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POLAR++: Active One-shot Personalized Article
Recommendation

Zhengxiao Du, Jie Tang? and Yuhui Ding

Abstract—We study the problem of personalized article recommendation, in particular when the user’s preference data is missing or
limited, which is knowns as the user cold-start issue in recommender systems. We propose POLAR++, an active recommendation
framework that utilizes Bayesian neural networks to capture the uncertainty of user preference, actively selects articles to query the
user for feedback, and adaptively learns user preference with one-shot learning. For the article recommendation, we design an
attention-based CNN to quantify the similarity between user preference and recommended articles, which significantly improves the
performance with only a few articles rated by the users. We evaluate the proposed POLAR++ on datasets of different scale and
sources. Experimental results demonstrate the effectiveness of the proposed model. We have successfully deployed POLAR++ into
AMiner as the recommendation engine for article recommendation, which further confirms the effectiveness of the proposed model.

Index Terms—Recommender systems, active learning, one-shot learning, cold-start
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1 INTRODUCTION

R ECOMMENDER systems play a key role in today’s web
applications. For example, in academic search sites

such as Google Scholar and AMiner [1], article recommen-
dation is essential for users to find the right articles as the
number of articles has been increasing dramatically in the
past years. The recently released Open Academic Graph
(OAG)1 consists of 208,915,369 papers, 52,678 venues, and
253,144,301 authors [2]. Many digital library providers
article recommendations to help users find recent or related
articles. These recommendations are often based on key-
word similarity between the current article and candidate
articles.

An article may cover several different topics. For ex-
ample, this current paper covers recommender systems, active
learning, one-shot learning, and cold-start. Users with different
backgrounds and interests may be interested in different
topics. Recommendation results without personalization
may ignore user preference and diversity, thus cannot satisfy
users.

Precisely capturing users’ preferences is always chal-
lenging. Still taking the academic search as an example, a
large portion of the users have the cold-start problem on var-
ious topics, partially because their profiles are incomplete or
missing and partially because we cannot collect sufficient
data for them on the different topics. Methods based on
implicit user feedback are typically preferred [3]. However,
the amount of user feedback might be limited. For new
users, only real-time implicit feedback is possible. Therefore,
it is difficult to directly apply the traditional recommenda-
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tion methods such as Content-based Recommendation [4]
or Collaborative Filtering [5] in this scenario. Inspired by
the recent success of one-shot deep learning [6], [7], [8],
we propose to learn a one-shot deep matching metric for
personalized article recommendation by actively querying
the user for feedback. For new users, we may not know their
preferences. How can we efficiently and effectively acquire
users’ preferences through a few user interactions?

Motivating Example Fig.1 gives an example from
AMiner.org to illustrate how to actively learn the prefer-
ences of a new user and recommending related articles. The
left of the figure gives the initial state of our problem. A
new user comes to the website and visits an article. Since
we do not know the user’s preferences, we cannot provide
a personalized recommendation. The Active Interaction part
shows our solution to this problem: we ask the user to give
feedback to a few articles. Different colors represent articles
in different fields. Once the user gives the feedback, with
the help of one-shot learning, the model learns the user’s
preferences and accordingly recommends articles the user
might be interested in, as shown in the right figure.

The problem now is the selection of the queried articles
would greatly influence the final recommendation perfor-
mance, as only with high-quality user feedback, one-shot
learning can learn the user’s preferences effectively. The
articles with feedback are only a small part of articles the
user might be interested in. As a result, the learned model
might be overfitting to the user’s interest with the limited
feedback, covering only a small part of the user’s interest. To
this end, we propose to combine an active learning strategy
with one-shot learning. However, it is still an open question
on how to design a strategy to actively learn the user’s
preferences and intentions with minimal user efforts.

Another challenge with personalized article recommen-
dation is that new articles come every day, without enough
time to collect user opinions. Therefore, content-based rec-
ommendation methods are preferred [9], [10]. Articles often
contain highly representative texts, like the abstract of a
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Fig. 1. Left: a motivation example for Active One-shot Article Recommendation Problem and our solution. Right: the one-shot personalized
recommendation with the user’s feedback and the ranking performance comparison of POLAR++ and several active learning baselines.

paper. Text similarity, which plays a crucial role in recom-
mender systems and information retrieval, poses another
challenge. The bag-of-words model, on which most tradi-
tional methods are based, ignores the information about
word order and co-occurrence. Therefore these methods
cannot capture the matching signals in phrases or higher
levels. Recently, due to the development of word embed-
dings and neural networks, many neural similarity mod-
els that can directly deal with word sequences are pro-
posed [11], [12], [13], [14], [15], but they often treat all the
words in an article indiscriminately. Therefore, they cannot
distinguish essential parts of an article from stereotyped
expressions such as the paper describes and we find that.

Contribution To address these challenges, we propose
POLAR++ (PersOnaLized Article Recommendation frame-
work++)2, to actively learn to provide personalized article
recommendations. Our main contributions can be summa-
rized as follows:

• To tackle the active one-shot article recommendation
problem, we propose a recommendation framework
based on Bayesian neural networks to capture the
uncertainty of user preference and actively learn
a new user’s preference via user interactions. The
Bayesian active learning method can be applied to
any deep models for ranking or recommendation
with a pairwise approach.

• Combining the proposed model with density-
weighted Expected Loss Optimization [17], we intro-
duce active learning into POLAR [16], an attention-
based CNN combined with one-shot learning for
personalized article recommendation to utilize ex-
tremely sparse implicit user feedback.

• We conduct experiments on datasets of different
sources and scales. Empirical results show that our
framework can perform stably and significantly bet-
ter than comparative methods.

2. A prior version was published in [16]

Organization The rest of the paper is organized as
follows: Section 2 reviews related work. Section 3 and 4
are devoted to our POLAR++ framework. The experimental
setting is presented in Section 5 and the experimental results
are analyzed in Section 6. Section 7 concludes the paper.

2 RELATED WORK

Related literature of this work can be categorized into three
groups: article recommendation, one-shot learning, and ac-
tive learning. In this section, we briefly review literature in
the three aspects.

2.1 Article Recommendation

Article recommendation plays an important role in aca-
demic search sites and digital libraries and has attracted
a lot of research interest. Giles et al. introduced the first
research-article recommender as part of the CiteSeer project
[18]. Content-based filtering [4] is one of the most widely
used and researched recommendation method and has been
successfully applied in article recommendation [9], [19],
[20], [21]. Most approaches use plain words as features,
although some use n-grams [20], topics [9], [21], and cita-
tions [18]. Collaborative filtering [5] makes recommendation
predictions by utilizing the explicit or implicit ratings of the
current user and similar users [22]. However, in article rec-
ommendation, collaborative filtering often suffers from the
cold-start problem [10]. Some works also use graph-based
methods to explore the inherent connections in academia
[23], [24].

Our work is also related to information retrieval [11],
[25], [26] and semantic matching [12], [13]. Traditional meth-
ods for measuring the similarity between two pieces of texts,
such as BM25 [26] and TF-IDF [25], are based on the bag-of-
words model and do not perform well in identifying the
matching of phrases and sentences. Models based on neural
networks can be categorized into two groups. The first
group, called representation-based models, get the distributed
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semantic representation of an article with neural networks
and then take as the similarity score the similarity (often
cosine similarity) between distributed representations of
two articles [11], [13], [27]. However, these models cannot
identify the specific matching signals. The second group of
models, called interaction-based models, use neural networks
to learn the patterns in the word-level interaction of two
articles, usually based on word embeddings [12], [15], [28].
These models lack the explicit expressions of word weights
but rather depend on the characteristics of word embed-
dings. Representation-based models and interaction-based
models have been combined in Duet [14] to improve the
performance.

2.2 One-shot Learning

One-shot learning is essential for classification in cases
where only a few examples are available. The Bayesian
method in [29] models the knowledge learned in other
classes as a prior probability function w.r.t. the model pa-
rameters and generates a posterior density to recognize new
instances given an exemplar of a novel class. Recent one-
shot learning methods based on deep learning fall into two
categories. Metric-based approaches try to learn a similarity
metric to help predict the label of instance. In [6], a Siamese
network is learned with several convolutional layers used
before the fully-connected layers and the top-level energy
function. Matching Nets [8] take as input not only the new
sample but also a small support set that contains labeled
examples. An LSTM with read-attention over the support
set implements the embedding function. Meta-learning-based
approaches aim to learn how to update the parameters or
directly predict the parameters given a few training in-
stances, including Memory-Augmented Network [7] and
LSTM-based meta-learner [30].

2.3 Active Learning

Active learning is a subfield of machine learning in which a
learning algorithm can choose the data from which it learns.
It is closely related to Optimal Experiment Design [31] in the
statistic literature. There are three different scenarios: mem-
bership query synthesis [32], stream-based sampling [33],
and pool-based sampling [34]. One of the most common
frameworks for active learning is Uncertainty Sampling [34],
where the active learner selects the instance for which the
prediction uncertainty is highest. The uncertainty measure
includes Entropy [35] for classification and Variance [36]
for regression. The drawback of uncertainty sampling is
that it often samples the outliers or the instances with
greater noise. Query-by-Committee [37] is more theoretically-
motivated, which maintains a committee of models and
minimizes the version space by querying in controversial re-
gions of the input space, which are instances the committee
disagree about most. Based on the decision theory, Expected
Error Reduction [38], [39] aims to maximize the expected
reduction of the generalization error, but is also the most
computationally expensive framework.

Bayesian-based active learning has received much at-
tention recently. A Bayesian information-theoretic active
learning approach is presented in [40]. Unlabeled instances

whose prediction the parameters under the posterior dis-
agree about are selected. Expected Loss Optimization [17]
selects the instance that maximizes the expected loss based
on Bayesian decision theory. In [41] a Bayesian active learn-
ing algorithm for deep learning in image data is proposed
based on the idea in [42].

Most works that apply active learning to recommender
systems are based on collaborative filtering [43], [44], [45].
The active learning method is also called the Ask-To-Rate
technique [46]. A comprehensive survey can be found in
[47]. The Popularity strategy and the Coverage strategy
are two representative heuristic methods, but they are not
personalized. More advanced methods are based on un-
certainty reduction [48] or error reduction [49], [50]. For
example, in [44] a decision tree is built to model the Ask-To-
Rate process for cold-start users. However, these methods
are based on collaborative filtering methods with a fixed
item set, while our method utilizes the text information to
provide recommendations of the latest articles. Recently, an
attribute-driven active learning method for item cold-start
problem is proposed in [51]. They propose four heuristic
criteria to select diverse and representative users for ratings.
However, none of the four criteria considers the uncertainty
of preference predictions, which is necessary for the effi-
ciency in the user cold-start problem.

3 PRELIMINARY

3.1 Problem Definition
To begin with, we first define the one-shot personalized
article recommendation problem as follows.

Definition 1 (One-shot Personalized Article Recommenda-
tion Problem [16]). The input of the problem is a query
article dq , the set of candidate articles D = {di}Ni=1, and
a support set S = {(d̂i, ŷi)}Ti=1 related to user u, where d̂i
is a support article and ŷi represents the user feedback for
d̂i. The output is a totally ordered set R(dq, S) ⊂ D with
|R| = k, which is the top-k recommendation for u with
respect to dq .

Note that either the query article dq or the support set
S could be empty (but not both of them). In the former
case, it is the purely personalized article recommendation.
In the latter case, it is the non-personalized related article
recommendation. At this point we assume that the support
set for a user u is fixed. For a new user, the support set
is empty, which means that it is impossible to provide
personalized recommendations for the user.

Moving from this, we define the new problem in the
pool-based sampling setting [34] of active learning :

Definition 2 (Active One-shot Article Recommendation
Problem). The input of the problem is a query article dq ,
an unlabeled set U , and an interview budget b (number
of feedback acquisition from the user). An active strategy
π selects an article from U and gets its feedback from the
user at each step until b article-feedback pairs are collected
and form the actively-built support set Q. The output is the
recommendation result R(dq, Q).

We define the active learning problem in the adaptive
setting (which is also called Personalized Active Learning in
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[47]). When the model selects the i-th article, it has access to
the previous (i− 1) articles and ratings, so that the strategy
can dynamically adapt to different users and improve the
efficiency of the interview process.

3.2 Bayesian Neural Networks
A Bayesian neural network is a neural network with a prior
distribution on its parameters. Given the weight matrix Wi

and the bias vector bi for the i-th layer, we often place a
Gaussian distribution over the weight matrix:

p(Wi) ∼ N (0, σ2
i I) (1)

For simplicity, we assume a point estimate for the bias
vector bi.

Let ω = {Wi}Li=1 denote the set of model parameters
and fω(x) the network output with respect to input x and
parameter ω. Given a training set Dtrain, the parameter
posterior is p(ω|Dtrain).

3.3 Variational Inference by Dropout
In practice, evaluation of the true posterior p(ω|Dtrain) can-
not be done analytically and an approximation is needed.
We define an approximating variational distribution q(ω),
which is easy to evaluate. The approximation should be as
close to the posterior as possible, with minimal Kullback-
Leibler(KL) divergence to the true posterior. Minimizing the
KL divergence is equivalent to maximizing the log evidence
lower bound:

LV I =
∫
q(ω) log p(Dtrain|fω(x))dω −KL(q(ω)||p(ω))

(2)
which is the basic equation of Variational Inference [52].

Following [42], we use the distribution of the network
parameter with dropout [53] as q(ω). Consider a neu-
ral network with only one layer, which gives output as
y = σ(Mx+b). If we use dropout with zeroing probability
p on the input vector x, , it’s equivalent to

ỹ = σ(Mx̃+ b)

= σ(M(ε� x) + b)

= σ(M(diag(ε) · x) + b)

= σ((M · diag(ε))x+ b)

= σ(Wx+ b)

εi ∼ Bernoulli(1− p) for i = 1, 2, · · · ,K
Therefore dropout on x turns the weight matrix of the

network into a random variable W = M · diag(ε) and M
is the parameter of its distribution. We can apply dropout
in every layer of a network. The corresponding distribution,
which we call dropout distribution, can function as the ap-
proximating distribution q(ω).

4 APPROACH

Given a query document dq and a support set S, for each
article di in D, we predict the corresponding score yi =
s(di|dq, S). k articles in D with the largest recommendation
scores are selected as the top-k recommendation.

To solve the Active One-shot Article Recommendation
Problem, we model the uncertainty of recommendation

scores explicitly in our proposed model. Therefore, unlike
our previous work, the prediction of the recommendation
score is a distribution, not a single point, of R. We learn
a Bayesian NN f that takes the triple xi = (dq, S, di) as
input, and gives output fω(xi). We define a likelihood
function over the network’s output and get the distribution
p(yi|fω(x)).

It’s noted that the model parameters ω are random
variables with prior and posterior distribution described
in Section 3.2. With the posterior of parameters, we can
get the predicted distribution given a new data point x by
integrating:

p(y|x,Dtrain) =
∫
p(y|fω(x))p(ω|Dtrain)dω (3)

which is also referred to as marginalizing the likelihood over
ω.

4.1 One-shot Personalized Recommendation

4.1.1 One-shot Personalization

The recommendation problem for a specific user u can be
considered as identifying whether u will accept an article or
not and converted into binary classification. For each pair
(d̂, ŷ) ∈ S, ŷ is binary(1 for relevant and 0 for irrelevant). S
can be seen as the training set for this classification problem,
where d̂ is a training instance and ŷ is the corresponding
label. It is probable to make an analogy between one-
shot learning and our problem because S is of minimal
size or even empty. Inspired by [8], our model computes
fω(dq, S, di) as:

fω(dq, S, di) =

cω(dq, di) S = ∅
cω(dq, di) +

1
|S|

∑
(d̂,ŷ)∈S

cω(d̂, di)ŷ S 6= ∅

(4)
where cω(·, ·) is our attention-based CNN for text similarity
with parameters ω, which will be discussed in the following
part. The first part of s is the matching score with the
query article. The second part, the personalized score, is the
normalized linear combination of the feedback in S with
text similarity as coefficients, and equals zero when S is
empty. The whole framework is illustrated in Figure 2.

4.1.2 Attention-based CNN for Text Similarity

Each article di is a sequence of li terms [ti1, ti2, · · · , tili ] (We
use term instead of word to show that the article has gone
through preprocessing including tokenization and removal
of stopwords). The matching matrix of article dm and dn,
M(m,n) ∈ Rlm×ln , is defined as follows:

M
(m,n)
i,j =

wT
mi ·wnj

‖wmi‖ · ‖wnj‖
(5)

where wmi and wnj are the word embeddings of term tmi
and tnj . Since the cosine similarity of word embeddings can
capture the semantic similarity [54], M(m,n)

i,j represents the
similarity between tmi and tnj .

Since all terms are treated equally in the matching matrix
without any weighting, the matching matrix cannot reflect
the term importance, thus cannot distinguish the matching
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Fig. 2. The architecture of the overall framework. The articles are transformed into sequences of word embeddings through the embedding layer.
The attention matrix and matching matrix are computed and sent to the CNN. The matching scores are combined with the support set gained from
active interaction with the user to get the final scores.

TABLE 1
Attention mechanisms in CNN

Method Description

Object Parts
Selection

In fine-grained classification [55], image
patches which contain parts of certain
objects are selected through a super-
vised process to extract discriminative
features.

Attention Matrix
In [56], an attention matrix is employed
to give different attention weights to
units in a feature map.

Configurable
Convolution

For visual question answering task [57],
configurable convolutional kernels are
generated by transforming the question
embeddings from the semantic space
into the visual space, which implements
the question-guided attention.

signals of essential terms from those of structural, unimpor-
tant terms.

To add the attention mechanism, we go over several
applications of the attention mechanism in CNN in Table
1. We think the attention matrix, which can represent the
importance of units in the feature map, quite suitable for our
problem. The attention matrix, A(m,n) ∈ Rlm×ln is defined
as follows:

A
(m,n)
i,j = rmi · rnj (6)

where rmi and rnj are the weights of term tmi and tnj .
The matching matrix M(m,n) and the attention matrix

A(m,n) are combined by element-wise multiplication:

Z(m,n) = M(m,n) ⊗A(m,n) (7)

Z(m,n) is the input of a CNN that consists of several con-
volutional layers and max-pooling layers. Similar to CNNs
in image recognition [58], the filters in low-level convolu-
tional layers can capture different matching signals between
phrases, while the filters in high-level convolutional layers
can capture the matching signals between sentences and
paragraphs. The max-pooling layers can downsample the
signals and reduce the spatial size of feature maps.

The output of the last max-pooling layer is then turned
into a vector and passed through an MLP with several
hidden layers. In this paper, we use only one hidden layer.
For the final output, a single unit is connected to all the units
of the last hidden layer.

4.1.3 Local Weight and Global Weight
Traditional methods for text similarity often combine two
types of term weights: the local weight, which depends
on the specific document where the term occurs, and the
global weight, which relies on the property of the whole
corpus. Take the TF-IDF [25] method as an example. The
TF (term frequency, how many times the term occurs in the
given document) is the local weight, and the IDF (inverse
document frequency, the inverse of how many documents
the term occurs in) is the global weight.

We also combine the two weights in our model. The
final weight of a term is the product of its local and global
weights:

rij = µij · υij (8)
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Fig. 3. A two-dimensional example of the feature vectors for local
weights.

where µij and υij are respectively the local and global
weights of the term tij .

Local Weight: The local weight measures the relevance
of a term to the subject of the document. For example, in the
following text [59]:

Example 1. We propose a low-complexity audio-visual per-
son authentication framework based on multiple features
and multiple nearest-neighbor classifiers. The proposed
MCCN method delivers a significant separation between the
scores of client and impostors as observed on trials run on a
unique database.

nearest-neighbor, classifier and features are obviously more
important than complexity and database, and should have
higher local weights, because they are more related to the
topic of the text: audio-visual authentication.

Traditionally, the local weight is a math function of the
frequency that the term occurs in a document, such as the
term frequency (TF) in TF-IDF [25] or BM25 [26] ranking
function:

BM25(d, q) =
n∑
i=1

IDF(qi)
f(qi, d)(k1 + 1)

f(qi, d) + k1(1− b+ b |d|
l
)

(9)

where qi is the i-th term of the query, f(qi, d) is the term
frequency of qi in d and l is the average length of documents.
k1 and b are free parameters.

The basic idea of these methods is that the more impor-
tant for a document a term is, the more frequently it occurs
in the document. This is not always true. In Example 1, the
important terms such as authentication and classifier occur
only once, while the terms that occur more than once are
stopwords like of and on. Therefore, a better mechanism for
local weights is needed.

Inspired by [60], we propose a local weight network
based on distributed word representations. The basic idea is
that, because of the linearity of word embeddings, the sub-
ject of a document can be expressed as the mean of vectors
of its terms. The difference between the mean vector and
term vector can be seen as the semantic difference between
the document and the term.

The input vector xij for the local weight µij is the
difference between the word vector wij and the mean vector
of di:

xij = wij −wi (10)

where

wi =
1

ni

ni∑
k=1

wik (11)

Figure 3 gives an illustration of the feature vector.
We employ a feed-forward network to learn the patterns

in the feature vector xij and produce the local weight.
The network is a multilayer perceptron(MLP) with multiple
hidden layers and gives outputs within an interval.

µij = σ(W(L) · u(L)
ij + b(L)) + α (12)

where L is the number of hidden layers in the feed-forward
network, u(L)

ij is the output of the last hidden layer, and σ
is the Sigmoid function. α is a nonnegative hyperparameter
to set a lower bound and avoid giving a term a local weight
close to 0. The ratio of the maximum value to the minimum
value of local weights is 1 + 1

α . It indicates that the smaller
α is, the wider the range of local weights is.

Global Weight: The global weight measures how dis-
tinctive and specific a term is. It is independent of the
specific document but depends on the whole corpus. For
example, in a set of papers on computer science, computer
and software are less specific than medicine and neural and
should be given lower global weights. However, in a medi-
cal document corpus, it may just be the reverse.

The most widespread form of global weights is the
inverse document frequency (IDF). The idea is that the
specificity of a term can be quantified as an inverse function
of its document frequency. There are a whole family of
inverse functions, and the most common one is:

IDF(t) = log(
N

nt
) (13)

where t is the aim term, nt is the document frequency of t
and N is the total number of documents in the corpus.

Since the IDF measure has long been used and the use
of other measures such as PageRank did not lead to better
results, here we also employ IDF as the measure of global
weights. But to narrow the range of global weights and
control the effect, instead of the raw IDF values, we use:

υij = [IDF(tij)]
β (14)

where β is a hyperparameter within the interval (0,1). The
smaller β is, the narrower the range of global weights is.

4.2 Bayesian Active Learning in Recommendation
4.2.1 Pairwise Loss for Bayesian Learning
We formulate the training set in the setting of Pairwise
Approach of Learning to Rank [61]. It means that Dtrain =

{(d(i)q , S(i)), d
(i)
+ , d

(i)
− }

N

i=1
, where article d(i)+ is ranked higher

than article d(i)− with respect to query article d(i)q and support
set S(i). We transform it into the constraint on the recom-
mendation score as y(i)+ − y

(i)
− ≥ 1 and the log likelihood in

the first term of (2) becomes:

log p(Dtrain|fω(x))

=
N∑
i=1

log p(y
(i)
+ − y

(i)
− ≥ 1)|fω(x(i)

+ ), fω(x
(i)
− )

Let f+ and f− denote fω(x+) and fω(x−)

p(y+ − y− ≥ 1|f+, f−)

=

∫ ∞
f−

∫ ∞
y−+1

p(y+|f+)p(y−|f−)dy+dy−
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The distribution of the score given model output,
p(y|fω(x)), partly decides the form of our objective func-
tion. We didn’t use a Normal distribution like most cases,
because the square difference of the Normal distribution
can show an unstable behavior in the initial points of the
Neural Network weight optimization. Instead, we define the
distribution p(y|fω(x)) as an Exponential Distribution:

p(y|fω(x)) =
{
τ exp(−τ(y − fω(x))) y ≥ fω(x)
0 y < fω(x)

(15)

where τ is the model precision.
With this distribution, we have:

p(y+ − y− ≥ 1|f+, f−)

=

∫ ∞
f−

∫ ∞
y−+1

τ2 exp(−τ(y+ − f+ + y− − f−))dy+dy−

When f+ − f− ≤ 1, it is equal to∫ ∞
f−

τ exp(−τ(2y− − f+ − f− + 1))dy−

=
1

2
exp(−τ(f− − f+ + 1))

When f+ − f− > 1, it is equal to∫ f+−1

f−

∫ ∞
f+

τ2 exp(−τ(y+ − f+ + y− − f−))dy+dy−

+

∫ ∞
f+−1

∫ ∞
y−+1

τ2 exp(−τ(y+ − f+ + y− − f−))dy+dy−

=1− exp(−τ(f+ − f− − 1)) +
1

2
exp(−τ(f+ − f− − 1))

=1− 1

2
exp(−τ(f+ − f− − 1))

Therefore we have

log(Dtrain|fω(x)) =
N∑
i=1

Eω[(d(i)q , S(i)), d
(i)
+ , d

(i)
− ]

where

Eω[(dq, S), d+, d−]

=

{
τ(1− f+ + f−) f+ − f− ≤ 1

log(1− 1
2 exp(−τ(f+ − f− − 1))) f+ − f− > 1

(16)

When f+−f− ≤ 1, this function is the same as the hinge
loss function except for the coefficient τ . However, when
f+ − f− > 1, the loss will not directly drop to zero, but
gradually decrease to zero as f+ − f− increases. Therefore,
it can be considered as the smoothed version of hinge loss.

As for the second term in (2), it’s proved in [42] that it can
be approximated by L2 regularization term

∑
Wi∈ω

λi||Wi||2,

as long as the weight decay λi satisfies:

λi =
1− pi
2σ2

i

(17)

where p(Wi) ∼ N (0, σ2
i I).

Above all, maximizing (2) can be approximated as mini-
mizing the following loss function

L =

∫
−q(ω)

N∑
i=1

Eω(D(i)
train)dω +

∑
Wi∈ω

λi||Wi||2 (18)

The final problem is, to minimize the above loss func-
tion, we have to integrate over the parameter space. The
integration can be approximated by Monte-Carlo Sampling
from q(ω). For a neural network with dropout, Monte-
Carlo Sampling is equivalent to forward pass with dropout.
Therefore, minimizing the objective in (2) is equivalent to
optimizing the following loss function in neural networks:

L = −
N∑
i=1

Eω(D(i)
train) +

∑
Wi∈ω

λi||Wi||2 (19)

After training, forward pass with dropout through the
network is equivalent to sampling from the optimal dis-
tribution q∗(ω). This leads to a Monte-Carlo integration to
compute the predicted distribution:

p(y|x,Dtrain) =
∫
p(y|fω(x))p(ω|Dtrain)dω

≈
∫
p(y|fω(x))q∗(ω)dω

≈ 1

T

T∑
t=1

p(y|f ω̂t(x))

where ω̂t ∼ q∗(ω), which is the model parameter sampled
from optimal dropout distribution.

The optimization is done through standard backprop-
agation [62] and stochastic gradient descent method with
mini-batches. For regularization, we use dropout in the
output of every hidden layer and early stopping strategy
[63] to avoid over-fitting.

4.2.2 Expected Loss Optimization
The active learning metric we choose is Expected Loss

Optimization [17]. The basic idea is to choose the instance
that maximizes the expected loss of the current best action. For
the ranking problem, the action for an instance refers to
deciding its ranking in the list. Therefore the expected loss
for article di given dq and S is

EL(di|dq, S)

=

∫
Yi

min
π

∫
yi

l(π,Y)P (Y|(dq, S),Dtrain)dyidYi (20)

where l(·, ·) is the loss function, Y is the vector of the
recommendation scores of all the documents and Yi is Y
after removing yi.

For ranking problem, we define the loss function as the
difference between the DCG for current ranking and the
ranking with the largest DCG:

l(π,Y) = max
π′

DCG(π′,Y)−DCG(π,Y) (21)

where DCG(π,Y) =
∑
i

yi
log2(1+π(i))

.
Combining (20) and (21), we have:

EL(di|dq, S)

=

∫
Yi

[

∫
yi

max
π

DCG(π,Y)P (Y|(dq, S),Dtrain)dyi

−max
π

∫
yi

DCG(π,Y)P (Y|(dq, S),Dtrain)dyi]dYi

(22)

An important property of expected loss for ranking is
that it considers not only the uncertainty of the article’s pre-
dicted score, but also its current ranking among unlabeled
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Algorithm 1 Active Personalized Article Recommendation
Algorithm
Input: A new user u, the query document dq , an unlabeled

set U , the query budget b.
Output: The support set S for u
S ← ∅
for i=1to N do {N=size of unlabeled set}
ai ←

∑N
j=1 c(di, dj)

end for
for n=1to b do

for i = 1 to T do {T=number of MC sampling}
for j = 1 to N do

Take forward pass through the network with
dropout and get the output yij = f(dq, S, di)

end for
end for
for j = 1 to N do
EL(j)← 0

gj ←
∑N

k=1 y
k
j

N
for i = 1 to T do
dij ← BDCG({yik}Nk=1))
for k = 1 to N ,k 6= j do
gk ← yik

end for
EL(j)← EL(j) + dij − BDCG({gk}Nk=1)

end for
end for
i← argmax

(dj ,u(dj)/∈S)
aj · EL(j)

S ← S ∪ {(di, u(di))}
end for

articles. With the same predicted uncertainty, the article with
a higher ranking has a higher expected loss. In this way,
ELO surpasses traditional uncertainty sampling, which only
considers the prediction uncertainty.

However, ELO can still be troubled by outliers, the
instances that are located in the sparse area of the input
space. We further propose to combine the density with ELO:

argmax
di

EL(di|dq, S)×
1

|U|
∑
dj∈U

c(di, dj) (23)

where c(di, dj) is the similarity between di and dj predicted
by our CNN model.

The latter part in (23) is the average similarity between
di and articles in U . (23) aims to find the instance that is
representative of most unlabeled articles while maximizing
the expected loss at the same time. The completed algorithm
for active learning is described in Algorithm 1.

5 DATASET AND EXPERIMENT SETTING

To evaluate the proposed model, we conduct experiments
on article recommendation problem in non-personalized
setting, personalized setting, and active setting, based on
datasets of different sources and scales, in comparison
with baselines in both article recommendation and active
learning. In this section, we will introduce the dataset and
experiment setting.

5.1 Dataset

We evaluate the performance of the proposed model on ar-
ticle recommendation two small, manually labeled datasets
and a large-scale dataset based on user clicks.

The first dataset is based on papers from AMiner [1] and
consists of 188 query papers with ten candidate papers for
each query. The second dataset is based on documents of
patents coming from the Patent Full-Text Databases of the
United States Patent and Trademark Office3 and consists of
67 queries with 20 candidates for each query. In each dataset,
we gather relevance judgments from college students or ex-
perts on patent analysis as the ground truth. The relevance
is expressed as binary: relevant or irrelevant. Abstracts of
the papers or the patent documents are used as texts and
texts longer than 96 terms are truncated.

The third dataset is Related-Article Recommendation
Dataset (RARD) [64] from Sowiport, a digital library of
social science articles that displays related articles to its
users. The dataset contains 63923 distinct queries with user
click log. Each query article has an average of 9.1 articles
displayed. A recommender-as-a-service provider Mr. DLib
generates the displayed documents, so they are of high
relevance to the query. We choose 800 queries that have the
most clicks for test and other queries are used for training.
Since the abstracts of some articles are missing, the titles and
the abstracts of articles are combined as texts. Texts longer
than 64 terms are truncated.

To conduct experiments on Active One-shot Article
Recommendation Problem, we use the Citation Network
Dataset in AMiner [1]. The citation data is extracted from
DBLP, ACM, MAG (Microsoft Academic Graph), and other
sources. The version we used contains 3,272,991 papers and
8,466,859 citations. The citations of a paper are randomly
divided into two equal parts. The first part is used as the
support set(or unlabeled set in Active Learning setting) and
the second part is used as the positive recommendations for
training and evaluation. To ensure the quality, we randomly
select the negative recommendations from the neighbor-
hood of the paper in the citation network. Abstracts of
papers are used as texts and texts longer than 96 terms are
truncated.

5.2 Baselines for Article Recommendation

The following are several traditional methods.

• TF-IDF [25]: The similarity score between a query
and a document is computed by summing the
weights of the query’s terms which also occur in the
document. The weight of a term is the product of its
TF and IDF weights.

• Doc2Vec [65]: We get the distributed representation
of each article via Paragraph Vector model. The sim-
ilarity score between two articles is produced by the
cosine similarity of their representations.

• WMD [66]:The Word Mover’s Distance (WMD) is
the minimum distance required to transport words
from one document to another based on the word
embeddings.

3. http://patft.uspto.gov/

http://patft.uspto.gov/


IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, NOVEMBER 2018 9

TABLE 2
Results of relevance ranking(%). NG stands for NDCG.

AMiner Patent RARD
Method NG@3 NG@5 NG@10 NG@3 NG@5 NG@10 NG@1 NG@3 NG@5

TF-IDF 74.3 81.8 87.5 51.8 56.4 63.4 37.6 39.8 46.3
Doc2Vec 60.0 65.8 79.1 44.6 45.6 53.5 28.4 34.0 40.0

WMD 73.0 76.3 86.2 57.4 58.5 61.9 23.4 38.2 46.8

MV-LSTM 56.2 61.2 76.2 60.2 59.0 65.0 22.2 30.7 39.3
Duet 66.6 74.4 82.6 54.5 57.5 64.6 22.3 31.1 39.8

DRMM 75.0 79.9 87.1 55.0 56.2 64.7 33.1 36.3 40.6
MatchPyramid 73.5 80.0 86.8 56.4 61.4 64.4 29.1 36.2 42.8

POLAR 80.3 85.2 90.1 67.8 69.5 73.6 42.8 46.3 51.5

The following are several neural matching models.

• MV-LSTM [13]:The interactions between different
positional sentence representations generated by a
Bi-LSTM form a similarity matrix to generate the
matching score.

• MatchPyramid [12]: A CNN is built on the standard
matching matrix to get the matching score.

• DRMM [28]:The matching between the terms in the
query and the document is expressed as a histogram,
where only the counts of the matching score in
different intervals are reserved. The histogram is sent
to an MLP to get the matching score.

• Duet [14]:An interaction-based model and a
representation-based model are combined to get the
matching score of two articles.

For the fairness of comparison, all models don’t involve
user feedback, which will be discussed in Section 6.

5.3 Baselines for Active Learning
• Random: The active documents are selected ran-

domly from the unlabeled set. Any method that can’t
beat this baseline doesn’t make sense.

• Entropy: The entropy is a standard uncertainty mea-
sure for classification gained from information the-
ory. We define the recommendation problem as bi-
nary classification to predict the recommendation
score is 0 or 1 and pi = p(yi = 1), then

H[yi] = −[pi log pi + (1− pi) log (1− pi)]

• Relevance: For this method we always choose the
document that has the largest recommendation score,
which means it’s the most relevant to the user’s
known preference.

• Expected Error Reduction [38]: The active selection
strategy is to maximize the expected reduction of
the loss function after retraining the model on the
new training set. We use the cross entropy as the loss
function.

• BALD [40]: The active selection strategy is to max-
imize the expected reduction of parameter entropy
after retraining the model on the new training set. By
removing the part unrelated to ~x and rearrange the
order of integral, the objective can become entropies
in y space:

argmax
x

H(y|x,Dtrain)−Eω∼p(ω|Dtrain)[H[y|fω(x)]]

The following are several variations of our proposed
model:

• POLAR++Variance: The variance is a common un-
certainty measure for regression. We use E[·] to de-
note Eω∼p(ω|Dtrain),y∼p(y|fω(x))[·]

Var(y|x,Dtrain)
=E[(y − E[y|ω])2] + E[(E[y|ω]− E[y])2]

The first term is a constant ( 1τ )
2 dependent on the

model precision. The second term can be approxi-
mated by the variance of predicted y in Monte-Carlo
Sampling.

• POLAR++ELO The active selection strategy is to
maximize the Expected Loss for Ranking without
density according to (22).

• POLAR++DWELO DWELO (Density-Weighted Ex-
pected Loss Optimization) is the complete active
leraning algorithm which combines ELO and density,
as described in Algorithm 1.

5.4 Parameter Setting
The word embeddings in all the models above are 256
dimensions trained on Wikipedia via the skip-gram model,
using hierarchical softmax and negative sampling [54].

In the Local Weight Network there are two hidden
layers, with 64 and 32 hidden units respectively. The CNN
has three convolutional layers and three max-pooling layers.
The first and second convolutional layers both have 32
filters and the third convolutional layer has 16 filters. All
convolutional filters are set to 3 × 3 and all max-pooling
kernels are set to 2 × 2. The number of hidden units in the
full-connected layer is set to 256. For the hyperparameters
α and β, we set α = 1 and β = 1

4 , which is discussed in
Section 6.

We set T in Algorithm 1, the number of MC sampling,
as 32, to balance the precision and time complexity.

6 RESULT AND ANALYSIS

6.1 Non-Persoalized Setting
In the non-personalized setting, only the query article is
given while the support set is kept empty. Table 2 shows the
ranking accuracy of different methods in terms of NDCG.

From the evaluation results, we can observe that our pro-
posed model POLAR can perform better than all the base-
lines. POLAR can outperform the best baselines 6.9%-13.2%
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Fig. 4. NDCG@5,10 and 20 as the functions of queried articles for different active learning methods.

Fig. 5. NDCG@5, 10 and 20 as the functions of queried articles for different variations of POLAR++.

on NDCG@3 and 3.3%-20.3% on NDCG@5. The average
improvements of NDCG on each dataset are respectively
3.8%, 8.1% and 6.4%.

Among the traditional ranking models, TF-IDF is the
most competitive one, even outperforming the best neural
baselines by 5.5% in some cases. But we can also find that
TF-IDF performs not very well on the patent dataset. The
reason might be that documents of patents are often written
by non-academic researchers and terms on the same topic
might vary from person to person. Only taking the exact
matching signals into account, TF-IDF might be unsuitable
for such a situation, while the methods based on word
embeddings can perform better.

As for the neural ranking models, we can see that
interaction-based models, including DRMM and Match-
Pyramid, perform slightly better than representation-based
models. Although the Duet combines the interaction-based
model and the representation-based model, it doesn’t per-
form better than individual interaction-based models.

6.2 Personalized Setting

We utilize the datasets in the previous part to simulate the
personalization problem. We select those queries that have
more than one positive-labeled candidate. For every query,
we randomly divide the labeled documents into two parts.
The first part is used as the support set, and the second
part is used as the candidate set to recommend. Then we
compare the proposed one-shot framework (called POLAR-

TABLE 3
Performance for the model with one shot learning and without. NG

stands for NDCG.

AMiner Patent RARD
Method NG@1 NG@3 NG@1 NG@3 NG@1 NG@3

POLAR-ALL 76.1 79.2 52.3 66.2 36.5 36.5
POLAR-OS 79.1 81.9 57.1 69.7 39.4 39.2

OS) with the best model that ignores support sets in the
previous part (called POLAR-ALL).

The support set is quite sparse compared with the size of
candidates. For example, in the RARD dataset, the average
size of support set for each query is only 1.5. In the AMiner
dataset, the size of the support set is only 1 for 45% queries
and 2 for 47%. In the patent dataset, the sizes of 75% support
sets are no greater than 3.

The result is shown in table 3. We can see that the per-
formance can be improved with a small amount of feedback
data. On average, POLAR-OS can outperform POLAR-ALL
by 7.0% on NDCG@1 and 5.7% on NDCG@3.

6.3 Active Learning Setting
In this section, we show that the proposed active learning
method can effectively select informative articles to improve
recommendation performance in the active learning setting.
For each recommendation episode, the support set is empty
at the beginning. At each step, we select an unlabeled article
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Fig. 6. The performance of different attention matrices.

according to the evaluated method and add the article
and corresponding label to the support set. Following the
traditional evaluation method for active learning, we show
the NDCG of different strategies as the function of rated
articles. Fig. 4 shows the NDCG comparison results on the
Citation Dataset.

We can see that POLAR++DWELO can outperform all
the baselines w.r.t. NDCG@n metrics. As n increases, the
margin between our method and baselines continuously
increases. This is also reasonable because when n is small,
even the worst strategy can find a few articles that the
user must be interested in. A wise strategy aims to find the
complete preferences of the user.

All the baselines can achieve better performance than the
Random strategy, which proves their utility in active learn-
ing. Among all the non-random baselines, the Relevance
strategy performs worst, because the Relevance strategy
always chooses the article that is most relevant to the user’s
known preferences, but often less informative.

The Expected Error Reduction method can perform best
at first but soon fails. As the number of rated articles
increases, its performance even falls behind Relevance strat-
egy. This is because it chooses the article which can reinforce
the existing belief over the unlabeled articles. Therefore it
can be restricted to the user’s partial interest.

For uncertainty based method, BALD performs slightly
better than Entropy. This is quite surprising because BALD
is derived from minimizing the entropy of parameter pos-
terior, which does not make sense in our one-shot learning
setting.

6.4 More Analysis

6.4.1 Comparison of Different Variations of POLAR++
For simplicity, we only show the result of the complete al-
gorithm, POLAR++DWELO, along with those of baselines,
in Fig. 4. The NDCG comparison results among different
variations of our proposed method are shown in Fig.5.

Both without the help of density information,
POLAR++ELO can significantly outperform PO-
LAR++Variance. This confirms our idea in Section
4.2.2: Expected Loss Optimization is a better active
learning strategy for the ranking problem than Uncertainty
Sampling, because it considers not only the prediction
uncertainty but also the relative ranking in the list. The
density-weighted version of ELO, POLAR++DWELO,

TABLE 4
The statistical analysis of the local and global weights.

Weight Max Min Mean Std
Local 2.00 1.00 1.20 0.15

Global 1.96 1.08 1.86 0.08

can further perform slightly better than POLAR++ELO.
This proves that with the help of density information, the
algorithm can choose the informative articles, rather than
outliers, the articles that are not representative in document
space.

6.4.2 How the Attention Matrix Can Help

To illustrate the improvements different parts of the at-
tention matrix bring, we compare three versions of the
proposed model with different attention matrices. To com-
pute the attention matrix, POLAR-LOC uses only the local
weights and POLAR-GLO uses only the global weights.
POLAR-ALL uses both local weights and global weights.
The performance in terms of NDCG@3 is shown in Figure
6.3.

In most cases, POLAR-LOC, the model with the local
weight network performs better than POLAR-GLO. The
reason might be that the local weight network is trainable,
with greater ability to learn the importance of terms. IDF is
only a statistical way to get approximate global weights.
The complete model, POLAR-ALL, which combines the
two weights, performs significantly better than either of
them. This confirms that the local and global weights are
complementary to each other. However, we also see that
in RARD, the performances of POLAR-LOC and POLAR-
All are quite close, which is against the result on other
datasets. We guess the reason might be that RARD dataset is
in German and contains less unlabeled texts. This can lead
to the inaccurate global weights based on IDF values and as
a result, global weight matrix cannot help much in POLAR-
ALL.

To have a better understanding of how local and global
weights work, we show the pixel images of four matrices in
Figure 7. From the images we can find that the local weights
of most terms are low while the global weights of most
terms are high. The statistical analysis of the local and global
weights in Table 4 also supports this idea. Therefore, we can
conclude that the global weights function by deemphasizing
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Fig. 7. The visualization result of four matrices used in the matching of a pair of texts. The brighter the pixel is, the larger value it has. The text pair
is as follows(the words in brackets are removed stopwords): T1:novel robust stability criteria (for) stochastic hopfield neural networks (with) time
delays; T2:new delay dependent stability criteria (for) neural networks (with) time varying delay.

unimportant terms in the corpus with low weights, while
the local weights function by highlighting key terms in
specific articles.

6.4.3 Sensitivity Analysis of Hyperparameters
Since there are two hyperparameters α and β to control the
effect of the local and global weights in our proposed model,
we further study the effect of different choices of α and β.
The result is shown in figure 8 In general, the variance in
β has greater effect than that in α. In our model the global
weights are predefined values which couldn’t be changed
once β is chosen, while the local weights are calculated by
the local weight network, which can automatically adapt to
different choices of α. Therefore it is important to choose
the value of β. When β is close to 1, the global weights are
equal to IDF values, which vary so greatly that the model
will ignore the effect of cosine similarity. When β is close
to 0, the global weights are almost uniform and have little
effect.But the model with the value of α equal to 0 cannot
perform well either, because the local weight network can
have too strong effect and be troubled by over-fitting.

7 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of actively learning
users’ preference in article recommendation. We define the
Active One-shot Article Recommendation Problem, which
is extended from our previous definition of One-shot Per-
sonalized Article Recommendation. We propose a novel
framework POLAR++ in which an active learning algorithm
based Bayesian NN is applied to deal with the user cold-
start issue. An attention-based CNN model for text similar-
ity is combined with the framework of one-shot learning to
deal with sparse user feedback. Experimental results show
that the proposed model significantly outperforms both the
traditional and the state-of-art neural baselines. The model
has been used in AMiner to provide recommendations of
similar papers.

The limit of our model is that it combines the information
of different support articles at a high level. Our future
work might consider combining the information of different
support articles at lower levels, such as iterating over the
support set with an LSTM or CNN. Moreover, we would
like to combine our model with Reinforcement Learning
to train a deeper and more powerful model in the online
environment.
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