending the flow rate definition with node attributes.

r(ξs) =

∑
vi∈πc(s),vj∈πd(s) aija

D
ij√

|πc(s)||πd(s)|
(5)

where aDij ∈ [0, 1] is the entry in the node attribute adjacency
matrix of G, denoted by AD . AD defines the pairwise simi-
larity between the nodes in G according to their attributes.

The other part of the problem definition holds unchanged
from Section 2.1.

3 ALGORITHM

3.1 End-to-End Pipeline
To solve the IGS problem, we propose an end-to-end algo-
rithm pipeline, which decomposes the problem into several
building blocks, as illustrated in Figure 4. Initially, the max-
imal influence graph G is computed from the input graph
I by a breadth-first or depth-first search starting from the
source node f . Over the maximal influence graph G, a few
processing components work in parallel to generate several
matrices from the graph: the topology similarity matrixMG,
the optional node attribute adjacency matrix AD and the
generalized similarity matrix MD . The core of the algorithm
pipeline is the decomposition of the similarity matrices to
generate k node clusters for the summarization. We care-
fully design the topology similarity matrix to ensure that
the graph summarization approximates the flow rate max-
imization objective. The optional node attribute adjacency
matrices can be incorporated to ensure coherence on node
attributes while still optimizing the proposed objective. The
requirement of the l flows in the summarization is handled
by the link pruning using either the ranking-based filtering
algorithm or the maximum spanning tree algorithm. The
proposed pipeline is flexible and admits many existing
graph mining algorithms for each of its building blocks. On
the other hand, by itself, none of these existing algorithms
is sufficient to solve the IGS problem.

3.2 Node Summarization by Topology Matrices
Node summarization is the core building block of the al-
gorithm pipeline. First, we compute the topology similarity
matrix MG of the maximal influence graph G by:

MG =
AAT +ATA

2
(6)

where A is the adjacency matrix of G. In the context of the
citation network, the entry in the MG for the similarity of
two nodes indicates their number of commonly cited and
commonly citing nodes (i.e., neighboring nodes in the cita-
tion graph). Therefore, we name the main algorithm for the
node summarization as the bidirectional CommonNeighbor.
Meanwhile, two variants of the algorithm are supported,
the forward CommonNeighbor algorithm by MG = AAT

which only considers the outgoing edges of each node, and
the backward CommonNeighbor algorithm by MG = ATA
which only considers the incoming edges of each node. The
bidirectional CommonNeighbor is also referred to as the
forward+backword CommonNeighbor.

In the second stage, we propose a matrix decomposition
based solution to generate k node clusters from the simi-
larity matrix MG. The decomposition employs a Symmetric
version of the Nonnegative Matrix Factorization (SymNMF
[8]) which optimizes:

min
H≥0
||MG −HHT ||2F (7)

where || · ||F denotes the Frobenius norm of the matrix. H =
{hij} is a n by k matrix indicating the cluster membership
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1. Pick source node f
2. Rooted search on I from f

1. Specify k,l (# of clusters/flows)
2. Compute node summarization by matrix    

decomposition
3. Post-process (link pruning, etc.)

Influence
Graph I

f
π1 π2 π3
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Summarization 
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Influence 
Graph G
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1. Compute topology similarity matrix MG

2. Node attribute adjacency matrix AD

3. Generalized similarity matrix MD 

considering node attributes

f

Similarity 
Matrix 

MG(MD)

Fig. 4. The algorithm pipeline to solve the IGS problem.

assignment of nodes in G: vi will be clustered into πc if hic
is the largest entry in the ith row of H .

The rationality of our algorithm in optimizing the IGS
objective and the details of the matrix decomposition will
be discussed in Section 4 and 5, respectively.

3.3 Generalizations

Our algorithm can incorporate node attributes in generating
the summarization. To optimize the IGS objective under the
attributed definition of equation (5), we first compose the
node attribute adjacency matrix AD . Then the generalized
similarity matrix MD which considers the node attribute
information is computed by

MD =
(A�AD)(A�AD)T + (A�AD)T (A�AD)

2
(8)

where � indicates the Hadamard (by element) product of
matrices. The corresponding SymNMF objective becomes

min
H≥0
||MD −HHT ||2F (9)

The construction of the node attribute adjacency matrix
AD can be customized by users. Here we give typical
settings for two common scenarios. In the first scenario,
denote the node attribute selected for consistency as D, each
node vi has a nominal value D(vi) on this attribute. For
example, each scientific paper has a venue tag indicating
the conference/journal in which the paper publishes. Then
the entry of the node attribute adjacency matrix AD is
computed by

aDij =

{
1, D(vi) = D(vj)
λ, D(vi) 6= D(vj)

(10)

where λ ∈ [0, 1) controls the degree of penalty for inconsis-
tent node attribute values.

In the second scenario, we consider the node attribute D
that has an interval value D(vi) on each node. For example,
each paper has a publication year. The node attribute ad-
jacency matrix is defined by the difference on the attribute
values:

aDij = β−|D(vi)−D(vj)| (11)

where β > 1 controls the rate of the similarity decay.

4 EQUIVALENCE ANALYSIS

In this section, we present a theoretical analysis, to explain
the rationality behind our matrix decomposition based al-
gorithm. We start with deriving an approximate objective
function of the IGS problem. Then we show that such an
objective is equivalent to the kernel k-mean clustering by
choosing an appropriate kernel matrix. Finally, the kernel
k-mean clustering can be solved by SymNMF.

4.1 Approximation of IGS problem

Consider the objective function in equation (4), the opti-
mization requires maximizing over two types of variables:
{πc}kc=1, the node cluster membership assignment; and
{ξs}ls=1, the selected large flows. The simultaneous opti-
mization of these two classes of variables is hard due to the
non-linear and combinatorial nature of the problem. Here
we consider a two-step approximation that first maximizes
the sum of all the flows over the node cluster assignment,
then maximizes the sum of the top l flows given the cluster
assignment. This is feasible with an appropriate l (e.g.,
l = 2k), because the top l flows contribute the most part
of the overall flow rate after applying the square function,
as shown in Section 6. Formally, the approximate objective
function becomes:

max

k2∑
s=1

r(ξs)
2 =

k∑
c,d=1

(
∑
i∈πc,j∈πd aij)

2

|πc||πd|
(12)

max

l∑
s=1

r(ξs)
2 given {πc}kc=1 (13)

The second part of the optimization can be solved by select-
ing l top flows with the largest flow rate.

4.2 Kernel K-Mean Clustering

According to [9], the kernel k-mean clustering (KM) is de-
fined as follows. Given n data vectors {xi}ni=1 with a kernel
function φ(xi), the KM method groups the data vectors into
k non-overlapping clusters {πc}kc=1 based on the objective
function

min

k∑
c=1

∑
i∈πc

||φ(xi)−mc||2 where mc =

∑
i∈πc φ(xi)

|πc|
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Expand ||φ(xi)−mc||2 into

φ(xi) · φ(xi)−
2
∑
j∈πc φ(xi) · φ(xj)

|πc|
+

∑
j,l∈πc φ(xj) · φ(xl)

|πc|2

Because
k∑
c=1

∑
i∈πc

∑
j∈πc φ(xi) · φ(xj)

|πc|
=

k∑
c=1

∑
i∈πc

∑
j,l∈πc φ(xj) · φ(xl)

|πc|2

The objective function of KM clustering can be written as

min

k∑
c=1

∑
i∈πc

[φ(xi) · φ(xi)−
∑
j∈πc φ(xi) · φ(xj)

|πc|
]

As
∑k
c=1

∑
i∈πc φ(xi) · φ(xi) is constant, it is equivalent to

max

k∑
c=1

∑
i,j∈πc

φ(xi) · φ(xj)
|πc|

(14)

Introduce the heuristics of the number of bidirectional com-
mon neighbors as the similarity measure, we can compute a
topology similarity matrix by

K =
AAT +ATA

2
where kij =

n∑
t=1

aitajt + atiatj
2

If we use K as the kernel matrix in the KM clustering and
substitute kij for φ(xi) · φ(xj), equation (14) becomes

max
∑k
c=1

1
|πc|

∑
i,j∈πc

∑n
t=1

aitajt+atiatj
2

=
∑k
c=1

∑n
t=1

∑
i,j∈πc

aitajt+atiatj
2|πc|

=
∑k
c=1

∑n
t=1

(
∑
i∈πc ait)

2+(
∑
i∈πc ati)

2

2|πc|

=
∑k
c=1

∑n
j=1

(
∑
i∈πc aij)

2+(
∑
i∈πc aji)

2

2|πc|

=
∑k
c,d=1

∑
j∈πd

(
∑
i∈πc aij)

2+(
∑
i∈πc aji)

2

2|πc| (15)

4.3 Equivalence
Let us compare the objective functions in equation (12) and
equation (15). They are in similar forms if we re-formulate
equation (12) into

k∑
c,d=1

∑
i∈πc,j∈πd

aij(

∑
p∈πc,q∈πd apq

|πc||πd|
) =

n∑
i,j=1

aijw
IGS
ij

where wIGSij =

∑
p∈πc,q∈πd apq

|πc||πd|
(i ∈ πc, j ∈ πd) (16)

and re-formulate equation (15) into

k∑
c,d=1

1

2|πc|
[
∑
j∈πd

∑
i∈πc

aij(
∑
p∈πc

apj) +
∑
j∈πd

∑
i∈πc

aji(
∑
q∈πc

ajq)]

=

n∑
i,j=1

aijw
KM
ij

where wKMij =

∑
p∈πc apj

2|πc|
+

∑
q∈πd aiq

2|πd|
(i ∈ πc, j ∈ πd)

(17)
Both IGS and KM objectives aim to maximize the weighted
sum of the graph adjacency matrix entries. In IGS, the

nj

d

nj

i
n

aij

d

caiji
n

c

Fig. 5. The weighting schema comparison in two objective functions: (a)
influence graph summarization using the entire block; (b) kernel k-mean
using the block’s column and row.

Algorithm 1: Link Pruning Algorithm.

Input : Initial summarization S0 ∼ {V,E}, # of flows
l, V = {πi}ki=1, E = {ξs}k

2

s=1, flow rate r(ξs)
Output: Final summarization S
RankFilter(S0):
begin

S ← S0;
sort E by r(E) in decreasing order;
for s← l + 1 to k2 do // pruning

remove E(s) from S;
for i← 1 to k do // link recovery

Ei ← subset of E having πi as destination;
sort Ei by r(Ei) in decreasing order;
if Ei(0) 6∈ S then

add Ei(0) to S;

end

weight of each entry is defined by the density of the
belonging matrix block (or flow). In KM, the weight is
defined by the average density of the column and row of the
belonging matrix block. This is illustrated in Figure 5. Note
that the heuristics of the CommonNeighbor-based k-mean
clustering is to put the graph nodes with similar in- and
out-neighbors together. The resulting matrix blocks after the
clustering tend to have uniform density distributions inside
each block. Therefore, the density of the cross-shape area
in Figure 5(b) is a good approximation of the density of
the shaded block area in Figure 5(a), which explains the
rationality of using the kernel k-mean clustering to the IGS
problem.

Furthermore, the kernel k-mean clustering is equivalent
to solving the trace maximization problem:

max
HTH=I,H≥0

Tr(HTKH)

where the kernel matrix K equals the topology similarity
matrix MG computed by the CommonNeighbor algorithm.
The trace maximization problem can then be solved by
SymNMF under spectral relaxations [8].

5 IMPLEMENTATION DETAILS

In this section, we provide additional implementation de-
tails. As shown in Figure 4, our pipeline involves four
kinds of algorithm-driven building blocks. The rooted graph



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

search follows the standard BFS/DFS implementation. Be-
low we describe details on the similarity matrix computa-
tion, node summarization by SymNMF and the link pruning
for post-processing of the summarization.

Similarity Matrix Computation. In Section 4, we have
shown that using the heuristics of common neighbors to
construct the similarity matrix can approximate the objec-
tive function of the IGS problem. This algorithm runs fast
even for very large graphs due to a complexity of O(md2)
where m is the number of links in G and d is the average
node degree. We have implemented all the three variants
of the algorithm and it is shown by the experiment result
in Section 6 that the bidirectional CommonNeighbor algo-
rithm is generally better than the one-directional forward or
backward CommonNeighbor algorithm.

Node Summarization by SymNMF. The node summa-
rization is done by applying SymNMF on the similarity
matrix MG(MD), and using the factorized matrix H for the
cluster membership assignment. In our implementation, we
apply the iterative SymNMF solver with the multiplicative
updating rule in [8] which guarantees convergence.

hij ← hij

(
1− β + β

(MGH)ij
(HHTH)ij

)
(18)

where hij denotes the entry of H in (i, j)’s cell, β is set to
0.5. The iteration stops when ||MG −HHT ||F < ε||MG||F
where ε = 10−7. The maximal number of iteration is 500.

With this iterative solver, the initialization of H is critical
to the final result. We introduce nonnegative eigenvalue de-
composition similar to the method in [10] to compute a good
initial factorization. Over this initialization, we compute the
cluster assignment of the source node f by its largest entry
in H , denoted by π(f). The other entries of H that are
related to the source node f and the cluster π(f) are cleared
to zero. Due to the nature of the multiplicative updating,
the cluster assignment of the source node is guaranteed to
be unchanged and isolated from the other nodes during the
iteration.

Link Pruning. The graph summarization by SymNMF
needs further post-processings to select l top flows for
the final summarization S. According to equation (13), the
top flows can be extracted after ranking by the flow rate.
The other flows are then filtered out. This is illustrated in
Algorithm 1. Notice that in the link recovery section of the
algorithm, we introduce a constraint to keep a connected
graph in the summarization. It is achieved by adding back
the largest flow going to each node cluster in the sum-
marization. An alternative choice is to use the maximum
spanning tree (MST) algorithm [11].

We implement the initial VEGAS system backend in
Java. The main computation routines are built on the Par-
allelColt package [12] to optimize for multi-threading and
sparse matrix operations. The speed of some core matrix
decompositions (e.g., Eigenvalue) are further improved by
invoking ARPACK (for sparse matrix) and LAPACK (for
dense matrix) implementation [13] through JNI invocations.

6 EVALUATION

In this section, we evaluate the main algorithm on the
node summarization by comparing with alternative graph

summarization methods. Nine algorithms are considered:
the first three are ours, using CommonNeighbor algorithms to
compute the similarity matrix (i.e. forward+backward, for-
ward, and backward settings) and then apply SymNMF for
the summarization; the fourth uses the SimRank algorithm
[14] to compute the similarity matrix for SymNMF; the next
four are classical graph clustering algorithms with Ratio
Association, Normalized Cut objectives [15], the agglomerative
Modularity-based graph clustering [16], and the Metis K-
way graph partition [17]; the last is Minimal Description
Length (MDL) based graph summarization [4]. Note that
Ratio Association and Normalized Cut are implemented
using their equivalent similarity matrix computation for
SymNMF [18]. Metis partition is implemented by the official
open source software package [19]. Modularity clustering is
executed agglomeratively until all clusters stop merging at
the top level or the number of clusters reaches k, the desired
number of clusters. For MDL, we implement the greedy
algorithm in [4]. The MDL algorithm can not specify the
number of clusters, in fact, it generates 4,937 clusters on one
medium-sized influence graph as shown in Figure 9(g). It is
known that increasing the number of clusters will raise the
overall flow rate, to ensure a fair comparison, we exclude
MDL from quantitative comparisons, but still present its
visual summarization results. Note that all the approaches
in comparison only differ in the graph summarization al-
gorithm, the pre-processing (i.e. generation of the maximal
influence graph) and the post-processing (e.g. link pruning)
steps are the same.

In the experiment, the parameters for the summariza-
tion, namely the number of clusters (k) and the number
of flows (l), are configured within a recommended range
from the user’s perspective. During the study with real
users, we find that most of them consider a graph view
with less than ten clusters to be less informative, while
a graph with more than 20 clusters to be too complex to
interpret. It also corresponds with the previous study result
[20] that the node-link graph like our design with larger
than 20 nodes will start to fall behind another representation
by the adjacency matrix, in most graph analysis tasks. On
the choice of the flow number, we set the lower bound to
the number of clusters (l = k). Below this number, the
summarization graph will be disconnected, even with the
link recovery mechanism, the important flow patterns can
be distorted. Meanwhile, the upper bound of the number of
flows is set to l = 2k, because it is shown in our result that
the largest 2k flows account for more than 99% flow rates in
average defined by equation (4). From user’s feedbacks, the
extra number of flows also introduces additional overhead
to understand the influence graph structure.

All the experiments are conducted on the same Linux
server with two 8-core 2.9GHz Intel Xeon E5-2690 CPU
and 384GB of memory. All the LAPACK and ARPACK libs
are compiled locally to provide machine-optimized perfor-
mance. The raw experiment data are paper citation graphs
collected from ArnetMiner [21]. The influence graphs are
obtained by reversing the citation links.

6.1 Flow Rate Maximization
We evaluate the performance of these summarization al-
gorithms in optimizing the numeric objectives defined in
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(a) k = 10, l = 10 (b) k = 10, l = 20

(c) k = 20, l = 20 (d) k = 40, l = 40

Fig. 6. The IGS objective on four sample graphs. The flow rate is summed from all the flows in the (k, l) summarization.

TABLE 2
The initial four citation graphs used in the experiment.

Source paper title Venue/Year Node Link
Manifold-ranking based im-
age retrieval

ACM Multi-
media 2004

598 895

Stochastic High-Level Petri
Nets and Applications

IEEE TC
1988

2509 5256

Mining Frequent Patterns
without Candidate Genera-
tion

SIGMOD
2000

10892 22301

On Power-law Relationships
of the Internet Topology

SIGCOMM
1999

33494 86398

Section 2. Initially, four papers from the ArnetMiner data set
are selected as the source node to generate maximal influ-
ence graphs, as listed in Table 2. These maximal influence
graphs are summarized by each of the above algorithms.
The sum of the squared flow rate on each summarization,
which is the IGS objective defined in equation (4), is com-
puted for comparison. Figure 6(a)∼(d) present the result
of eight summarization algorithms (excluding MDL) under
four carefully selected (k, l) settings.

The first group of results in Figure 6(a) compare on a
minimal graph summarization (k = 10, l = 10). These
results indicate that among three CommonNeighbor algo-
rithms, the bidirectional setting almost always achieves the
best performance in maximizing the IGS objective (at least
> 100% gain 1), except on the largest graph (#Node=33,494),

1. Percentage of performance gain (drop) by
new number−original number

original number
× 100%, the same below.

the backward CommonNeighbor obtains a tiny advantage
(1%). Further, comparing the bidirectional CommonNeigh-
bor to traditional graph summarization methods, Common-
Neighbor achieves much better performance than Ratio
Association, Normalized Cut and Metis (at least > 20%,
in average > 100%). In some cases, the performance of
CommonNeighbor is matched by SimRank (< 10% gain)
or outperformed by Modularity.

After we double the number of flows (k = 10, l = 20),
the sum of flow rates in Figure 6(b) does not increase
much on all algorithms (in average < 15%) and the overall
comparative patterns stay unchanged. We also increase the
number of clusters (k = 20, l = 20; k = 40, l = 40,
beyond the recommended parameter range for performance
test only), and the results shown in Figure 6(c)(d) reveal
that the objective function increases much as the number
of clusters increases (at least > 30%, in average > 90%,
comparing Figure 6(c) with Figure 6(b)). The Modularity
algorithm is an exception, whose objective function remains
unchanged because the number of clusters is already larger
than k, so that the flow rates are kept stable. For example,
a sample influence graph with 33,494 nodes stops at 71
clusters by the Modularity algorithm. Meanwhile, with the
larger number of clusters (Figure 6(c)(d)), the bidirectional
CommonNeighbor regains a performance advantage over
SimRank and Modularity.

During the experiment, we have executed each algo-
rithm three times and report their best performance. How-
ever, the results in Figure 6 still show some randomness
due to the nature of the iterative NMF solver. To obtain
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=24.8

45.1

58.4
65

1-1000
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1-forward+backward_CommonNeighbor_all_flows 4-SimRank_k_flows
1-forward+backward_CommonNeighbor_2k_flows 5-Ratio_Association_k_flows
1-forward+backward_CommonNeighbor_k_flows 6-Normalized_Cut_k_flows
2-forward_CommonNeighbor_k_flows 7-Modularity_Top_k_flows
3-backward_CommonNeighbor_k_flows 8-Metis_K_Way_k_flows

Fig. 7. The IGS objective on 250 citation graphs with the number of nodes ranging from 100 to 10000. The cluster number is set to k = 20.

more accurate results, we sample 250 most-cited papers
published in KDD and ICDM from the ArnetMiner data set
as the source nodes. The size of their maximal influence
graphs are within the range of 100∼10,000 nodes (we have
to remove a few largest graphs with more than 10,000
nodes due to performance consideration). On each graph,
the same experiment is conducted under a fixed setting of
k = 20. Finally in Figure 7, we categorize the summarization
result on 250 graphs into 8 bins according to their original
sizes. The average IGS objective function in each bin is
reported for comparison. The results on this larger data set
demonstrate the same patterns with those on four sample
graphs. In the comparison under the setting of l = k = 20
(solid lines), the bidirectional CommonNeighbor in most
cases are the best. The Modularity algorithm raises some
exception, which performs better as the number of nodes
increases beyond 5,000. As mentioned, this is because the
Modularity algorithm generates much more clusters than
the setting of k = 20 in all the other algorithms. As indi-
cated by the labels above the Modularity performance (the
blue line and text), the number of clusters by Modularity
increases from 24.8 in the first category to 65 among the
largest citation graphs. Meanwhile, we also plot in Figure
7 the performance of the CommonNeighbor algorithm in
summarizing more flows (l = 2k, the dashed line; l = k2,
the dotted line). These results confirm that increasing the
number of flows in CommonNeighbor does not optimize
the objective function much. In average, the top 2k flows
occupy more than 99% flow rates in the summarization.

We also evaluate the performance of CommonNeigh-
bor algorithms under the generalized flow rate definition
when the node attribute information is incorporated, as
defined in equation (5). Here we assume a typical setting
of penalizing the inconsistent node attribute according to
equation (10). We test two CommonNeighor algorithms: one
uses the bidirectional setting without the node attribute (the
topology similarity matrix is computed by equation (6)), the
other uses the generalized bidirectional CommonNeighbor
that incorporates the extra node attribute information (the
generalized similarity matrix is computed by equation (8)).
All the other algorithms do not consider the node attribute
by their default settings. The citation graph is that of the
pattern mining paper in SIGMOD 2000 (Table 2). The cluster
number is set to k = 20. The result on the IGS objective

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
20

40

60

80

100

120

140

160
1-CommonNeighbor
1-CommonNeighbor_Generalized
4-SimRank
5-Ratio_Association
6-Normalized_Cut
7-Modularity_Top
8-Metis_K_Way

Fig. 8. The IGS objective after incorporating node attributes in the flow
rate definition. The node attribute adjacency matrix is set according to
equation (10). The cluster number is set to k = 20.

function is illustrated in Figure 8. While the CommonNeigh-
bor algorithm still dominates the other algorithms under all
degrees of penalty for the inconsistent node attribute, the
generalized version of CommonNeighbor achieves even bet-
ter performance. The gain is the largest under the medium
degree of penalty (∼20% when λ = 0.5) and small when
we apply a huge (λ = 0.1) or tiny penalty (λ = 0.9). This
can be ascribed to the overestimate and underestimate of the
attribute homogeneity in flow-based node clusters, though
we admit that the honey spot of λ in our approach may
change according to the choice of the citation graph .

6.2 Visualization
We evaluate the effectiveness of summarization algorithms
also by comparing their visualization results: whether they
produce a clean influence graph summarization with little
visual clutter and whether the result is meaningful for
domain users. Note that all the methods use the same link-
pruning algorithm as in Algorithm 1 (l = 2k). We first pick
the famous pattern mining paper in SIGMOD 2000 as the
source node to generate the maximal influence graph. Then
we execute seven typical summarization algorithms and
depict their results in Figure 9(a)∼(g). At the first glance,
the proposed bidirectional CommonNeighor method gen-
erates a connected tree-like influence graph summarization
without edge crossing (Figure 9(a)). SimRank produces a
similar visual form (Figure 9(b)), corresponding well to the
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(a) CommonNeighbor (proposed) (b) SimRank (c) Ratio Association

(d) Normalized Cut (e) Modularity (f) Metis K-way (g) MDL

Fig. 9. Influence graph summarization results on [Han SIGMOD’2000] by different algorithms (k = 10, l = 20). The node label gives the number of
papers in each cluster and their content summary by either title+abstract keywords in (a),(b) or the top 3 research fields in (c)∼(f). The link thickness
indicates the flow rate. Some part of the graph is highlighted to show the number of citations as edge labels. Note that the Modularity algorithm
stops at 62 clusters and can not merge any further. MDL produces 4,937 clusters, almost a half of the visual complexity in the input graph.

IGS objective close to that of CommonNeighbor, but the
generated graph is disconnected. The Metis result is also
clean (Figure 9(f)), however all the clusters have a similar
number of nodes, making the graph summarization almost
impossible to deliver the true message. Ratio Association
and Normalized Cut look inferior due to the poor graph
connectivity (Figure 9(c)) and the flat influence hierarchy
(Figure 9(d)). Modularity and MDL are the worst because of
the visual clutter generated by the large number of clusters
in the summarization (Figure 9(e)(g)).

Taking a closer look at these visual summarizations, we
find that by CommonNeighbor, most flows in the sum-
marization represent at least 300 citation links. While by
SimRank, the critical flows directly from the source node
are fragmented, two of which only include 52 and 83
citations. The same deficiency is found in the result by
Metis, where two of the highlighted flows only include 11
and 12 citations. We invite a senior researcher from the
database and data mining community to evaluate these
summarization results. She mainly compares the visual
summarization by CommonNeighbor and SimRank. In this
case, she prefers the result by CommonNeighbor in Figure
9(a) because the influence evolutions make more sense. The
initial paper quickly raises much attention on the pattern
mining research topics such as the itemset and association
rule mining, then this thread splits into four streams: the
general data management research (such as web and skyline
analysis), trajectory analysis, subgraph analysis, and appli-
cations in the software engineering (e.g. bug analysis). The
thread of web data analysis gradually moves to the topic
of web retrieval and finally leads to the tag analysis and the
research on the anomaly behavior detection. Compared with
CommonNeighbor, SimRank creates some false links, e.g.
the direct flow from the source-node paper on frequent pat-
tern mining to skyline analysis (the cluster of 3413 nodes).

Fig. 10. The summarization of Prof. Jiawei Han’s influence graph by the
bidirectional CommonNeighbor algorithm (k = 10).

Furthermore, we invite another relevant researcher to
study the influence of the well-known Internet power-law
paper in SIGCOMM’1999. The maximal influence graph
is summarized by the bidirectional CommonNeighbor al-
gorithm into Figure 1 (in the second page). Note that in
this case the influence graph topology is augmented by the
“venue” field of each paper to group the papers with similar
research topics together. From this visual summarization,
the subject learns that the SIGCOMM paper directly in-
fluences the research on Internet topology and simulation.
Next, over the Internet topology related topics, the P2P
research becomes popular and after that the web-related
research and XML. The most recent hot topic in this thread
appears to be sensor networks which corresponds well to
his domain knowledge.

Our algorithm pipeline can also summarize the author’s
influence on the author citation graph. This is generated
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by adding one citation link between two authors for each
citation between their papers. The maximal author influence
graph is then computed from a source author node by
traversing the reversed author citation graph. As an exam-
ple, we select Prof. Jiawei Han as the source author, and
collect all the authors influenced by him within two hops.
To limit the size of the influence graph, we only keep pro-
ductive authors (i.e. ≥ 30 paper publications in the data set)
which gives a graph of 26,349 author nodes. The summa-
rization result applying the bidirectional CommonNeighbor
algorithm (k = 10) is shown in Figure 10. Our invited
researcher acknowledges the validity of the result: Prof.
Han has influenced multiple fields with his research, mainly
data mining (DM), database (DB), AI and networking (Net).
On his contribution to DB and DM fields, the influence
is bidirectional, i.e., he is also heavily influenced by the
researchers there, as shown in the right column of Figure 10,
a list of 109 authors (e.g. Raghu Ramakrishnan). The most
directly influenced field by the number of authors are DM
and AI, as indicated by the group of 6,575 authors. The most
indirectly influenced field are Net and DM, as indicated
by the group of 11,013 authors. Through the bridging of a
group of 21 authors (e.g. Rakesh Agrawal), he also impacts
the Theory (The) research, represented by the group of 2,774
authors.

During the case studies with experts from the research
community, most of them recognized this kind of visual
summarization on citation networks to be quite helpful. The
frequent terms they talked about were “clear views” and
“new insights”, from which aspects they found the visu-
alization to greatly outperform previous methods. On the
other hand, they did provide a lot of suggestions to improve
the current design, primarily from the user experience of
a potential system. First, the users are given static, pre-
configured views for the analysis and comparison, only a
few interactions are provided. For example, they can not
switch between the different size of summarizations (chang-
ing k and l). This feature is among the top requests during
the study. Second, on the quality of the summarization,
quite a lot users would like to have some kind of visual
annotation on the flows between paper clusters. What they
want to know is why and how some papers influence the
other papers. This corresponds to the detailed analysis on
the context of each citation. It will be very helpful to also
visualize when the influence of one paper goes beyond its
original topic and leads to the multidisciplinary research.
Part of the expert feedbacks is addressed in a working
system - VEGAS, which is explained in Section 7; most other
features are under discussion for the future work.

6.3 Scalability

The overall computation time for different summarization
algorithms is illustrated in Figure 11(a). Our proposed
CommonNeighbor algorithms are more costly than the ef-
ficient modularity-based clustering algorithm (O(nlog(n))
with small constant) and the Metis k-way graph partition
(O(n+m)). However, the best of our methods can summa-
rize a 10,000-node maximal influence graph in 100 seconds,
and the overall time complexity is only moderately above
linear. Note that n denotes the size of the maximal influence

(a) Total computation time (second) by graph size (#node)

(b) Similarity matrix (c) Eigen decomposition (d) SymNMF

Fig. 11. The computation time of different summarization algorithms, k =
20: (a) Total time; (b)∼(d) Split time of four CommonNeighbor algorithms
in our pipeline. The similarity matrix computation and SymNMF iteration
dominate the cost.

graph, which is much smaller than the size of the original
graph. Most citation-based influence graphs from a single
paper are no larger than the magnitude of 10,000 nodes,
while the entire data set can have millions of papers.

In the experiment, the SimRank algorithm requires the
longest computation time. To explain this, we have looked at
the split time at three key steps of the algorithm pipeline, as
shown in Figure 11. The eigenvalue decomposition (Figure
11(c), only top k eigenvectors are computed) are quite fast
due to the sparsity of the influence graph matrix (Table
2). On the similarity matrix computation (Figure 11(b)),
SimRank is the slowest because in worst case it needs to
compute an all-to-all similarity matrix (O(n2d2)), though we
have optimized it to only compute within a four-hop range.
In contrast, CommonNeighbor is much faster on similarity
computation, through the multi-threaded routine on sparse
matrix multiplication. Finally, SymNMF computation (Fig-
ure 11(d)) is the most costly step. In each iteration, there are
a few sparse matrix-matrix multiplication computations.

Compared with the time complexity, the space require-
ment of our algorithm pipeline is less stringent. The similar-
ity matrix computation and the iterative SymNMF need to
store one dense matrix at most, giving a space complexity of
O(n2) with small constant. The eigenvalue decomposition
by dsyevx routine in LAPACK only needs O(n) space with
a relatively large constant. Recall that n is the number of
nodes in the maximal influence graph and can be hundreds
of times smaller than the original citation graph.

6.4 Summary
The experiment results demonstrate that most graph sum-
marization algorithms specifying the number of clusters
provide compact influence graph summarizations on cita-
tion networks. In contrast, typical graph compression and
summarization methods such as MDL and Modularity can
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Fig. 12. The online VEGAS system interface on the “LANDMARC” paper.

lead to huge visual clutters that make it hard for people
to interpret. Within the k-cluster methods, applying bidi-
rectional CommonNeighbor algorithm is shown to be the
best in maximizing the IGS objective, constantly superior
than traditional graph partition and clustering algorithms,
such as Ratio Association, Normalized Cut and Metis. In a
few cases, plugging SimRank into our algorithm pipeline
can achieve a comparable performance. In fact, SimRank
has very close tie to our proposed algorithms. Common-
Neighbor considers the topological similarity of two nodes
within one hop, while SimRank computes their similarity in
an infinite hop (pruned to four hops in this work for the
performance consideration). Our results show that, though
close to, SimRank is no better than CommonNeighbor in
maximizing the IGS objective, also it suffers from a much
higher computational complexity at O(n2d2). Overall, we
recommend the bidirectional CommonNeighbor algorithm
in practice for its good balance among the visualization
result, optimization quality and computational efficiency.

7 ONLINE SYSTEM PROTOTYPE AND DISCUSSION

The initial implementation of VEGAS is based on Java and
operated as the desktop software in offline (Section 5). To
meet the user’s expectation of an open interactive system,
we are building an online VEGAS prototype in JavaScript
at the frontend. In this prototype, The user could start
from a search interface on papers and authors, and then
directs to the homepage of a particular paper/author in the
search result. An example with the “LANDMARC” paper
from the wireless networks journal is illustrated in Figure
12. The influence graph summarization is shown in the
central panel with the default setting. These settings can
be configured by users and updated online in the display.
For example, they can switch the node label to the paper
title+abstract summary, or the research field summary, to get
more context on the graph. They can set the granularity of
the summarization by changing the number of clusters. Due
to the computational cost, only a few choices are provided

now. On the visual summarization, most standard graph
interactions are supported, including the zoom&pan, node
drag&drop to fine-tune the graph layout, the node hovering
for adjacency analysis, and the click-selection to access de-
tails on each cluster of papers. An instruction of the system
usage is available as the video demo in the supplemental
file and also on the first author’s website.

For the future work on VEGAS, first we plan to analyze
the content on each citation to discover its importance,
sentiment and the topic drift. They will help to create
more accurate and useful visual influence summarizations.
Second, we plan to improve on the interactive exploration
of the influence graph visualization, from one seminal paper
to certain milestones on the same topic. Last, we plan to
transfer the existing technique on the citation networks to
study the more sophisticated information diffusion patterns
on the social media.

8 RELATED WORK

We review related work from three aspects: graph sum-
marization and visualization, graph simplification, social
influence maximization.

First, constructing smaller summarizations to represent a
large graph has been a traditional research topic, notably
using graph clustering and community detection [22] al-
gorithms. These algorithms typically optimize certain as-
sociation or cut measures, e.g., ratio association, ratio cut
[2], normalized cut [15], and the modularity [23]. Most
of these methods target at maximizing intra-cluster con-
nections while minimizing inter-cluster connections. This
is fairly different from the IGS problem, which is defined
as maximizing the overall flow rate. Similarly, the graph
summarization methods based on node attributes, such as
SNAP [3] [24], ensure the content coherence on clusters, but
again they are not tailored for the flow rate maximization
objective in the IGS problem.

Meanwhile, there are many works on graph compression
for the efficient graph storage and representation. In [4],
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MDL-based compression was proposed to present the graph
with an aggregated structure and an error correction list.
It is proved to be the best summary from the information-
theoretic perspective. While MDL can successfully compress
web graphs, on influence graphs that are much sparser, it
suffers from a low compression rate and leads to huge visual
clutters.

Graph visualization methods, especially those on large
graphs, are often tightly combined with graph summa-
rization algorithms. The most relevant works to ours are
egocentric network visualizations which only consider the
subgraph of nodes that have direct connection to a pre-
defined ego [25]. While our IGS problem is also a localized
summarization of the selected source node, the subgraph
considered, which is called the maximal influence graph,
is induced from all the nodes that have direct or indirect
connection (path) to the source node. In this sense, the
IGS problem has a much larger scope than the egocentric
network visualization. In constructing user-friendly infor-
mation maps, Shahaf et al. [26] [27] [28] studied the similar
problem of summarizing large amount of information. They
developed intriguing methods to detect hidden linkage and
document clusters from the keyword frequency statistics.
On a quite different focus, our work built on graphs with
explicit linkage data while the textual content of each node
can be absent or incomplete.

Second, graph simplification methods are another kind of
techniques to generate the clearer view of large graphs.
These methods identify important edges in the graph and
prune the others to produce the summarization. In [7], the
authors proposed two algorithms on directed and undi-
rected flow networks. Through the construction of bicon-
nected components and the dominance trees, the useless
edges subject to either the source node or the sink node are
located and removed. Though inspiring, these algorithms
on flow networks can not be directly applied to the IGS
problem that considers the overall flow rate, rather than
the flows in the source-sink path. A more general work
on weighted graphs defined the connectivity measure of
a graph by the average connectivity quality between all
pairs of nodes [29]. The authors proposed algorithms to
find edges for removal in the objective of minimizing the
loss of this connectivity measure. A brute-force approach
was shown to achieve the best quality though it is costly
in the computation complexity. Two other algorithms were
designed for the better trade-off between the simplification
quality and computation time.

The similar problem of sparsifying networks exists in the
social influence scenario, which involves two types of data,
the underlying social graph and the log of information prop-
agation on this graph (e.g., memes and subscriptions). In [5],
the authors characterized the information propagation by
the independent cascade model [6] and inferred the model
parameters by the propagation logs. Given the number of
edges, a sparsified subnetwork can be extracted which best
describes the observed propagation logs in theory. Though
such a problem is shown to be NP-hard to approximate, the
authors proposed a greedy algorithm that is both practical
in complexity and performs closely to the optimal solution
in quality. In another work [30], the scope of the network
sparsification problem is extended by assuming no under-

lying information propagation model. The optimal simpli-
fied network are computed by maximizing the coverage of
network links on the propagation logs. In contrast to the
simplification approaches that try to preserve the overall
network structure, another class of literature on the social
influence analysis focuses on identifying frequent propaga-
tion patterns in either the coherent subnetwork structure
[31] or the content-centric information flow [32].

The IGS problem differs from the graph simplification in
that we target at building an overview of the large influence
graph. Graph simplifications can reduce the number of
edges, but can not construct a readable overview because
they do not group the graph nodes together. Recently,
Mehmood et al. proposed CSI [33], a model that generalizes
the independent cascade model to the community level.
CSI can produce similar group-level visual summaries to
our result. However, the CSI model depends on both the
underlying social graph and the information propagation
log. In comparison, our method is unsupervised and we
do not leverage the information propagation model or the
associated log data in their scenario.

Last, considerable work has been conducted for studying
the effects of social influence. For example, Bakshy et al. [34]
conducted randomized controlled trials to identify the effect
of social influence on consumer responses to advertising.
Bond et al. [35] used a randomized controlled trial to verify
the social influence on political voting behavior. Anagnos-
topoulos et al. [36] proposed a shuffle test to examine the
existence of social influence. However, most of the methods
focus on qualitatively study the existence of social influence
in different networks. Tang et al. [37] presented a Topical
Affinity Propagation (TAP) approach to quantify the topic-
level social influence in large networks. Domingos and
Richardson [38], [39] formally defined influence maximiza-
tion as an algorithmic problem and prove its NP-hardness.
Kempe et al. [6] proposed to use a submodular function to
formalize the influence maximization problem and develop
a greedy algorithm to solve the problem with provable
approximation guarantee. Most of these works focus on
finding the most influential nodes in a network and do not
target the summarization problem studied here.

9 CONCLUSIONS

In this paper, we consider the problem of summarizing
influences in large citation networks under a flow-based
and localized context. We formally define this as an opti-
mization problem, study its linkage to the existing clustering
methods, and present an algorithm pipeline as well as the
prototype system VEGAS to solve it. VEGAS achieves all the
three design objectives, including (1) flow rate maximization
that highlights the flow of influence; (2) a localized visual
summarization from the source node; and (3) easy to incor-
porate rich information on graphs such as the node attribute
and the time. We describe both the matrix decomposi-
tion based main algorithm and the implementation details
of VEGAS. Through comprehensive evaluations with real-
world citation networks, we demonstrate that the proposed
algorithm constantly outperforms classical methods, such
as the graph clustering and compression algorithms, in both
quantitative performance and qualitative visual effects.
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