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Influential Node Tracking on Dynamic Social
Network: An Interchange Greedy Approach

Guojie Song, Yuanhao Li, Xiaodong Chen, Xinran He and Jie Tang

Abstract—As both social network structure and strength of influence between individuals evolve constantly, it requires to track the
influential nodes under a dynamic setting. To address this problem, we explore the Influential Node Tracking (INT) problem as an
extension to the traditional Influence Maximization problem (IM) under dynamic social networks. While Influence Maximization problem
aims at identifying a set of k nodes to maximize the joint influence under one static network, INT problem focuses on tracking a set of
influential nodes that keeps maximizing the influence as the network evolves. Utilizing the smoothness of the evolution of the network
structure, we propose an efficient algorithm, Upper Bound Interchange Greedy (UBI) and a variant, UBI+. Instead of constructing the
seed set from the ground, we start from the influential seed set we find previously and implement node replacement to improve the
influence coverage. Furthermore, by using a fast update method by calculating the marginal gain of nodes, our algorithm can scale to
dynamic social networks with millions of nodes. Empirical experiments on three real large-scale dynamic social networks show that our
UBI and its variants, UBI+ achieves better performance in terms of both influence coverage and running time.

Index Terms—Influence Maximization, Influential Nodes Tracking, Social Network, Scalable Algorithm.
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1 INTRODUCTION

THE processes and dynamics by which information and
behaviors spread through social networks have long

interested scientists within many areas. Understanding such
processes have the potential to shed light on the human
social structure, and to impact the strategies used to pro-
mote behaviors or products. While the interest in the subject
is long-standing, recent increased availability of social net-
work and information diffusion data (through sites such as
Facebook, Twitter, and LinkedIn) has raised the prospect of
applying social network analysis at a large scale to positive
effect.

One particular application that has been receiving inter-
est in enterprises is to use word-of-mouth effects as a tool for
viral marketing. Motivated by the marketing goal, mathe-
matical formalizations of influence maximization have been
proposed and extensively studied by many researchers [1],
[2], [3], [4], [5], [6], [7], [8], [9]. Influence maximization is the
problem of selecting a small set of seed nodes in a social
network, such that their overall influence on other nodes
in the network, defined according to particular models of
diffusion, is maximized.

Marketing campaign is usually not a one-time deal,
instead enterprises carry out a sustaining campaign to pro-
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mote their products by seeding influential nodes continu-
ously. Often, a marketing campaign may last for months
or years, where the company periodically allocates budgets
to the selected influential users to utilize the power of the
word-of-mouth effect. Under this situation, it is natural and
important to realize that social or information networks are
always dynamics, and their topology evolves constantly
over time [10], [11], [12]. For example, links appear and
disappear when users follow/unfollow others in Twitter or
friend/unfriend others in Facebook. Moreover, the strength
of influence also keeps changing, as you are more influenced
by your friends who you contact frequently, while the influ-
ence from a friend usually dies down as time elapses if you
do not contact with each other. As a result, a set of nodes
influential at one time may lead to poor influence coverage
after the evolution of social network, which suggests that
using one static set as seeds across time could lead to
unsatisfactory performance.

It turns out that targeting at different nodes at different
time becomes essential for the success of viral marketing.
We proceed to illustrate the idea of considering the dynamic
perspect in influence maximization using an example in
Figure 1. In this example, users are connected by edges at
different time, each of which indicates a user may influence
over another user. Numbers over each edge give the corre-
sponding influencing probabilities. For example, there is an
edge between v1 and v3 at t = 0 and the edge is deleted
at t = 1. And user v1 will influence v2 with a probability
of 0.7 at t = 0, and the influencing probability is 0.2 at
t = 1. This means that user v1 would no longer influence
v3 at t = 1 and v2 cannot be activated by v1 by probability
0.7 at t = 1. Suppose we are asked to find a single seed
user to maximize the expected number of influenced users.
Without any dynamic constraint, that is all the snapshots are
aggregated into one weighted static graph, user v1 will be
returned as the result. Intuitively, it is expected to influence
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the maximal number of users among all users. However, if
we aim to find a single seed user that influences the maximal
number of users at different time, user v2 will become the
new result at time t = 1. Intuitively, this is because v1 can
at most influence v4 at t = 1 while v2 influences v1, v3 and
v4 with a higher probability as given in Figure 1.
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Fig. 1. An example illustrating the influence maximization with dynamic
prospect

However,traditional algorithms for Influence Maximiza-
tion become inefficient under this situation as they fail to
consider the connection between social networks at differ-
ent time and have to solve many Influence Maximization
problems independently for social network at each time. In
this paper, we propose an efficient algorithm, Upper Bound
Interchange Greedy (UBI), to tackle Influence Maximization
problem under dynamic social network, which we term as
Influential Node Tracking (INT) problem. That is to track a set
of influential nodes which maximize the influence under the
social network at any time.

The main idea of our UBI algorithm is to leverage the
similarity of social networks near in time and directly dis-
cover the influential nodes based on the seed set found for
previous social network instead of constructing the solution
from an empty set. As similarity in network structure leads
to similar set of nodes that maximize the influence. In
our UBI algorithm, we start from the seed set maximiz-
ing the influence under previous social network. Then we
change the nodes in the existing set one by one in order
to increase the influence under the current social network.
As the optimal seed set differs only in a small number
of nodes, a few rounds of node exchanges are enough to
discover a seed set with large joint influence under current
social network. Moreover, it can be shown that the above
node exchange procedure leads to a constant approximation
guarantee of 1/2, when certain stopping criteria is applied
to node exchanges.

Our method requires a large number of computations
in evaluating the node replacing gain, which takes unaf-
fordable long time if traditional Monte-Carlo simulations
are applied. In order to scale our algorithm up to large
networks, we utilize the Upper Bound Based Approach
proposed by Zhou et al. to reduce the calls of Monte-Carlo
simulations [13]. We first tighten their bound by excluding
all the influence paths with edges into the seed set and
most important we design an efficient method to update the
upper bound as the underlying network structure changes

instead of carrying out expensive matrix operation for each
individual network, as the result, we propose UBI and its
variant, UBI+.

Extensive experiments are conducted on three real dy-
namic networks of different types and scales. The com-
parison of our method to several state-of-arts Influence
Maximization algorithms for static network shows that our
methods leads to both larger influence coverage and less
running time. We show that our UBI algorithm achieves
comparable influence coverage as Greedy algorithm within
only seconds for networks with millions of nodes across
multiple snapshots. Also, the variant algorithm, UBI+ are
conducted on the same networks and show better perfor-
mance than UBI.

Our contributions can be summarized as follows:

• We explore the Influential Node Tracking (INT) prob-
lem as an extension to the traditional Influence Max-
imization problem to maximize the influence cover-
age under a dynamic social network.

• We propose an efficient algorithm, Upper Bound
Interchange (UBI) to solve the INT problem. Our al-
gorithm achieves comparable results as hill-climbing
greedy algorithm where the 1 − 1/e approximation
is guaranteed. The algorithm has the time complexity
of O(kn), and the space complexity of O(n), where n
is the number of nodes and k is the size of the seed
set.

• We propose an algorithm UBI+, based on UBI, that
improves the computation of node replacement up-
per bound.

• We evaluate the performance on large-scale real so-
cial network. The experiment results confirm our
theoretical findings and show that our UBI and UBI+
algorithm achieve better performance of both influ-
ence coverage and running time.

Paper Organization. We summarize the related literatures
in section 2. In section 3, we formally formulate our Influen-
tial Node Tracking problem after introducing the diffusion
model and the Influence Maximization problem. We then
present our efficient UBI algorithm and its variant, UBI+
algorithm for the INT problem in section 4. In section 5, we
present our experiment results on three real-world large-
scale dynamic social networks and we conclude our work
with discussion on future work in section 6.

2 RELATED WORK

Domingos et al. [2], [14] first study the influence maxi-
mization problem, while Kempe et al. [3] later establish the
problem formally as a discrete optimization problem and
propose a hill-climbing greedy algorithm with a 1 − 1/e
approximation guarantee. However, the proposed solution
does not scale to large networks as it requires a large number
of Monte-Carlo simulations for influence estimation.

Following the seminal work [3], many researchers have
been working on design efficient algorithms for Influence
Maximization problem, leading to a large number of dif-
ferent methods [1], [4], [5], [6], [7]. The proposed methods
can be mainly categorized into two types. The first type
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of algorithms aims at improving the efficiency of the hill-
climbing greedy algorithm while preserving the 1 − 1/e
approximation guarantee [13], [15]. For example, Leskovec
et al. design the CELF method to accelerate the greedy
algorithm by utilizing the sub modularity of the objective
function to carry out lazy evaluation [15]. More recently,
Zhou et al. have achieved further acceleration by incorpo-
rating upper bound on the influence function [13]. Based on
the idea that pG(S)

u,v <= pGu,v , in this work, we utilize the
same idea in our UBI algorithm with an improved upper
bound for node replacement gain. Moreover, we extract
the formula that is used to calculate the node replacement
gain to two parts of marginal gain and then our major task
becomes to provide an upper bound and a lower bound of
the marginal gain. With the calculation of the upper and
the lower bound on the terms, we achieve a much tighter
bound than just improving the method of [13]. Moreover,
we design an efficient method to update the upper bound
as network structure changes.

On the other hand, the second type of algorithms applies
various heuristics without provable approximation guaran-
tee [1], [4], [5], [6], [16], [17], [18], [19], [20]. For instances,
Jung et al. proposes the state-or-art algorithm IRIE for Influ-
ence Maximization problem based on the idea of PageRank.
While Jiang et al. use simulated annealing to optimize the
influence function [16] while Wang et al. utilize community
structure to accelerate influential node discovery [5].

However, all the previous methods aim to discover the
influential nodes under one static network. As far as we are
concerned, the only paper on Influence Maximization under
dynamic networks is by Aggarwal et al. [21]. Nevertheless,
their work is merely marginally related to this paper in that
they focus on finding a seed set at time t, that maximizes the
influence at some t+ ∆ given the dynamics of the evolution
of network during the interval [t, t + ∆]. In contrast, in our
work, we consider fast update of seed set across different
snapshot graphs, each of which is a static network that we
would like to maximize the influence of the seed set. The
major difference is that in their work, the diffusion process
is taking place under a dynamic network while we consider
maximizing the influence under a series of static snapshots
taking from a dynamic social network. Zhuang et al. [22]
study the influence maximization under dynamic networks
where the changes can be only detected by periodically
probing some nodes. Their goal then is to probe a subset
of nodes in a social network so that the actual influence
diffusion process in the network can be best uncovered
with the probing nodes. That means, their algorithm is to
minimize the possible error between the observed network
and the real network through probing a small portion of
the network. In contrast, the whole structure of the dynamic
network is known and our goal is to track the influential
nodes and try to maximize the influence coverage of a
particular size of seed set. We focus on fast tracking of
influential nodes. Moreover, our algorithm can be applied
when the changes in network structure have already been
discovered by their probing method.

3 PRELIMINARIES AND PROBLEM STATE-
MENT
In this section, we first introduce the diffusion model,
namely the Independent Cascade Model and the Influence
Maximization for static network. We then formally state
our Influential Node Tracking problem as a generalization
of the Influence Maximization problem to dynamic social
networks. Table 1 lists the symbol notations used in this
paper.

TABLE 1
Notations

Notations Descriptions
G = {Gt}T1 a dynamic social network
Gt = (V t, Et) a snap shot of G at time t
V t the vertex set of Gt

Et the edge multiset of Gt

pGu,v the strength of influence of nodes u on v in
snapshot G

G(T ) the subgraph of G by excluding the edges
associated to nodes in T

δv,vs (S) the replacing gain of changing from vs to v
δ̄v,vs (S) the upper bound of the replacing gain δv,vs (S)
St the seed set at time t
k the size of seed set
σ(S) the expectation of nodes influenced by S
ρS(T ) the marginal gain of interchanging by adding

set S to the existing node set T
U(T ) the upper bound column vector of the

marginal gain of nodes set T
L(T ) the lower bound column vector of the marginal

gain of nodes set T
APv,i(S) the probability that v is activated exactly at

step i under the seed set S
APv,i(S|T ) the probability that node v is activated exactly

at step i without the help from nodes in set T

3.1 Diffusion Model and the Influence Maximization
Problem
In this work, we study the social influence under the widely
adopted Independent Cascade (IC) model. Under the IC
model, the social network is modeled as a directed network
G = (V,E), where V corresponds to the individuals while
E represents the sets of social links between the individuals.
Moreover, each edge (u, v) ∈ E is associated with a prop-
agation probability pGu,v indicating the strength of influence
of individual u on v. When G is clear from the context, we
simply use pu,v to keep the notations uncluttered.

The IC model describes a simple and intuitive diffusion
process. Starting from a seed set S, which begins active
(having adopted the behavior), the diffusion process unfolds
in discrete time steps as follows. When a node u becomes
active in step t, it attempts to activate all currently inactive
neighbors in step t+1. For each neighbor v, it succeeds with
the known probability pu,v . If it succeeds, v becomes active;
otherwise, v remains inactive. Once u has made all these
attempts, it does not get to make further activation attempts
at later times.

Given the seed set S, we define the influence coverage
of S as the expected number of activated nodes when the
diffusion process ends, denoted by the influence function
σ(S). The Influence Maximization (IM) problem under the IC
model aims at finding a seed set S ⊆ V of size at most k
to maximize the influence function σ(S). Formally, the IM
problem is defined as the following optimization problem:
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S∗ = arg max
|S|≤k

σ(S)

Though it has been shown by Kempe et al. in [3] that the
IM problem under IC model is NP-hard, the following good
properties of the IC model allow for approximate algorithm
to discover the influential nodes: the influence function σ(S)
under the IC model is monotone and submodular [3]. 1

The above properties lead to a simple greedy algorithm
(Algorithm 1) proposed by Nemhauser et al. [23] for max-
imizing monotone submodular functions. The algorithm
repeatedly chooses the node with the maximum marginal
gain and adds it to the current seed set until the budget
k is reached. Proved by [23], this algorithm approximates
the optimal solution with a factor of the (1 − 1/e) for the
Influence Maximization problem.

Algorithm 1 Greedy(G = (V,E), k)
1: initialize S = ∅
2: for i = 1 to k do
3: v∗ = arg maxv∈V−S {σ(S + {v})− σ(S)}
4: S = S + {v∗}
5: end for
6: Output S

However, the exact computation of the marginal gain has
shown to be #P-hard in [6], though approximate estimation
can be achieved via multiple times of Monte-Carlo simu-
lations, which are extremely inefficient for large networks.
To tackle the inefficiency of the above greedy algorithm,
numerous methods are proposed, for example [1], [6], [13],
[15], [17]. Though with much better efficiency, the algo-
rithms may still spend at least minutes on a network with
millions of nodes.

3.2 Influential Node Tracking Problem
The traditional Influence Maximization problem aims at
finding influential nodes for only one static social network.
However, real-world social networks are seldom static. Both
the structure and also the influence strength associated
with the edges change constantly. As a result, the seed set
that maximizes the influence coverage should be constantly
updated according to the evolution of the network structure
and the influence strength.

In this work, we model the dynamic social network as a
series of snapshot graphs, G1,. . . , GT . We assume that the
nodes remain the same while the edges in each snapshot
graph change across different time intervals. Each snapshot
graph is modeled as a directed network, Gt = (V,Et),
which includes edges appearing during the periods under
consideration. Moreover, a set of propagation probabilities
P t
u,v is associated with each snapshot graph Gt.

Our goal is to track a series of seed sets, denoted as
St, t = 1, . . . , T , that maximizes the influence function σt(·)
at each of the snapshot Gt. More formally, we define the
above task as the Influential Node Tracking problem.

1. Recall that a set function f is monotone if f(S+x) ≥ f(S) for any
element x; and f is submodular if it has diminishing returns: f(S +
x)− f(S) ≥ f(T + x)− f(T ) for any element x whenever S ⊆ T .

Influential Nodes Tracking (INT). Let G = {Gt}T1 be
a dynamic social network. The influential nodes tracking
problem is to discover a series of seed sets S1, . . . , ST whose
size is at most k, such that St = arg maxS∈V,|S|≤k σ

t(S) for
all snapshot graphs Gt, t = 1, . . . , T .

The most naive and straight-forward way to solve the
INT problem is to treat the different snapshot graphs inde-
pendent and solve them as separate Influence Maximization
problem for each snapshotGt by algorithms such as [6], [13],
[15], [17].

However, as solving Influence Maximization problem
for a single graph with moderate size already costs several
minutes, the running time of computing influence nodes
for a large set of graphs becomes unaffordable. Moreover,
aiming at tracking influential nodes in real time, we do need
an efficient algorithm to discover the influential nodes in
short period of time. In next section, we will show how
we propose a new method UBI to solve the INT problem
efficiently.

4 PROPOSED METHODS

For real dynamic social network, it is unlikely to have abrupt
and drastic changes in graph structure in a short period of
time. As a result, the similarity in structure of graphs from
two consecutive snapshots could lead to similar seed sets
that maximize the influence under each graph.

Based on the above idea, we propose UBI algorithm for
the INT problem, in which we find the seed set that maxi-
mizes the influence under Gt+1 based on the seed set St we
have already found for graph Gt. Instead of constructing
the seed set for graph Gt+1 from the ground, we start with
St and continually update by replacing the nodes in St to
improve the influence coverage. Our algorithm first uses
an initial set and several rounds of interchange heuristic
to maximize the influence, as mentioned in the paper. So
the interchange heuristic obviously works on a snapshot
graph. When extended to the dynamic graph, our algorithm
only needs to interchange for a few more rounds after each
time window and can achieve a faster update. More detailed
descriptions about how our method works on the snapshot
graphs and dynamic networks will be presented in the next
two subsections.

4.1 Interchange Heuristic

We use the Interchange Heuristic proposed in [23] as our strat-
egy to replace the nodes in St. Starting from an arbitrary set
S ⊆ V , Interchange Heuristic means to find a subset S′ ⊆ V
that differs from S by one node and has the same cardinality.

It has been shown by Nemhauser et al. in [23] that
applying Interchange Heuristic to monotone submodular
function until no further improvement is possible leads to a
solution with approximation guarantee 1/2.

However, it remains to specify how we should choose
set S′ in the Interchange Heuristic. In this work, we choose
S′ in order to maximize the gain achieved via the replace-
ment for any fixed vs ∈ S. Let δv,vs(S) be the replac-
ing gain by changing from vs ∈ S to v ∈ V − S. Let
v∗ = arg maxv δv,vs(S), we choose S′ = S − vs + v∗.
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This strategy needs to evaluate the gain by replacing vs
with any node in v ∈ V − S, which calls for |V − S| times
of influence estimation. The calculation by running Monte-
Carlo simulations is unaffordable even for network with
moderate size. Inspired by the UBLF optimization proposed
in [13], we use the upper bound on replacing gain to reduce
a large number of influence estimations.

Assume that we have already calculated the upper
bound on replacing gain δv,vs(S) for any node v ∈ V−S. Let
the upper bound on the replacement gain be δ̄u,vs(S), then
if for node u such that δ̄u,vs(S) ≤ δv,vs(S), the expensive
computation of replacing gain for node u becomes unneces-
sary as its gain is guaranteed to be less or equal than that
for node v. The computation of δ̄u,vs(S) will be presented in
next section.

We use the subroutine in Algorithm 2 to carry out the
Interchange Heuristic for any fixed vs ∈ S. If the largest
replacing gain δv,vs is less than a given threshold with
γ ≥ 0, we stop to find another vs for interchange (line 5-7).
This reduces the computations for the case of insignificant
improvements and accelerates the process of interchange. It
remains to show how vs is selected to complete the descrip-
tion of our method. It turns out that we utilize the derived
bounds to choose vs with the largest possible replacing gain,
namely, vs = arg maxvs∈S{maxv∈V−S δ̄v,vs(S)}.

Algorithm 2 Interchange(G = (V,E), S, vs, δ̄·,vs(S))

1: Set δv,vs ← δ̄v,vs(S), v ∈ V − S
2: Set curv ← false, v ∈ V − S
3: while true do
4: v∗ = arg maxv∈V−S {δv,vs}
5: if δv∗,vs

≤ γσ(S) then
6: break
7: end if
8: if curv∗ then
9: S ← S − vs + v∗

10: break
11: else
12: δv∗,vs ← σ(S − vs + v∗)− σ(S)
13: curv∗ ← true
14: end if
15: end while
16: Output S

With the interchange strategy defined above, we present
our Upper Bound Interchange Greedy, in short UBI as
Algorithm 3.

Algorithm 3 UBI(G = (V,E), S)

1: Compute δ̄v,vs(S) for v ∈ V − S, vs ∈ S
2: for i = 1 to |S| do
3: v∗s = arg maxvs∈S{δ̄·,vs(S)}
4: S ←Interchange(G,S, v∗s , δ̄·,vs(S))
5: Update δ̄v,vs(S) for any v ∈ V − S, vs ∈ S according

to the interchange result
6: end for
7: Output S

It should be noticed that instead of carrying out node
replacement until no further improvement is possible, we

apply at most |S| rounds of replacement in our imple-
mentation. While sacrificing the theoretical guarantee, we
significantly improve the efficiency of our method, as it
may take an exponential number of replacements until no
improvement exists. As we will illustrate in the empirical
experiments, the proposed method achieves comparable re-
sults as the hill-climbing greedy algorithm where the 1−1/e
approximation is guaranteed.

Time and space complexities Let n (resp. m) be the
number of nodes (resp. edges) in social network G. The first
lines of Algorithm 3 take O(n) time. For the entire for loop,
the dominant cost is on interchanging the nodes in seed set.
In the worst case, the algorithm 2 needs O(n) to explore all
nodes in the graph. Thus the running time is O(kn) for the
for loop, which is also the time complexity of Algorithm 3. In
addition to the input social graph, Algorithm 2 only needs
to store bounds and replacement gain for each node, the
space needed by which is O(n). Thus the space complexity
of Algorithm 2 is O(n+m), which is dominated by the input
of social network.

4.2 Upper Bound of Node Replacement Gain

In this section, we illustrate the only mysterious part in our
UBI algorithm, namely the computation of the upper bound
of the replacement gain δ̄u,vs(S). Zhou et al. first use the
upper bound on influence function to accelerate the greedy
algorithm in influential seeds selection [13]. Following their
methodology, we propose a tighter upper bound on the
replacement gain by excluding the influence along paths,
which include incoming edges to the seed set.

Basically, our task is to compute an upper bound on
δv,vs(S) for any v ∈ V − S in order to accelerate the
Interchange Heuristic subroutine. We have

δv,vs(S) = σ(S − vs + v)− σ(S)

= ρv(S − vs)− ρvs(S − vs) (1)

where ρS(T ) = σ(S + T ) − σ(T ) is the marginal gain by
adding set S to the existing node set T . The major task is
to provide an upper bound on the first term ρv(S − vs) and
a lower bound on the second term ρvs(S − vs). In the next
two sections we will provide the upper bound and the lower
bound of the marginal gain.

4.2.1 Upper Bound of Marginal gain

In this section, we illustrate the computation of the upper
bound on the marginal gain ρS(T ). Let AP v,i(S) be the
probability that node v is activated exactly at step i under
the seed set S. The essential step to achieve a tighter bound
is to use probability, AP v,i(S|T ) instead of AP v,i(S) used
in [13]. Informally, AP v,i(S|T ) stands for the probability
that node v is activated exactly at step i without the help
from nodes in set T . Let G(T ) be the graph where the set of
node T is “excluded” from G in terms of the diffusion pro-
cess, namely the propagation probability p

G(T )
u,v associated

with G(T ) is defined as follows:

pG(T )
u,v =

{
0 v ∈ T
pGu,v otherwise
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Then, AP v,i(S|T ) can be formally defined as the probability
that node v is activated exactly at step i under the modi-
fied graph G(T ). It should be noticed that AP v,i(S|T ) =
AP v,i(S|S + T ) as nodes in S are already activated at the
beginning, thus removing the incoming edges to nodes in
set S does not matter.

We need the next lemma to characterize the properties
of AP v,i(S|T ) in order to derive our bound for replacement
gain.

Lemma 1. For any v ∈ V , S, T ⊆ V ,S ∩ T = ∅ and i =
0, 1, ..., |V − S|, we have:

AP v,i(S + T )−AP v,i(T ) ≤ AP v,i(S|T ) = AP v,i(S|S + T )

Proof: By results in [3], the set of active nodes at each
step under the IC model can be characterized alternatively
as follows: for each ordered pair (u, v) independently, insert
the directed edge (u, v) with probability pu,v . Then, the
active nodes at step i are exactly the ones with distance
i from the seed set S. We prove the lemma by coupling
the following three diffusion process with the same random
choices X on the edge insertion: (1) diffusion process under
graph G with seed set S + T ; (2) diffusion process under
graph G with seed set T and (3) diffusion process under
graph G(T ) with seed set S. We abuse the notation a little
bit to use APX

v,i(S + T ), APX
v,i(T ) and APX

v,i(S|T ) as an
indicator function that takes value 1 if the node v is activated
at step i in diffusion process (1), (2) and (3) respectively un-
der random edge insertion result X and value 0 otherwise.
We have AP v,i(S + T ) =

∑
X APX

v,i(S + T ) · Prob[X] and
similarly for AP v,i(T ) and AP v,i(S|T ). It remains to show
that for any fixed X , we have

APX
v,i(S + T )−APX

v,i(T ) ≤ APX
v,i(S|T )

If APX
v,i(T ) = 1, above inequality holds trivially. We just

need to consider the case APX
v,i(T ) = 0, or equivalently

dX(T, v) 6= i, where dX(T, v) denotes the distance between
set T and node v under random edge insertion result X . If
dX(T, v) < i, then we have dX(S + T, v) ≤ dX(T, v) < i
and thus APX

v,i(S + T ) − APX
v,i(T ) = 0 ≤ APX

v,i(S|T ).
Otherwise, if dX(T, v) > i, we only need to consider the
case when APX

v,i(S + T ) = 1, namely dX(S + T, v) = i.
Since when APX

v,i(S+T ) = 0, the inequality holds trivially.
It holds that the shortest path from S + T to v must not
include any node in set T , otherwise it contradicts with the
fact that dX(T, v) > i. This fact implies that APX

v,i(S|T ) =

APX
v,i(S + T ) = 1 following the definition of graph G(T ).

Then we summarize the above inequality from iteration
0 to |V − S| and derive a tighter upper for ρS(T ). To
facilitate our presentation, we define PG

u,v as the |V |-by-
|V | matrix of propagation probability pGu,v associated with
graph G. We denote I(S) as a |V | dimension indicator
vector, where Iv(S) = 1 if and only if v ∈ S. We also
organize AP v,i(·) and AP v,i(·|·) into the |V | dimension
column vectors APi(·) and APi(·|·).

Lemma 2. For any v ∈ V , and S, T ⊆ V , S ∩T = ∅, we have

ρS(T ) ≤ I(S)T
|V−S|∑
i=0

(PG(S+T ))i · 1

where T is for vector/matrix transpose and T is for the
seed set.

Proof:

ρS(T ) = σ(S + T )− σ(T )

=

|V−S|∑
i=0

(APi(S + T )−APi(T )) · 1

≤
|V−S|∑
i=0

APi(S|T ) · 1

≤ AP0(S|T )T
|V−S|∑
i=0

(PG(S+T ))i · 1

= I(S)T
|V−S|∑
i=0

(PG(S+T ))i · 1

It should be noticed that when taking T = ∅, we provide
upper bound on σ(S) = ρS(∅) as a special case of Lemma 2,
that is:

σ(S) ≤ I(S)T
|V−S|∑
i=0

(PG(S))i · 1

Compared to the upper bound derived by Zhou et al. in
[13], namely

σ(S) ≤ I(S)T
|V−S|∑
i=0

(PG)i · 1

we can easily see that our bound is tighter as pG(S)
u,v ≤ pGu,v .

The reason is that the upper bound of σ(S) in [13] actually
computes all the possible influence paths within length of
|V − S| including loops and multiple pathes. In particular,
they include the influence to nodes in S which they should
not have as they are already activated at the beginning. On
the contrary, we get a tighter upper bound by excluding the
impossible influence paths including any edge (u, v) such
that v ∈ S. To use our bounds in practice, we relax the
summation to be taken on infinite steps as in done in [13].
As a result, we have

ρS(T ) ≤ I(S)T
|V−S|∑
i=0

(PG(S+T ))i · 1

≤ I(S)T
∞∑
i=0

(PG(S+T ))i · 1

= I(S)T · (I−PG(S+T ))−1 · 1
= I(S)T ·UG(S+T ).

where UG(S+T ) = (I − PG(S+T ))−1 · 1 is a column vec-
tor with length |V |. If we make the assumption that the
condition limi→∞PG(S+T ) = 0 holds, the solution to the
equation converges exponentially fast and can be computed
iteratively as follows:

UG(S+T ) = 1 + PG(S+T ) · 1 + (PG(S+T ))2 · 1 + . . .
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We run the iterations until the L1-norm of I(S)T ·
(PG(S+T ))k ·1 is within 10−3. As mentioned in [13], ?In real-
world social networks, the propagation probability is often
very small. Thus, Condition (14) usually stands.? In our
paper, the assumption we made will hold if the propagation
probability is very small and when the i is close to infinity,
there will be no node be activated. Similar to condition (14)
in [13], limi→∞PG(S+T ) = 0 usually stands in real-world
social networks so the upper bound can be easily computed
as above formula and no expensive computations is needed.

4.2.2 Lower Bound of Marginal Gain
In this section, we illustrate the computation of the lower
bound on the marginal gain ρS(T ). This part is not directly
used in our algorithm, but it’s used to improve our upper
bound of the replacing gain as showed below.

Lemma 3. For v ∈ V , and S, T ⊆ V , we have the following
inequation:

σ(S + T )− σ(T ) ≥ σ(S|C(T )) (2)

where C(T ) = {v|v ∈ V, d(T, v) < ∞} is the set of
nodes connected from the nodes in T and σ(S|C(T ))
is the influence activated by the seed set S without
propagating along any node in C(T ).

Proof: Considering the probability distribution of all
possible influence propagations between each pair of nodes,
we define RX(S) as the set of nodes that can be reached
from nodes in S under the sample X . Hence, we have:

σ(S + T )− σ(T ) =
∑
X

P(X) · |RX(S)−RX(T )|

We denoteRX(S|C(T )) as the set of nodes that are activated
under S without propagating along any node in C(T ) in the
sample X . For v ∈ RX(S|C(T )), we have v ∈ RX(S) and
v /∈ C(T ). And if v ∈ RX(T ), then v ∈ C(T ) which is a
contradiction. Clearly, v ∈ RX(S) − RX(T ) and it follows
that:

σ(S + T )− σ(T ) ≥
∑
X

P(X) · |RX(S|C(T ))|

= σ(S|C(T ))

Lemma 4. For v ∈ V , and S, T ⊆ V , the lower bound of the
marginal gain ρS(T ) is:

ρS(T ) ≥ I(S)(E + P (S + C(T ))) · 1 (3)

where P (S+C(T )) represents for the probability matrix
for G(S + C(T )) and E for the identity matrix.

Proof: Using Lemma 3, we have:

ρS(T ) ≥ σ(S|C(T ))

=

|V−S|∑
i=0

∑
v∈V

AP v,i(S|C(T ))

≥
∑
v∈V

AP v,0(S|C(T )) +
∑
v∈V

AP v,1(S|C(T ))

= I(S)(E + P (C(T )) · 1

where we only consider the influence of one hop from the
seed set S blocked by C(T ). Obviously, the inequality holds.

Analogously, we define L(S) = (E + P (S)) · 1 as the
lower bound column vector under seed set S. Let pu,v(S)
be the probability of node u activating node u in G(S) and
we can calculate it as follow:

Lv(S) = 1 +
∑

(u,v)∈E
pu,v(S)

Readers may have noticed that lower bound is affected
by the connectedness of the network and may ask that the
lower bound derived above becomes meaningless when the
underlying network is strongly connected so why should
we still calculate the lower bound? Although when the
underlying network is strongly connected, the lower bound
of marginal gain is not that meaningful, however, as men-
tioned in [13], in real-world social networks, there are little
strongly connected components so the lower bound is usu-
ally meaningful and leads to a tighter upper bound of node
replacement gain.

Hence, based on the previous two section’s result on the
upper bound and the lower bound of the marginal gain, the
replacing gain is bounded as follow:

δv,vs = σ(S − vs + v)− σ(S)

= ρv(S − vs)− ρvs(S − vs)
≤ Uv(S − vs + v)− ρ(S − vs)
≤ Uv(S − vs + v)− Lvs(C(S − vs)))

4.3 Fast Update of the Replacement Upper Bound

We have shown previously how to compute a tighter bound
on the replacement gain for one static network with a fixed
seed set S. However, as network changes constantly, we
need to update the upper bound according to the changes
in propagation probability. Moreover, as we include new
node into the seed set S, we also need to update the upper
bound as the propagation probability matrix PG(S+T ) also
changes.

Let ∆P be different in propagation probability between
the two graphs G and G′ associated with propagation
probability matrices P and P′, namely ∆P = P−P′.

The update of the bound boils down to the updating of
column vector UG. Using the second order approximation
of matrix inversion, we can update UG approximately as
follows:

UG′ = (I−P′)−1 · 1
= (I−P−∆P)−1 · 1
≈ (I−P)−1 · 1 + (∆P + ∆P ·P

+P ·∆P + ∆P ·∆P) · 1
= UG + (∆P + ∆P ·P

+P ·∆P + ∆P ·∆P) · 1
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we can update the lower bound as follow

LG′ = (I + P′) · 1
= (I + P + ∆P) · 1
= (I + P) · 1 + ∆P · 1
= LG + ∆P · 1

Our UBI algorithm only updates the upper bound and
the UBI+ algorithm updates both the upper bound and the
lower bound. Let ∆ = {(u, v)|∆Pu,v 6= 0}, and the updating
algorithm for UBI and UBI+ is shown in Algorithm 4 and 5.

Algorithm 4 UpdateBoundForUBI(P,∆P,U )
1: Initial U ′ ← U
2: for (i, j) ∈ ∆ do
3: // For each node v in N that is not i
4: for v ∈ N−(i) do
5: U ′v+ = Pv,i∆Pi,j

6: end for
7: U ′i+ = ∆Pi,jLj

8: end for
9: Output U ′

As in UBI algorithm, we do not particularly calculate the
lower bound so we just simply run Monte-Carlo simulations
or use other heuristics to estimate Lj .

Algorithm 5 UpdateBoundForUBI+(P,∆P,U, L)
1: Initial U ′ ← U
2: Initial L′ ← L
3: for (i, j) ∈ ∆ do
4: // For each node v in N that is not i
5: for v ∈ N−(i) do
6: U ′v+ = Pv,i∆Pi,j

7: end for
8: U ′i+ = ∆Pi,jLj

9: L′i+ = ∆Pi,j

10: end for
11: Output U ′ and L′

As long as ∆P is sparse with only a few non-zero
entries, the above formula leads to a fast update for the
upper bound. It turns out that this is exactly the case in
our setting. When we add a new node v to the seed set, we
have at most dv non-zero entries in ∆P, where dv as the
degree of node v is generally small and upper bounded by
|V |. Moreover, when we change from one snapshot graph
Gt to next time step Gt+1, the continuity of social network
dynamics ensures that ∆P is usually sparse. Additionally,
for social network, matrix P is also sparse as usually the
number of edges in social network is of the order O(|V |).
This fact further accelerates the computation of Equation (4).
Discussion As can be seen from the above algorithm, our
UBI+ algorithm updates one more bound, the lower bound,
than UBI. Because of the calculation of the lower bound, it
may lead to a longer total running time. However, as shown
later in experiments, UBI+ reaches a significant improve-
ment of the influence spread. Compared with the influence
improvement, the running time cost is relatively acceptable.

5 EXPERIMENTS

In this section, we conduct extensive experiments on three
real-world dynamic large-scale networks to evaluate the
performance of our algorithm for the INT problem.

5.1 Experiment Settings

First, we run our experiments on three real-world dynamic
networks, Mobile, HepPh and HepTh to study UBI and
UBI+’s performance on different scales. Results of these
experiments is shown in Section 5.2.1 and 5.2.2. In Section
5.2.3, we run UBI and UBI+ on a benchmark for viral
marketing to show our methods’ performance on viral
marketing.
Datasets. The first one, Mobile network used in [5] is ex-
tracted from mobile phone call records in a city during July
2007. Each node represents a mobile phone user and each
phone call between two users creates a edge. The HepPh
and HepTh provided in 2003 KDD cup are two citation
networks extracted from the different sections of e-print
arXiv2. In this network, each node corresponds to a paper
instead of a author. We create an edge between node u and v,
if paper v cites paper u. HepPh, HepTh and Mobile datasets
are all directed networks.

The basic statistics of the three networks are summarized
in Table 2. We use the following method to construct the
snapshot graphs from the above datasets. At time stamp
t, we generate the snapshot Gt = (V,Et), V =

⋃
V t

containing all the edges occurring in the time window
[t · ∆t, t · ∆t + ω] where ω is the size of the observation
window and ∆t is the distance between two consecutive
snapshots. Basically, ω controls the number of edges in each
snapshot graph, while ∆t decides the similarity between
two consecutive snapshot graph. Thus by using different
parameters ω and ∆t, we can generate a family of snapshot
graphs with different properties for our following experi-
ments.

The number of edges in each snapshot graph generated
from the networks is shown in Figure 2.

TABLE 2
Statistics of network datasets

Dataset Nodes Edges Date
Mobile 5.19M 12.0M 7 2007
HepPh 30.4K 346.9K 1992 - 2002
HepTh 18.5K 136K 1992 - 2002

Propagation probability. We assign the propagation prob-
ability on each edge by the following two widely-adopted
models.

• Uniform Activation (UA): UA model assigns proba-
bility uniformly. We set all the propagation probabil-
ities to 0.05 in our experiments.

• Degree Weighted Activation (DWA): DWA assigns
probability of each edge (u, v) as Pu,v = 1/din(v)
where din(v) is the in-degree of node v.

Algorithms under comparison. We compare UBI algorithm
with the following state-of-the-art algorithms.

2. http://www.arXiv.arg
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Fig. 2. Number of edges in snapshot graphs generated from three network datasets.

• IMM: IMM algorithm, which is a near-linear time
greedy algorithm introduced in [20]. We run IMM
algorithm for ε = 0.01 as provided in the source
code.

• IRIE: IRIE is the most advanced heuristic method un-
der IC model. We run IRIE algorithm independently
for each snapshot graph with parameters α = 0.7
and θ = 1/320 as reported in [17].

• Degree: As a baseline comparison, simply select the
nodes with the highest degrees.

• UBI: Our UBI algorithm using SP1M [4] for influence
estimation with γ = 0.01. The initial seed set S0

is generated by Greedy. In UBI algorithm, we only
calculate the upper bound of marginal gain when
calculating the upper bound of node replacement
gain.

• UBI+: Our UBI algorithm which calculates both the
upper bound and the lower bound of the marginal
gain when calculating the upper bound of node
replacement gain.

We do not include other baseline methods for INT problem
since it has already been shown that Greedy always has the
best influence coverage while IRIE has slightly worse per-
formance but runs significantly faster than other methods
in time [17]. We use the average of 20000 rounds of Monte-
Carlo simulations as estimation of the actual influence in
order to evaluate the seed sets discovered by the algorithms.
Moreover, all the experiments are carried out on a server
with 32 cores (2.13G Hz) and 64G memory.

5.2 Experiment Results

5.2.1 Experiment Results of UBI

Influence coverage and running time on real dynamic
networks. We first present our main result on comparing
our UBI algorithm to other baseline methods on three real-
world dynamic networks. For Mobile network, we set the
window size to one hour while the time difference is set to
two minutes. For both HepPh and HepTh network, we set
the window size to three years and the time difference to
one month. Moreover, we choose the seed size k as 30.

The results on influence coverage of the selected seed
sets for each snapshot graph are shown in Figure 3 and
Figure 4. As Greedy is too slow to finish within a reasonable
time, we do not include Greedy on Mobile dataset.

TABLE 3
Average influence spread in UA Model

Dataset Mobile Hepph Hepth
Greedy 71.49 65.49
IMM 95.42 71.24 65.43
IRIE 87.99 70.64 64.88
UBI 94.36 71.02 64.36

TABLE 4
Average influence spread in DWA model

Dataset Mobile Hepph Hepth
Greedy 124.35 74.81
IMM 1053.78 124.33 74.48
IRIE 943.69 122.94 74.32
UBI 1033.74 123.79 74.35

We also calculate the average influence spread over all
snapshot graphs for all three networks and present the
results in Table 3 and Table 4 for better comparison.

For the above results, we can easily find that UBI algo-
rithm results in better influence coverage compared with
IRIE averaged over all datasets. As our method has a little
loss of accuracy on influence to achieve fast tracking, UBI
achieves slightly lower influence compared to IMM and
Greedy. Moreover, the running time taking average over
different snapshot graphs for all three networks results of
the above experiments are shown in Table 5 and Table 6.

Reader may ask that if the influential users remain
unchanged in most of real datasets, we do not have to track
them with an online algorithm. To answer this question, we
calculate the average influential users coverage of the result
of UBI, which means the total number of users chosen to
be the influential user of all time. Results are 151, 119, 143
for Mobile, Hepph and Hepth dataset. Because at every
timestamp, the seed set only contains 30 nodes, the result
reflects the fact that influential users vary frequently under
the scenario of dynamic network.

We can easily find that Greedy is extremely slow that it
even fails to finish on the largest Mobile network. Though
performing well in influence coverage, IRIE performs well
in running time on Hepth and Hepph but bad on Mo-
bile with million nodes and edges. IMM performs better
than IRIE on Mobile. However, our method, UBI, achieves
consistent lowest running time on all the three networks
with comparable influence coverage compared with IRIE,
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Fig. 3. Influence Tracking Results under UA model with k = 30.
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Fig. 4. Influence Tracking Results under DWA model with k = 30.

TABLE 5
Statistics of Running Time for UA Model

Dataset
Running Time Mobile Hepph Hepth

Greedy 12m 8m
IMM 1.8s 38ms 32ms
IRIE 19.1s 50ms 37ms
UBI 1.1s 22ms 17ms

TABLE 6
Statistics of Running Time for DWA Model

Dataset
Running Time Mobile Hepph Hepth

Greedy 53m 42m
IMM 2.1s 50ms 46ms
IRIE 30.3s 80ms 60ms
UBI 1.2s 21ms 16ms

IMM and Greedy algorithm. UBI is about 30 times faster
than IRIE and 2 times faster than IMM. Notice that UBI
achieves insignificant improvement compared with IRIE
and IMM under the last two dataset. This is because they
are in relatively small size. At the same time, as the size
of networks grows, UBI can scale to networks like Mobile
with million nodes and edges as shown in the following
experiment.
Memory usage. We measure the memory usage of each
algorithm to measure the space complexity and the result is
shown in Table 7 and Table 8. As the dataset is also stored in
memory, we measure the memory usage when only loading

the dataset into the memory, which is marked as ”None”
in the table. As it can be seen from the result, our UBI
algorithm uses a little more memory than Greedy and IRIE
and less memory than IMM. UBI uses some additional space
to calculate the upper bound and the lower bound to reach
a much better influence coverage, but UBI uses only linear
additional space so the space complexity is acceptable.

TABLE 7
Statistics of Memory Usage for UA Model

Dataset
Memory Usage Mobile Hepph Hepth

None 2376.2MB 27.4MB 24.1MB
Greedy 27.4MB 24.1MB
IMM 2564.7MB 28.9MB 26.0MB
IRIE 2496.5MB 27.8MB 24.5MB
UBI 2536.7MB 29.5MB 26.3MB

TABLE 8
Statistics of Memory Usage for DWA Model

Dataset
Memory Usage Mobile Hepph Hepth

None 2375.1MB 27.3MB 24.0MB
Greedy 27.3MB 24.0MB
IMM 2522.7MB 28.5MB 25.2MB
IRIE 2493.7MB 27.9MB 24.6MB
UBI 2537.9MB 29.2MB 26.4MB

Varying K. As the third experiment, we test the algorithm
with a large K = 50. We have the same setting except K
as the first experiment. The results on influence coverage of
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the selected seed sets for each snapshot graph are shown in
Figure 5. As Greedy is too slow to finish within a reasonable
time, we do not include Greedy on this experiment. Note
that the results under the UA model are similar, which are
not included in this paper due to the limited space.

From Figure 5, we have the similar conclusion that UBI
has very close influence coverage compared to IMM, which
is already proved in [20] that has consistently close influ-
ence coverage as Greedy when K is varying. Our method
performs consistently while K is different.
Scalability. As the fourth experiment, we test the scalability
of our method on networks with different size. We construct
a family of snapshot graphs from the Mobile dataset by
varying the time window size ω from 2, 4, ..., 512 minutes
with a fixed time difference ∆t = 2 minutes. The average
numbers of edges in these graphs vary from 15K to 4M. We
run algorithms to track k = 30 influential nodes under both
the UA and the DWA Model for propagation probability.
The running time under DWA model is shown in Figure 6,
with normal scale in Figure 6(a) and log-log scale of the
same figure in Figure 6(b). The results under UA model
are similar and omitted. We don’t plot the running time of
Greedy for the measurement of Greedy on Mobile network
is unaffordable.

As it is shown in Figure 6, our UBI algorithm is one
magnitude faster than the IRIE and achieves about 2x speed
up compared to the IMM algorithm. It clearly demonstrates
the scalability of our algorithm for INT problem under
large-scale dynamic networks.
Random seed vs. St−1 As the fifth experiment, we test the
influence of using random seed or St−1 when updating the
influence vector. We run the two algorithms to track k = 30
influential nodes under both the UA and the DWA Model
for propagation probability. The average influence spread
under DWA and UA model is shown in Figure 8, while the
running time is shown in Figure 9(The figure is in log scale).
From the result, it can be clearly seen that using random
seed and St−1 to can reach the same influence spread with
enough interchange times, but using random seed is about
10 times slower than just using St−1.

As is shown in Figure 7, using random seed can reach the
same influence spread as using the greedy algorithm when
the interchange time is 30 or above, while using St−1 only
needs about 5-7 times. It clearly demonstrates the efficiency
gap between using random seed and using St−1.
Similarity v.s. Updating time. The efficiency of our UBI
algorithm comes from the fact that we utilize the similarity
between two consecutive snapshot graphs. To quantitatively
characterize the speedup, we conduct an experiment to ex-
plore how the similarity of the consecutive graphs correlates
with the updating time for UBI. We use the Jaccard sim-
ilarity to measure the similarity between two consecutive
snapshot graphs Gt and Gt+1. Formally, we have:

Jaccard(Gt, Gt+1) =
|Et ∩ Et+1|
|Et + Et+1|

By varying the time difference ∆t from 1, 2, 4, ..., 64
minutes with a fixed one hour window, we construct a series
of snapshot graphs with different Jaccard similarity from the
Mobile dataset.

Figure 10 shows how the average updating time of our
UBI algorithm is related to the average Jaccard similarity.
In line with out intuition, the more similar two consecutive
snapshots graphs are, the less time it takes by UBI algorithm
to update the seed set. Moreover, even under extremely low
Jaccard similarity, where the current snapshot differs greatly
from the previous one, our UBI algorithm can still achieve
low updating time by utilizing the upper bound on the node
replacement gain.
Upper bounds comparison. As we discussed in section 3,
our upper bound termed as active nodes’ path excluded
upper bound (AB), is theoretically tighter than the upper
bound proposed in [13], which we call it the naive up-
per bound (NB). In order to validate our theory, we run
empirical experiments to compare our bound AB with the
naive upper bound. We first extract a series of snapshot
graphs from Mobile datasets by setting both time window
and time difference to one hour. We run equivalent number
of iterations in computing both AB and NB on the same
node set with size k = 30 where propagation probabilities
are set according to DWA model. The seed set is selected
by Greedy algorithm that maximizes the influence under
each snapshot. As is shown in Figure 9, our bound is
consistently tighter than the naive bound proposed in [13]
as suggested by our theory. It should be noticed that the
poor performance of NB under DWA model is due to the
fact that sometimes NB fails to converge in Mobile network.

5.2.2 Experiment Results of UBI+
Influence coverage on dynamic networks. We present our
result on comparing our improved UBI algorithm, UBI+
to UBI on three real-world dynamic networks. For Mobile
network, we set the window size to one hour while the
time difference is set to two minutes. For both HepPh and
HepTh network, we set the window size to three years and
the time difference to one month. Moreover, we choose the
seed size k as 30. We calculate the average influence spread
over all snapshot graphs for all three networks and present
the results in Table 9 and Table 10. For the above results,
we can easily find that our UBI+ algorithm achieves a better
influence spread than UBI. Notice that UBI+ merely reaches
about 2% and 1% better on the Hepph and Hepth dataset,
this is because that UBI already performances very close to
the influence spread upper bound(which is also the Greedy
algorithm’s result), so UBI+ only reaches an influence much
closer to the theoretically influence bound. However, UBI+
get a 10% improvement in Mobile dataset and this shows
that our new algorithm significantly improves the result in
large datasets. Similar to the experiment results of UBI, the
average influential users coverage of UBI+ is are 154, 119,
143 for Mobile, Hepph and Hepth dataset.

TABLE 9
Average influence spread in UA Model

Dataset Mobile Hepph Hepth
IMM 95.42 71.24 65.43
UBI 94.36 71.02 64.36
UBI+ 95.01 71.15 65.04

Running time on dynamic networks. As it can be seen from
Table 11 and Table 12, though being a little slower because
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Fig. 5. Influence Tracking Results under DWA model with k = 50.
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Fig. 6. Scalability results on Mobile network with different number of
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Fig. 10. Jaccard similarity vs. Updating time
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TABLE 10
Average influence spread in DWA model

Dataset Mobile Hepph Hepth
IMM 1053.78 124.33 74.48
UBI 1033.74 123.79 74.35
UBI+ 1045.15 124.01 74.42

that an additional bound need to be computed, UBI+ per-
forms as well as UBI in running time. Notice that UBI+
achieves significant improvement in influence coverage in
large datasets as the previous experiment shows, so a slight
increase in the consumption of time is acceptable. So, in
conclusion, UBI+ performs better than UBI in solving INT
problem in large datasets. In small datasets, because that
UBI already performs well so that UBI+’s improvement is
not obvious.

TABLE 11
Statistics of Running Time for UA Model

Dataset
Running Time Mobile Hepph Hepth

IMM 1.8s 38ms 32ms
UBI 1.1s 22ms 17ms
UBI+ 1.4s 25ms 21ms

TABLE 12
Statistics of Running Time for DWA Model

Dataset
Running Time Mobile Hepph Hepth

IMM 2.1s 50ms 46ms
UBI 1.1s 22ms 17ms
UBI+ 1.5s 24ms 20ms

5.2.3 Experiment Results of UBI and UBI+ on viral market-
ing

Benchmark for viral marketing We use the benchmark
proposed by Amit Goyal, etc. in [24] to measure our meth-
ods’ performance. We generate a dataset by applying their
benchmark algorithm to the Flixster dataset. The working
principle of the benchmark is that the propagation probabil-
ities between users in a social network can be learned from
users’ actions, such like making comments on movies, trav-
eling to scenic spots, etc.. The Flixster dataset contains links
between users and informations about which movie they’ve
made comments on. The links in Flixster are undirected, but
the influence probabilities learned is applicable for directed
connections. As the result, the learned Flixter dataset with is
a directed network, which contains 786.9k nodes and 4.7M
edges.
Influence coverage We present our result on comparing
our algorithms, UBI+ and UBI on the benchmark for viral
marketing. We generate snapshot graphs from the flicker
dataset generated by the benchmark mentioned in the pre-
vious section.

From Table 13, it can be seen that UBI and UBI+, similar
to the results on HepPh, HepTh and mobile, achieves close
influence spread to Greedy and IMM. This also supports our

TABLE 13
Average influence spread on benchmark for viral marketing(Flixster

dataset)

Algorithm Influence
Greedy 534.32
IMM 532.60
IRIE 524.14
UBI 529.16
UBI+ 531.87

previous experiment results that UBI and UBI+ performs
well in real dynamic networks.
Running time. As it is shown in Table 14, though being a
little slower because that an additional bound need to be
computed, UBI+ performs as well as UBI in running time.
Experiments result indicates that UBI and UBI+ runs much
faster and proves our algorithm’s ability to track influential
users in a real, dynamic network. These experiments prove
that our proposal works better on viral marketing.

TABLE 14
Statistics of Running Time on benchmark for viral marketing(Flixter

dataset)

Algorithm Running Time
Greedy 3h14m
IMM 1.23s
IRIE 13.15s
UBI 0.69s
UBI+ 0.94s

6 CONCLUSIONS AND FUTURE WORK
In this paper, we explore a novel problem, namely Influ-
ential Node Tracking problem, as an extension of Influence
Maximization problem to dynamic networks, which aims at
tracking a set of influential nodes dynamically such that the
influence spread is maximized at any moment. We propose
an efficient algorithm UBI to solve the INT problem based
idea of the Interchange Greedy method. We utilize the upper
bound on node replacement gain to accelerate the process.
Moreover, an efficient method for updating the upper bound
is proposed to handle the evolution of the network structure.
Extensive experiments on three real social networks show
that our method outperforms state-of-the-art baselines in
terms of both influence coverage and running time. Then
we propose UBI+ algorithm that improves the computation
of the upper bound and achieves better influence spread.

As a direct future work, we would like to generalize our
UBI algorithm to track influential nodes under the other
widely adopted diffusion model, Linear Threshold model
under dynamic networks. Moreover, it will be interesting
if we can combine our work with [21]. That is to track a
series of influential nodes where the diffusion process is also
carried out under a dynamic network instead of the static
snapshot graph.

ACKNOWLEDGMENTS

This work was supported by the National High Tech-
nology Research and Development Program of China



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 201X 14

(2014AA015103), the National Science and Technology Sup-
port Plan (2014BAG01B02), the National Natural Science
Foundation of China (61572041), and the Beijing Natural
Science Foundation (4152023).

REFERENCES

[1] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization
in social network,” in KDD, 2009, pp. 199–208.

[2] P. Domingos and M. Richardson, “Mining the network value of
customers,” in KDD, 2001, pp. 57–66.

[3] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
inffluence through a social network,” in KDD, 2003, pp. 137–146.

[4] M. Kimura and K. Saito, “Tractable models for information diffu-
sion in social networks,” in PKDD, 2006, pp. 259–271.

[5] W.Yu, G.Cong, G.Song, and K.Xie, “Community-based greedy
algorithm for mining top-k influential nodes in mobile social
networks,” in KDD, 2010, pp. 1039–1048.

[6] W.Chen, C.Wang, and Y.Wang, “Scalable influence maximization
for prevalent viral marketing in large-scale social networks,” in
KDD, 2010, pp. 1029–1038.

[7] W. Chen, W. Lu, and N. Zhang, “Time-critical influence maximiza-
tion in social networks with time-delayed diffusion process,” in
AAAI, 2012.

[8] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization
in social networks under the linear threshold model,” in Data
Mining (ICDM), 2010 IEEE 10th International Conference on. IEEE,
2010, pp. 88–97.

[9] N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha, “Scalable
influence estimation in continuous-time diffusion networks,” in
Advances in neural information processing systems, 2013, pp. 3147–
3155.

[10] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explana-
tions,” in KDD, 2005, pp. 177–187.

[11] J. Leskovec, J. M. Kleinberg, and C. Faloutsos, “Graph evolution:
Densification and shrinking diameters,” TKDD, vol. 1, 2007.

[12] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, “Micro-
scopic evolution of social networks,” in KDD, 2008, pp. 462–470.

[13] C. Zhou, P. Zhang, J. Guo, X. Zhu, and L. Guo, “Ublf: An upper
bound based approach to discover influential nodes in social
networks,” in ICDM, 2013.

[14] M. Richardson and P. Domingos, “Mining knowledge-sharing
sites for viral marketing,” in KDD, 2002, pp. 61–70.

[15] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. S. Glance, “Cost-effective outbreak detection in networks.”
in KDD, 2007, pp. 420–429.

[16] Q. Jiang, G. Song, G. Cong, Y. Wang, W. Si, and K. Xie, “Simulated
annealing based influence maximization in social network,” in
AAAI, 2011.

[17] K. Jung, W. Heo, and W. Chen, “Irie: Scalable and robust influence
maximization in social networks,” in ICDM, 2012, pp. 918–923.

[18] M. G. Rodriguez and B. Schölkopf, “Influence maximiza-
tion in continuous time diffusion networks,” arXiv preprint
arXiv:1205.1682, 2012.

[19] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-
optimal time complexity meets practical efficiency,” in Proceedings
of the 2014 ACM SIGMOD international conference on Management of
data. ACM, 2014, pp. 75–86.

[20] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-
linear time: a martingale approach,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM,
2015, pp. 1539–1554.

[21] C. C. Aggarwal, S. Lin, and S. Y. Philip, “On influential node
discovery in dynamic social networks.” in SDM, 2012, pp. 636–
647.

[22] H. Zhuang, Y. Sun, J. Tang, J. Zhang, and X. Sun, “Influence
maximization in dynamic social networks,” in ICDM, 2013, pp.
1313–1318.

[23] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis
of approximations for maximizing submodular set functions,”
Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

[24] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “A data-based ap-
proach to social influence maximization,” Proceedings of the VLDB
Endowment, vol. 5, no. 1, pp. 73–84, 2011.

Guojie Song received the PhD degree from
Peking University, Beijing, China, in 2004. He is
currently an associate professor with the School
of Electronic Engineering and Computing Sci-
ence and the vice director in the Research Cen-
ter of Intelligent Information Processing, Peking
University. His research interests include vari-
ous techniques of data mining, machine learning
and their applications in intelligent transportation
systems, and social networks.

Yuanhao Li , undergraduate student in the Com-
puter Science Department of Peking University.
He is under advising of professor Prof. Guojie
Song. His research interests lies in techniques
of data mining, machine learning and their ap-
plications in social networks, and artificial intelli-
gence.

Xiaodong Chen , Master student in the Com-
puter Science Department of Peking University.
He is in Key Laboratory of Machine Perception
(Ministry of Education) of Peking University. His
research interests include techniques of data
mining, machine learning and their applications
in intelligent transportation systems, and social
networks.

Xinran He , PhD student in the Computer Sci-
ence Department of University of Southern Cali-
fornia. His research interest lies in social network
analysis and social media analysis.

Jie Tang received the PhD degree from Ts-
inghua University, Beijing, China. He is an asso-
ciate professor in the Department of Computer
Science and Technology, Tsinghua University.
His main research interests include data mining
and social network analysis. He has been a vis-
iting scholar at Cornell University, Chinese Uni-
versity of Hong Kong, Hong Kong University of
Science and Technology, and Leuven University.
He is a senior member of the IEEE.


