
ar
X

iv
:2

00
3.

10
14

9v
1

 [
cs

.I
R

]
 2

3
M

ar
 2

02
0

1

Modelling High-Order Social Relations
for Item Recommendation

Yang Liu, Liang Chen*, Xiangnan He, Jiaying Peng, Zibin Zheng, Jie Tang

Abstract—The prevalence of online social network makes it compulsory to study how social relations affect user choice. However,

most existing methods leverage only first-order social relations, that is, the direct neighbors that are connected to the target user. The

high-order social relations, e.g., the friends of friends, which very informative to reveal user preference, have been largely ignored. In

this work, we focus on modeling the indirect influence from the high-order neighbors in social networks to improve the performance of

item recommendation. Distinct from mainstream social recommenders that regularize the model learning with social relations, we

instead propose to directly factor social relations in the predictive model, aiming at learning better user embeddings to improve

recommendation. To address the challenge that high-order neighbors increase dramatically with the order size, we propose to

recursively “propagate” embeddings along the social network, effectively injecting the influence of high-order neighbors into user

representation. We conduct experiments on two real datasets of Yelp and Douban to verify our High-Order Social Recommender

(HOSR) model. Empirical results show that our HOSR significantly outperforms recent graph regularization-based recommenders

NSCR and IF-BPR+, and graph convolutional network-based social influence prediction model DeepInf, achieving new

state-of-the-arts of the task.

Index Terms—Recommender System, Social Network, Graph Neural Network.

✦

1 INTRODUCTION

P ERSONALIZED recommendation is becoming increas-
ingly important in online information systems in the

current era of information explosion. The key success of
recommendation lies in the proper use of “collective intel-
ligence”, i.e., a user will behave similarly with some other
users. It leads to two broad categories of techniques — col-
laborative filtering that discovers the similarity from user-
item interactions, and content-based filtering that estimates
the similarity from user/item demographic profiles [1].
Nevertheless, in real-world scenarios when a user considers
which items to consume, the decision choice may be affected
by her friends. For example, she may ask her friends for
suggestions or be attracted by products purchased by one
friend. Moreover, the prevalence of online social network
facilities the communication between users, which further
magnifies the “word of mouth” influence of the social
factor (see Fig. 1 as an illustrative example). As such, to
provide satisfactory recommendation service, it is important
to account for the evidence in social relations when they are
available to use.

Several prior efforts have been made to leverage social
relations to build recommender system and verified their
utility, a.k.a., the social recommendation task [2]. The most
common solution is to design additional loss terms to en-
code the assumption of social influence and jointly optimize
them with the recommendation objective [3], [4], [5], [6], [7],
[8], [9]. For example, [3], [4], [5] assume that connected users
should have similar preference and define L2 smoothness
terms on user embeddings to enforce the constraint; [7], [8]
assume that the item consumed by friends should be more
preferable over unobserved items and define pairwise loss
terms to implement the assumption; and the recent method

*Corresponding author

Fig. 1: Toy example of the ”word of mouth”
influence propagation on social network. The
user U1 is a high-order (third-order) neighbor
of U5 and indirectly affects U5’s choice.

IF-BPR [9] aggregates the two strategies of smoothness and
pairwise constraint to form a unified objective function. We
classify these approaches as regularization-based methods,
since the social relations are utilized to regularize the item
recommendation training with additional loss terms, rather
than directly enrich the predictive model.

Despite their effectiveness, we argue that these methods
are too “implicit” in leveraging the social relations, and
the social regularization coefficients need be carefully tuned
to make them work well [3]. Since the task of interest is
item recommendation, a more explicit and straightforward
way is to factor social relations in the predictive model
that is directly optimized for recommendation. An empirical
evidence is from the TrustSVD work [10], which shows that
in many cases regularization-based social recommenders

http://arxiv.org/abs/2003.10149v1

2

can even underperform the models that are merely based
on user-item interactions (e.g., SVD++ [11]). The strong
performance of TrustSVD (better than SVD++ in rating
prediction) demonstrates the utility, and more importantly,
the potential of factoring social relations in the predictive
model. However, a limitation of TrustSVD is that it only
accounts for first-order neighbors in constructing the user
embedding function, making it insufficient to capture the
possible “word of mouth” influence propagation in social
network.

Figure 1 shows a toy example of how influence prop-
agation from high-order neighbors can be useful for rec-
ommendation. Assume user U1 likes a book and recom-
mends it to her friend U2. Although U2 has not read the
book due to time limitation, he still recommends it to her
friends U3 since he trusts U1’s taste on books. This similar
phenomenon happens to U3, which results in an influence
chain of U1 → U2 → U3 → U5, such that the book liked by
U1 indirectly affects the decision of U5. According to some
marketing research, the “word of mouth” effect does exist in
online social networks [12] and can largely affect the sales of
products [13]. This suggests that such effect should not be
ignored and motivates us to explore high-order neighbors
to improve social recommender models.

Since existing social recommenders have intensively
modeled first-order social relations, it is natural to extend
them by adding high-order edges in the social network (e.g.,
creating an edge between U1 and U5 in the toy example).
For TrustSVD, we can extend its user embedding function
by altering first-order neighbors with high-order neighbors.
However, such intuitive solutions are not feasible and may
not work well due to the following two challenges in mod-
eling high-order neighbors:

1) Large computational cost. Real-world social networks
typically exhibit long-tail distribution on node degrees,
such that a few users (hubs) have a large number of
neighbors (cf. Fig. 5). This makes the number of high-
order neighbors increase dramatically with the order
size. An evidence of the increasing speed can be found
in Table 1. When we consider third-order neighbors
on Douban, the average number per user is 7, 413 —
500 times of first-order neighbor number. Thus, directly
incorporating all high-order neighbors incurs large com-
putation cost and is difficult to scale up. Although sam-
pling strategies like random walk [9] can alleviate the
issue, it risks degrading the fidelity of high-order relation
modeling.

2) Varying importance. While high-order social relations
are useful, they may also contain noises. More impor-
tantly, they are not equally useful for different users.
Intuitively, for users with many neighbors, modeling
first-order relations may already be sufficient (e.g., U2);
while for users with few neighbors, modeling relations of
more orders may be beneficial (e.g., U5). To be effective
in leveraging high-order relations, the method needs be
able to learn varying importance for users w.r.t. differ-
ent order sizes. This is difficult to achieve for existing
regularization-based methods and TrustSVD.

Towards the challenges in modeling high-order social
relations, we propose a new predictive model for social

TABLE 1: The network density and average
neighbors per user at different order sizes.

Dataset Order Size Density #Neighbors/User

Yelp
first 0.15% 16

second 9.14% 969
third 57.16% 6,048

Douban
first 0.11% 14

second 10.45% 1,332
third 58.15% 7,413

recommendation named HOSR. Inspired by the recent de-
velopments of graph convolutional network (GCN) [14], we
achieve efficient modeling of high-order neighbors with the
similar architecture of step-by-step message propagation.
Specifically, we do one-step propagation with one GCN
layer — updating each user’s embedding by aggregating
the messages from her connected neighbors — that has the
complexity linear to the number of edges |A|. By stacking
k such GCN layers, we do k-step propagations and make
a user’s embedding related to her k-order neighbors, with
a linear complexity of k|A|. To address the second chal-
lenge of varying importance, we design an neural attention
mechanism to adaptively aggregate the user embeddings
learned by different layers. Through extensive experiments
on Yelp and Douban datasets, we justify the effectiveness of
HOSR and provide additional insights into high-order social
relation modeling for recommendation.

To summarize, this paper makes the following contribu-
tions.

• We highlight the importance of modeling high-order so-
cial relations to capture the possible long-range influence
propagation in social recommendation.

• We propose a new predictive model based on GCN that
explicitly encodes high-order social relations into user
embedding learning through multi-step message propa-
gation.

• We conduct experiments to show our method achieves
state-of-the-art results for social recommendation, justify-
ing the high utility of high-order social relations especially
for sparse users.

2 METHODOLOGY

Generally speaking, the proposed HOSR model consists
of two components: 1) user representation learning with
GCN, and 2) an attention layer which aggregates the out-
put embedding of each GCN layer. We first formulate the
problem to be solved, and then present the two components
of HOSR. Finally, model optimization and time complexity
are discussed.

2.1 Task Description

First we introduce the notation conventions. We use bold
uppercase letters to denote matrices (e.g., U), bold lowercase
letters to denote vectors (e.g., u), and non-bold letters to
denote scalars or indices (e.g., u). The uppercase calligraphic
symbols (e.g., U) stand for sets. Suppose we have n users
and m items, the interaction data between users and items
are defined as an interaction matrix Y = [yij]n×m. yij = 1
indicates that user i has a observed interaction (e.g., pur-
chases, clicks) with item j. We represent the social relations

3

Fig. 2: The illustration of first-order embedding
propagation

between users as a user-user graph with the adjacency
matrix A = [aii′]n×n. Each element aii′ = 1 indicates user
i and user i′ is connected in the social network. We now
defined the problem we study in this paper as follow.

Input: a user set U , a item set V , user-item interaction
matrix Y, and user-user adjacency matrix A.

Output: A personalized ranking function that maps an
item V to a real value for each user: fu : V → R.

Data sparsity problem. Traditional matrix factorization of-
ten suffers from data sparsity problem since a large pro-
portion of users only has a few interaction data. Thus the
user preference is hard to be inferred due to the insufficient
interaction data. Several efforts [3], [4], [5], [15] have been
made in improving the user embedding via their first-order
neighbors. However, the key challenge of integrating social
relations to solve data sparsity problem is that user’s social
relations are very sparse as well [10], leading to inaccurate
modeling of user preference from the social perspective. In
our model, user embedding is combing with the embedding
propagating from user’s high-order neighbors. Thus, user
preference is not only inferred from her direct neighbors but
also high-order neighbors, which helps to solve the social
sparsity problem.

2.2 User Representation Learning

2.2.1 Initial Embeddings

We consider the recommendation problem under the rep-
resentation learning framework, where each user and item
is represented as an embedding vector which encodes the
intrinsic features of users and items. Matrix Factorization
(MF) is a well-known representation learning model that
has been demonstrated effective in recommender system.
The embedding of user i and item j is denoted by ui ∈ R

1×d

and vj ∈ R
1×d respectively, where d is the embedding size.

Therefore, the embedding of all the users and items could
be represented by two embedding matrix U and V where
the i-th row of U and j-th row of V is the embedding of
user i and item j.

2.2.2 Modeling First-Order Neighbors

This subsection describes how to model the influence of
first-order neighbors. Intuitively, a user’s preference will be
indirectly influenced by her social relations. As suggested
in previous works [9], [15], a user may share similar pref-
erence with her social friends. Based on this assumption,
the generation of user embedding to leverage her first-order
neighbors could be implemented in two steps: 1) embedding
propagation and 2) embedding aggregation. Embedding
propagation explicitly models the influence between two
connected users, and embedding aggregation aggregates the
embeddings propagated from user’s neighbors.

Given a user-user pair (i, i′), the propagation embedding
pii′ from i′ to i is defined as follows:

pii′ =
1

√

|Ai||Ai′ |
ui′W, (1)

where W ∈ R
d×d

′

is the trainable weight matrix which
learns useful features and transforms the embedding size

from d to d
′

. In this paper, we set d
′

= d. Ai and Ai′

denote the set of first-order neighbors for user i and i′.
1/

√

|Ai||Ai′ | represents the decay factor of propagation
information which defines how much user i′ influences the
preference of user i. Besides considering the information
from neighbors, we add self-connection pii of user i to
preserve her own embedding. Figure 2 displays the first-
order influence propagation process of two connected users.
As can be seen, user U1’s output embedding of GCN layer
is generated by the origin embedding of user U1 and her
neighbor U2.

Following the embedding propagation, we aggregate all
the embeddings from user i’s neighbors and user i’s own
embedding as follows.

u
(1)
i = tanh(

∑

i′∈Ai∪{i}

pii′), (2)

where u
(1)
i represents the output user i’s embedding of the

first GCN layer. We set the nonlinear activation function
as the Hyperbolic function (tanh) which empirically shows
good performance. Through these two steps, we explicitly
define the first-order influence propagation.

2.2.3 Modeling High-Order Neighbors

As users could be influenced by their high-order neighbors,
it is crucial to model the high-order influence propagation.
Through first-order influence propagation, each user’s em-
bedding contains the influence of her first-order neighbors.
Therefore, through stacking more graph convolutional lay-
ers, we can assemble the features of higher-order neighbors.
To be specific, by stacking k GCN layers, a user i can aggre-
gate the embeddings from her k-order neighbors. Therefore,
the embedding of user i could be formulated recursively as:

u
(k)
i = tanh(

∑

i′∈Ai∪{i}

p
(k)
ii′), (3)

where the propagation embedding p
(k)
ii′ is defined as:

p
(k)
ii′ =

1
√

|Ai||Ai′ |
uk−1
i′ W(k), (4)

where W(k) ∈ R
d×d is the trainable weighted matrix and

uk−1
i′ is the user i′ output embedding of the (k − 1)-th

GCN layer. As Fig. 3 shows, the embedding of user U1

only contains her own features in the beginning. In each
propagation step, user U1 aggregates the information of
higher-order neighbors. After three times influence propa-
gation, the embedding of user U1 consists of the information
of the whole network. Therefore, we explicitly model the
social influence of high-order neighbors and encode the
information into the embedding of the target user.

4

Fig. 3: The illustration of generating user em-
bedding for user u1 by 3rd-order influence
propagation (self-connections are omitted.)

The user embedding after k-layer propagation can be
effectively computed by following matrix form propagation
rule.

U(k) = tanh(LU(k−1)W(k)) (5)

L = D− 1
2 (A + I)D− 1

2 , (6)

where W(k) ∈ R
d×d and W(k−1) ∈ R

d×d are the embedding
matrix after k and k − 1 layer influence propagation, and
U(0) is set as U . Each element Lij is equal to 1/

√

|Ai||Ai′ |
which denotes the decay factor between user ui and ui′ .
A is the user social relation adjacency matrix and identity
matrix I represents user’s self-connections. D represents the
diagonal degree matrix where t-th diagonal element Dtt =
|At|.

2.3 Attentive Layer Aggregation

After propagating with k layers, we obtain the user em-
bedding consists of the information of k-th order neighbors.
The user i’s preference towards the target item j could be
estimated by inner product, which is formulated as:

ŷij = u
(k)
i vT

j (7)

However, directly utilizing the k-layer output u
(k)
i cause

a problem [16]. Social networks usually consist of an
expander-like core part and an almost-tree part [16], [17],
which represent well-connected users and the small com-
munities respectively. As shown in Fig.5, most users in
our experiment datasets have a few neighbors and only
a few users have many neighbors. When applying too
many layers, the embedding propagated to well-connected
users rapidly increase. This leads to the over-smoothing
problem [18], which means the features of each node are
mixed by too many neighbors and lose locality. The over-
smoothing problem make the nodes indistinguishable and
hurt the model performance. On the other hand, users with
a small number of neighbors need to apply more layers
to aggregate sufficient information for accurate prediction.
Therefore, the layer number is hard to adjust. This is why
most GCN-based models [14], [19] achieve the best perfor-
mance when the layer number is one or two.

Fig. 4: The illustration of attention layer: aggre-
gating output Embedding of each GCN layer.

To solve the above problem, prior effort [16] suggests the
output embedding of different layers should be aggregated.
Here we employ the attention mechanism [20] to evaluate
the weights of neighbor orders (e.g. k-th order) for each
node. In this paper, we use neural attention network which
is widely adopted in several recommendation tasks [21],
[22]. Specifically, we compute a weighted sum on the output
embedding of different layers, where sil is a learnable
parameter denoting the importance of the feature learned on
the l-th layer for user i. The overall neural attention network
is formulated as:

ail = ReLU(uiPu + u
(l)
i Po)h

T (8)

sil = softmax(ail) =
exp(ail)

∑k
l
′=1 exp(ail′)

, (9)

where Pu ∈ R
d×d and Po ∈ R

d×d are learnable weighted
matrices that project origin user embedding and output
embedding of l-th layer to hidden layer. ReLU [23] is the
activation function of the hidder layer. The hidden layer is
then converted to attention score ail by vector h ∈ R

1×d.
Finally, these scores are normalized by a softmax function.
Then the final user embedding is calculated by:

u
(a)
i =

∑

l

sulu
(l)
i (10)

Figure 4 illustrates our design of attentive embedding ag-
gregation. With such a attention network, we could evaluate
the contribution of each layer to user preference.

2.3.1 Model Prediction

After aggregating the embeddings of different layers, we
construct the final representations of users. As suggested
by previous work [19], combining the embeddings of user
interacted items improves the model performance since the
items interacted by users could be view as the user features
as well. Finally, the user i’s preference towards the target
item j is given by:

ŷij = (u
(a)
i +

1
√

|Ii|

∑

j′∈Ij

vj′)v
T
j , (11)

where Ii denotes the set of items user i interacted. 1/
√

|Ii|
is the decay factor. The decay factor could be replace by
1/

√

|Ii||Aj | where Aj represents the set of users item j
interacted. In our experiments, we found setting decay
factor to 1/

√

|Ii| performs better.

5

2.4 Model Optimization

Since we model the recommendation problem from the
ranking perspective, we adopt Bayesian Personalized Rank-
ing (BPR) loss [24] for training, which is proposed to deal
with the implicit feedback of users and has been widely
used to optimize ranking task [8], [22]. The assumption of
BPR is that an observed interaction should be predicted
with a higher score than an unobserved interaction. The loss
function for training is formulated as follows.

loss =
∑

(i,j+,j−)∈D

−lnσ(ŷij+ − ŷij−) + λ||Θ||22, (12)

where D = {(i, j+, j−)|(i, j+) ∈ D+, (u, j−) ∈ D−} is
the training set, D+ denotes the observed interaction set
and D− denotes the sampled unobserved interaction set.
ŷij+ − ŷij− denotes the margin of predicted value between
the observed interaction (i, j+) and unobserved interaction
(i, j−). σ(·) is the sigmoid function. Θ is the model param-
eter set. We perform mini-batch training where we sample
a batch of (i, j, j′) ∈ D triples in each training epoch. Then
the user embedding U(a) is generated by GCN layers and
aggregated by attention layer. Lastly, we compute the loss
and adopt RMSprop [25] algorithm to optimize our model.

Due to the strong representation power of GCN, it is
prone to overfitting. To address it, we employ dropout [26],
which is an effective approach to prevent deep neural net-
works from overfitting. The idea is to randomly drop part of
neurons during training. We use two drop techniques: graph
dropout and embedding dropout. Following prior work [3],
[21], embedding dropout randomly drop p1 percent of out-

put embedding of k-th layer u
(k)
i . Moreover, graph dropout

randomly drop out the user’s social connections with the
probability p2. Specifically, during each epoch in the training
process, only (1−p2) of the nonzero elements appear in user
adjacency matrix A. As such, in the k-th layer, only part
of user’s friends contribute the new representation. Graph
dropout makes the representation more robustness against
the presence or absence of social relations while embedding
dropout reduces the influence of user’s particular features.

2.5 Time Complexity Analysis

We compare the complexity of our model with
TrustSVD [10], a well-known social recommendation model
considers first-order social relations and user interacted
items. TrustSVD can be formulated as follows:

ŷij = (ui +
1

√

|Ii|

∑

j′∈Ii

qj′ +
1

√

|Ai|

∑

i′∈Ai

wi′)v
T
j , (13)

Where qj′ ∈ R1×d and wi′ ∈ R1×d denotes the implicit
influence vector of item j′ rated by user i and the user-
specific embedding of user i′ trusted by user i. As we
can see from equation 13, the time complexity to evaluate
TrustSVD is O(|A|d + |Y|d), where |A| and |Y| denotes the
number of non-zero elements in user-user social matrix A
and user-item interaction matrix Y. The computation com-
plexity of our HOSR model mainly consists of two parts: 1)
influence propagation process; 2) inner product prediction.
During the influence propagation process, for each layer,
the matrix multiplication has computational complexity

TABLE 2: Dataset Statistics
Dataset Yelp Douban

User 10,580 12,748
Item 14,284 22,348

User-Item 171,102 785,272
User-User 169,150 181,890

User-Item density 0.11% 0.28%
User-User density 0.15% 0.11%
Avg. interactions 16.17 61.60

Avg. relations 15.99 14.26

O(|L|d2), where |L| denotes the number of nonzero matrix
in L. The computational complexity to compute the inner
product is O(|Y|d). Therefore, the overall complexity is
O(k|L|d2+|Y|d), where k represents the layer number. Since

L = D− 1
2 (A+I)D− 1

2 and multiplying D− 1
2 does not change

the number of the non-zero elements, |L| = |I|+ |A|, where
I is identity matrix. Due to k and d ≪ |L| and |Y|, the
complexity is compatible to that of TrustSVD.

3 EXPERIMENTS

In this section, we conduct experiments on two real-world
datasets aiming to answer following research questions:

RQ1 How does our proposed HOSR model perform com-
pared with state-of-the-art social recommender ap-
proaches? Can it achieve better recommendation per-
formance under different data sparsity level?

RQ2 How does the model performance benefit from the
attention layer and high-order neighbors modeling?

RQ3 How do the two drop out strategies–embedding
dropout and graph dropout affect HOSR’s perfor-
mance?

3.1 Settings

The statistics of datasets are displayed in Table 2. As we can
see, Douban dataset has more interaction than Yelp dataset.
For both datasets, each user has at least one social relations.
We briefly introduce the datasets we use as follows.

• Douban. Douban is a famous website in China where
user can rate movies, books, and songs based on her
preference. Users link to others that they want to follow.
As we can see from the table, this dataset has dense
interaction relations. We use the book domain dataset
provided by the work [27].

• Yelp. Users in yelp can rate local restaurants, gyms, bars
and home services and so on. Users can post photo
and reviews about these businesses as well. We use the
datasets provided by the paper [28]. The density of social
relations in Yelp is higher than Douan.

To gain insights into the data with respect to user’s
social relations, the user distributions with respect to the
number of social neighbors are shown in Fig.5. As we can
see, both datasets show a long-tail distribution – most users
have few neighbors and only a small proportion of users
have many neighbors. This observation highlight the social
sparsity challenge faced by social recommendation.

For both datasets, 80% of the whole data are randomly
selected for training and the remaining 20% are for testing.
To evaluate the top-K recommendation performance of the
models, we adopt a relevance-based metric – Recall@K and
a ranking-based metric – MAP@K(Mean Average Precision).

6

TABLE 3: Top-20 recommendation performance comparison of different methods. The last
column Improv. denotes the relative improvement over the baseline: HOSR outperforms all
baselines on all metrics with significance level p-value < 0.05 (indicated by *).

Dataset Dim. Metric BPR NCF TrustSVD NSCR IF-BPR+ DeepInf HOSR Improv.

Douban

d=5

R@20 0.0659 0.0680 0.0698 0.0684 0.0663 0.0706 0.0732* +3.68%
p-value 5.24e-7 1.34e-2 1.44e-3 3.97e-6 9.33e-4 1.14e-10 – –

MAP@20 0.1981 0.0201 0.0213 0.0203 0.0194 0.0212 0.0225* +6.13%
p-value 2.04e-2 1.59e-4 4.40e-2 2.11e-11 3.49e-4 5.52e-3 – –

d=10

R@20 0.0677 0.0712 0.0709 0.0708 0.0705 0.0713 0.0757* +5.63%
p-value 1.91e-12 5.13e-43 1.46e-5 4.65e-13 1.45e-2 1.45e-4 – –

MAP@20 0.0213 0.0219 0.0244 0.0230 0.0232 0.0229 0.0282* +15.57%
p-value 5.32e-29 1.65e-42 4.88e-19 1.64e-29 2.95e-7 5.66e-18 – –

Yelp

d=5

R@20 0.0495 0.0519 0.0530 0.0522 0.0437 0.0548 0.0598* +9.12%
p-value 1.98e-9 2.93e-6 3.10e-5 2.08e-7 2.01e-7 5.49e-7 – –

MAP@20 0.0134 0.0143 0.0147 0.0148 0.0131 0.0151 0.0164* +8.61%
p-value 1.86e-7 2.23e-6 3.92e-4 6.01e-7 2.30e-2 2.60e-4 – –

d=10

R@20 0.0509 0.0531 0.0570 0.0557 0.0440 0.0562 0.0697* +22.28%
p-value 7.65e-18 1.03e-14 3.50e-15 7.93e-12 1.38e-23 6.64e-14 – –

MAP@20 0.0140 0.0154 0.0151 0.0150 0.0144 0.0156 0.0202* +29.49%
p-value 2.95e-12 4.54e-11 7.42e-13 1.05e-11 1.37e-4 8.41e-13 – –

#neighbor
0 200 400 600 800

#
u

s
e
r

0

1000

2000

3000

4000

5000
Douban

#neighbor
50 100 150 200 250 300 350 400 450 500

#
u

s
e
r

0

2000

4000

6000

8000
Yelp

Fig. 5: User distribution w.r.t. neighbor number

In our experiments, all the items that a user hasn’t consume
are treated as negative items. Recall@K measures the num-
ber of positive items that present within the top-K recom-
mendation list divided by all the positive items. MAP@K
considers the ranking positions of the positive items within
the top-K of the recommendation list. Large values of R@20
and MAP@20 indicate better performance.

We compare our proposed model with the following
baselines.

• BPR [24]: This is the matrix factorization model that min-
imizes the Bayesian personalized ranking (BPR) loss. This
model only utilizes the interaction data between users and
items.

• NCF [29]: This method is a state-of-the-art neural CF
model which combines element-wise and hidden layers of
the concatenation of user and item embedding to capture
their high-order interactions.

• NSCR [3]: This model adopts a deep neural network in
modeling the user-item interactions and uses two social
constraints (smoothness and fitting) to learn the user
representation.

• IF-BPR [9]: IF-BPR explicitly defines several paths to iden-
tify the user’s possible friends based on heterogeneous
information network. It divides all the items into five
classes and learns a ranking function through a predefined
order of these five class.

• TrustSVD [10]: TrustSVD jointly models the first order
user-user social relations and user-item interaction based
on SVD++ framework. In our experiments, we optimize

TrustSVD by BPR loss.
• DeepInf [30]: DeepInf is a social influence prediction

model. It conducts the random walk with restart strategy
to sample fix-size neighbors for each user. They utilizes
GCN to generate user embedding and predict the social
influence. We adapt DeepInf to the social recommendation
task. We first learn user embedding by DeepInf and then
employ the dot product between user and item embed-
ding to predict the user preference.

Hyper-parameter Settings. We implement BPR, NCF,
NSCR, DeepInf, TrustSVD and our model based on Pytorch,
which is optimized with the RMSprop optimizer. We use
the code of IF-BPR provided by the authors1. The batch
size is fixed to 512 for all models. The learning rate is
tuned in [0.0001, 0.0005, 0.001, 0.005]. The coefficient of L2

regularization is ranged in [0.0001, 0.001, 0.01, 0.1]. We apply
embedding dropout for NCF, NSCR and DeepInf, where the
dropout ratio is ranged in [0, 0.1, 0.2, ... , 0.8]. We use 3 layer
structure for NCF, NSCR, DeepInf and our model, where
the dimension of each layer keeps the same. For DeepInf,
the sample size is set to 50 and return probability is set to
0.5. We set the embedding dropout of 0 and graph dropout
of 0.2 for our HOSR model.

3.2 Performance Comparison (RQ1)

3.2.1 Overall Comparison.

Top-K recommendation performance of HOSR and other
state-of-the-art models are reported in Table 3. The model
performances are compared under the embedding size of
5 and 20. The parameter K is set to 20. Based on the
experimental results, we have the following observations.

• BPR performs worst in all cases. This indicates that di-
rectly optimize user embedding through inner product is
insufficient to capture the user preference towards items.
NCF performs better than BPR, indicating the effectivenee
of applying deep neural network to learn the nonlinear
user-item feature interactions. As we could see from the
table, social recommendation models outperform non-
social models, which indicates incorporating social rela-
tions is beneficial to model performance.

1. https://github.com/Coder-Yu/RecQ

7

TABLE 4: The effect of attention layer and high-order neighbors modeling: the base model
represents HOSR without attention layer and the average model assign the output of each layer
the same weight.

Model
Douban Yelp

Base Average Attention Base Average Attention
R@20 MAP@20 R@20 MAP@20 R@20 MAP@20 R@20 MAP@20 R@20 MAP@20 R@20 MAP@20

HOSR-1 0.0716 0.0229 – – – – 0.0636 0.0176 – – – –
HOSR-2 0.0747 0.0241 0.0734 0.0231 0.0748 0.0249 0.0657 0.0183 0.0637 0.0177 0.0653 0.0181
HOSR-3 0.0726 0.0239 0.0743 0.0247 0.0757 0.0282 0.0640 0.0179 0.0674 0.0187 0.0697 0.0202
HOSR-4 0.0720 0.0236 0.0759 0.0255 0.0773 0.0260 0.0630 0.0169 0.0658 0.0173 0.0641 0.0179

• Compared to BPR and NCF, TrustSVD and NSCR achieve
better performance. This verifies integrating the informa-
tion of first-order neighbors could improve the model
performance. Furthermore, TrustSVD achieves the best
performance in some cases, demonstrating the importance
of explicit modeling of both social and interaction rela-
tions.

• Although IF-BPR models the influence of high-order
neighbors, it does not outperform NSCR and TrustSVD.
The reason might be IF-BPR learns the high-order rela-
tions in implicit ways and does not assign a different
weight for the selected neighbors, which might introduce
noise. Moreover, although the same paths are used in both
datasets, their performance is different. IF-BPR performs
better in Douban than Yelp, demonstrating the same
defined paths may not generalize across datasets. One
possible solution is to select the useful paths according
to datasets. However, this process is time-consuming and
hard to tune.

• DeepInf achieves better performance than other baselines
in most cases. Such improvement verifies the effectiveness
of high-order neighbors modeling. Though both DeepInf
and HOSR consider high-order neighbors, HOSR per-
forms better than DeepInf, indicating our method better
models the social recommendation problem.

• HOSR achieves the best performance under all circum-
stances. In particular, HOSR achieves 5.63%, 15.57% and
24.02%, 22.28% performance improvement against the
strongest baseline w.r.t R@20 and MAP@20 when the
embedding size is 10 in Douban and Yelp, demonstrating
the effectiveness of our model. Compared to TrustSVD,
despite both HOSR and TrustSVD consider the user-item
interaction and user social relations, HOSR outperforms
TrustSVD, verifying that high-order neighbors modeling
is beneficial to model performance.

3.2.2 Performance Comparison w.r.t Interaction Sparse

Levels.

To investigate the effect of data sparsity, we divide the test
users into four groups based on their interaction number in
the training set. Each group has the same total interactions.
As could be seen in Fig.6, the interaction number per user
of these four groups is ≤60, 61-120, 121-221, 222-2041 in
Douban and ≤24, 25-52, 53-100, 101-512 in Yelp respectively.
We report the experimental results on different user groups
and all test users w.r.t. Recall@20 and MAP@20 in Fig.6.
According to the table, we have the following observations:

• By analyzing all the figures in Fig.6, compared to other
baselines, we observe that HOSR achieves better perfor-
mance over the <= 60 and 61−120 group in Douban and

<= 24, 25 − 52 and 53 − 100 group in Yelp respectively.
Moreover, the improvement is more significant when the
user group is sparser, demonstrating that modeling high-
order social influence is beneficial to the relatively sparse
users.

• For users that consumed a large number of items (the
fourth group), the performance does not improve com-
pared to other methods. The reason might be modeling
the user-item interactions is sufficient to capture the user
preference for these active users. As the figure shows, the
performance of BPR of fourth group users is comparable
to other methods. This also demonstrates the importance
of modeling the preference of users with few interaction
data.

3.3 Component Analysis (RQ2)

To investigate the effect of attention layer and high-order
neighbors modeling, we compare the HOSR with two model
variants – the base model which removes the attention layer
and the average model which uses the average of the output
of each layer as user embedding. The layer number ranges
from 1 to 4. We use HOSR-k to denote the model with k
layers. The attention mechanism is used only when layer
number is greater than 1. The experimental results are
shown in Table 4. Based on the experimental results, we
have the following observations:

• As shown in Table 4, compared to the base and average
model, employing attention layer to aggregate the output
of different layers achieves the best performance. The
reason is attention mechanism flexibly learns different
weights for different users. Thus the varying importance
of different layers for different users is successfully cap-
tured.

• The best performance of base model is achieved when
the layer number is two. The reason might be stacking
more layers aggregates too much information, leading to
over-smoothing problem, further limits the model perfor-
mance.

• When stacking more layers, in most cases, the perfor-
mance of the attention model first increases, then the
performance decreases. The reason is when the layer num-
ber is small, the information aggregated is not sufficient
to model the user preference. Therefore stacking more
layers enhances the model performance. After a threshold,
adding more layers may lead to overfitting problem and
introduce noise as well.

To further understand how attention layer aggregates
the output of different layer and how attention weights dis-
tribute, we visualize the attention weight with respect to the

8

#Interaction
<=60 61-120 121-221 222-2041

R
@

20

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Douban

BPR
NCF
TrustSVD
NSCR
IF-BPR
DeepInf
HOSR

#Interaction
<=60 61-120 121-221222-2041

M
A

P
@

20

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Douban

BPR
NCF
TrustSVD
NSCR
IF-BPR
DeepInf
HOSR

#Interaction
<=24 25-52 53-100 101-512

R
@

20

0.03

0.04

0.05

0.06

0.07

0.08
Yelp

BPR
NCF
TrustSVD
NSCR
IF-BPR
DeepInf
HOSR

#Interaction
<=24 25-52 53-100 101-512

M
A

P
@

20

0.01

0.015

0.02

0.025

0.03
Yelp

BPR
NCF
TrustSVD
NSCR
IF-BPR
DeepInf
HOSR

Fig. 6: Experimental results of the different sparsity level user groups. The improvement is more
significant when the interactions of users are sparser.

#Neighbor
0 50 100 150 200

W
ei

g
h

t

0

0.2

0.4

0.6

0.8

1
Douban

HOSR(1)
HOSR(2)
HOSR(3)

#Neighbor
0 50 100 150 200

W
ei

g
h

t

0

0.2

0.4

0.6

0.8

1
Yelp

HOSR(1)
HOSR(2)
HOSR(3)

#Interaction
50 100 150 200 250 300 350

W
ei

g
h

t

0

0.2

0.4

0.6

0.8

Douban

HOSR(1)
HOSR(2)
HOSR(3)

#Interaction
30 60 90 120 150 180 210 240 270 300

W
ei

g
h

t

0

0.2

0.4

0.6

0.8

Yelp

HOSR(1)
HOSR(2)
HOSR(3)

Fig. 7: Attention weight of different layers w.r.t #neighbor and #Interaction. The attention weights
decrease with the increase of both the number of social relations and item interactions of users.

number of social neighbors and the number of interactions.
The results is displayed in Fig.7. We have the following
observations:

• As the figures display, in all the cases, the weight of the
first layer is small. This might because stacking more
layers not only leverages the information of neighbors
but also selects useful features. Therefore, the output of
the second and third layer is more important.

• As the figures with respect to the number of neighbors
(i.e., the left two figures in Fig.7) shows, when the number
of neighbors is small, the attention weight of the last
layer is extremely high, demonstrating the importance
of modeling high-order neighbors for users with sparse
social relations. When the number of neighbors increases,
the attention weight of the last layer decreases while
the attention weight of the second layer increases. The
reason is modeling high-order neighbors introduces noise
for users when user’s neighbors increase therefore the
importance of last layer decreases. This also implies our
model could balance the importance of different layer
output.

• As could be seen in figures with respect to the number of
interactions (i.e., the right two figures in Fig.7), for both
datasets, the attention weights of the last layer are much
higher than other layers, demonstrating the importance
of high-order neighbors in capturing the user preference.
when the number of interaction decreases, the attention
weight of the last layer increases, verifying for sparse
users, the output of the last layer is more important than
active users.

3.4 Effect of dropout (RQ3)

In our work, graph dropout and embedding dropout is
employed to prevent overfitting in our model. Figure 8

displays the effect of embedding dropout ratio p1 and graph
dropout ratio p2 on both datasets.

As could be seen from the Fig.8, applying embedding
dropout does not enhance the model performance. The
reason is the output of each layer not only consist of the
information of the user itself but also the information of her
neighbors. Thus embedding dropout might easily lose in-
formation. Compare to embedding dropout, graph dropout
offers better performance. Especially, setting p2 as 0.4 leads
to the highest R@20 and p2 as 0.2 leads to the highest
MAP@20 on Yelp. One reason might be dropping out part of
social relations from users makes the representations more
robust against noises when stacking more layers.

4 RELATED WORK

In this section, we highlight some related works to this
paper, including the works of social recommendation, graph
representation learning and attention mechanism respec-
tively.

4.1 Social Recommendation

With the rapid development of online social platforms,
social connection has been widely studied and leveraged
to enhance the recommendation performance [6], [31]. We
categorize previous social recommendation models related
to our work into three types. The first type of methods
consider social network as a regularization [3], [4], [5],
[15], [32]. SocialMF [15] proposes to constraint user’s latent
vector to be close to the weighted average of his social
neighbors. SoDimRec [32] considers the heterogeneity of
social relations and weak dependency connections as a
regularization. CSR [4] propose Characterized Social Regu-
larization to model user’s various similarities with different
friends.

9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Dropout Ratio
0.068

0.070

0.072

0.074

0.076

0.078

0.080

0.082
R@

20
Douban

Graph Dropout
Embedding Dropout

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Dropout Ratio
0.022

0.023

0.024

0.025

0.026

0.027

0.028

0.029

0.030

MA
P@

20

Douban
Graph Dropout
Embedding Dropout

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Dropout Ratio

0.0600

0.0625

0.0650

0.0675

0.0700

0.0725

0.0750

0.0775

R@
20

Yelp
Graph Dropout
Embedding Dropout

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Dropout Ratio
0.015

0.016

0.017

0.018

0.019

0.020

0.021

0.022

MA
P@

20

Yelp
Graph Dropout
Embedding Dropout

Fig. 8: Effect of graph dropout and embedding dropout

The second type of methods first divide all the items
into different sets and then manually define the ranking
relations between these sets [8], [9]. SBPR [8] divides the
item set into positive items, social items and negative items
and claims all the items should follow the ranking: positive
items > social items > negative items. IF-BPR [9] further
divides the item set into five groups: positive items, joint
social items, positive social items, negative social items and
non-consumed items based on heterogeneous information
network.

The third type of methods combine user’s embedding
with their social neighbors’ [10], [33], [34]. RSTE [34] lin-
early combines the user representation with those of the
user’s social neighbors. SPF [33] model the prediction as
the combination of the product of latent vectors and the rat-
ings from social neighbors under the probabilistic Poisson
factorization framework.

Despite the success of these models, most of them only
consider implicitly model the connections of user’s first
order neighbors, which leads to a suboptimal prediction.
Note that although DeepInf also models the high-order
neighbors, they aim to predict the social influence. More-
over, although DeepInf [30] samples fix-size neighbors to
balance the neighbor number among users, it might lose
information as well. Besides, it is hard to tune the sample
size and the return probability of the random walk.

4.2 Graph Neural Network

Graph neural network (GNN) [35] extends the neural
network to processing the graph data. GNN aims to learn
an embedding for each node which contains the information
of neighbors. Graph convolutional network (GCN) [14] is a
special type of GNN which applies convolutional operations
on graph data. The authors propose the spectral graph
convolution which could directly operate on graph data.
Moreover, GraphSAGE [36] learns a function to aggregat-
ing node’s local neighbors’ feature by sampling. Graph
attention network(GAT) [37] employs attention mechanism
to aggregate the neighbors’ feature vectors. GNN-based
models have achieved the state-of-the-art performance on
several tasks, such as social influence prediction [30], traf-
fic forecasting [38], recommender system [19], [39], action
recognition [40] and event detection [41].

Although GNN achieves great performance in several
tasks, no work has considered using GNN to model the
high-order social influence in social recommender system.

4.3 Attention Mechanism

Multiple works [20], [22], [42], [43], [44] incorporate
the attention mechanism with the implementation of
neural networks proposed to improve the performance
of recommender systems. Attentive Collaborative Filter-
ing(ACF) [22] aggregates the item- and component-level
implicit feedback with an attention network to get the
representation for a multimedia item. Neural Attentive Rec-
ommendation Machine(NARM) [42] adopts attention mech-
anism to model the user sequential behavior and capture
user’s main purpose in a session-based recommendation
scenario. Moreover, the AGREE model [20] learns to assign
an attention weight for members to solve group recommen-
dation problem. Some works [16], [37] also employ attention
mechanism to improve the performance of graph neural
network. GAT [37] utilizes attention mechanism to learn dy-
namic weights of neighbors. Jump Knowledge Network [16]
is proposed to flexibly leverage the neighbor range for each
node.

In our work, the attention mechanism is integrated to
learn a personalized weight of different order neighbors for
each user.

5 CONCLUSION AND FUTURE WORK

In this work, we propose a novel social recommendation
framework HOSR, which integrates the information of high-
order neighbors to solve the data sparsity problem. The core
of our model is to generate user embedding by performing
embedding propagation along high-order social neighbors.
Leveraging the graph convolutional layer, we can explicitly
model the effect of high-order neighbors into representation
framework. Attention mechanism is further employed to
leverage the output of different layers, and two dropout
strategies are adopted to alleviate overfitting. Experiments
performed on two real-world datasets demonstrate the
effectiveness of our model and the promise of influence
propagation.

In future, we plan to extend our work in three directions:
1) our work focus on learning the representation from social
perspective. Multiple works [9], [10] demonstrate jointly
considering user’s social and interaction relations could
improve model performance. Thus, we will consider jointly
propagate user and item embedding in future work. 2) In
social network, a user may have close and normal friends.
we will attempt to utilize attention mechanism to specify
attention weights for user-user connections. 3) Experimental
results in section 3.3 show that using attention to aggregate

10

the output of different layers has little impact on users with
sparse social relations. Therefore, we will try to explore a
more effective aggregating mechanism to fully utilize the
information of different order neighbors.

ACKNOWLEDGMENTS

The paper was supported by the National Key Research
and Development Program (2017YFB0202201), the National
Natural Science Foundation of China (61702568, U1711267),
the Program for Guangdong Introducing Innovative and
Entrepreneurial Teams (2017ZT07X355) and the Fundamen-
tal Research Funds for the Central Universities under Grant
(17lgpy117).

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, “Toward the next generation
of recommender systems: A survey of the state-of-the-art and
possible extensions,” TKDE, vol. 17, no. 6, pp. 734–749, 2005.

[2] H. Ma, H. Yang, M. R. Lyu, and I. King, “Sorec: social recommen-
dation using probabilistic matrix factorization,” in CIKM. ACM,
2008, pp. 931–940.

[3] X. Wang, X. He, L. Nie, and T.-S. Chua, “Item silk road: Rec-
ommending items from information domains to social users,” in
SIGIR. ACM, 2017, pp. 185–194.

[4] T.-H. Lin, C. Gao, and Y. Li, “Recommender systems with char-
acterized social regularization,” in CIKM. ACM, 2018, pp. 1767–
1770.

[5] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, “Recommender
systems with social regularization,” in WSDM. ACM, 2011, pp.
287–296.

[6] C.-Y. Liu, C. Zhou, J. Wu, Y. Hu, and L. Guo, “Social recommenda-
tion with an essential preference space,” in AAAI, 2018, pp. 346–
353.

[7] D. Rafailidis and F. Crestani, “Joint collaborative ranking with
social relationships in top-n recommendation,” in CIKM. ACM,
2016, pp. 1393–1402.

[8] T. Zhao, J. McAuley, and I. King, “Leveraging social connections
to improve personalized ranking for collaborative filtering,” in
CIKM. ACM, 2014, pp. 261–270.

[9] J. Yu, M. Gao, J. Li, H. Yin, and H. Liu, “Adaptive implicit friends
identification over heterogeneous network for social recommen-
dation,” in CIKM. ACM, 2018, pp. 357–366.

[10] G. Guo, J. Zhang, and N. Yorke-Smith, “Trustsvd: Collaborative
filtering with both the explicit and implicit influence of user trust
and of item ratings.” in AAAI, vol. 15, 2015, pp. 123–125.

[11] Y. Koren, “Factorization meets the neighborhood: a multifaceted
collaborative filtering model,” in KDD. ACM, 2008, pp. 426–434.

[12] J. Brown, A. J. Broderick, and N. Lee, “Word of mouth commu-
nication within online communities: Conceptualizing the online
social network,” Journal of interactive marketing, vol. 21, no. 3, pp.
2–20, 2007.

[13] J. A. Chevalier and D. Mayzlin, “The effect of word of mouth on
sales: Online book reviews,” Journal of marketing research, vol. 43,
no. 3, pp. 345–354, 2006.

[14] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2016.

[15] M. Jamali and M. Ester, “A matrix factorization technique with
trust propagation for recommendation in social networks,” in
RecSys. ACM, 2010, pp. 135–142.

[16] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge
networks,” in ICML, 2018, pp. 5449–5458.

[17] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Com-
munity structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters,” Internet Mathematics, vol. 6,
no. 1, pp. 29–123, 2009.

[18] Q. Li, Z. Han, and X. Wu, “Deeper insights into graph convolu-
tional networks for semi-supervised learning,” in AAAI, 2018, pp.
3538–3545.

[19] Y. Wu, H. Liu, and Y. Yang, “Graph convolutional matrix comple-
tion for bipartite edge prediction,” in KDIR, 2018, pp. 49–58.

[20] D. Cao, X. He, L. Miao, Y. An, C. Yang, and R. Hong, “Attentive
group recommendation,” in SIGIR, 2018, pp. 645–654.

[21] ——, “Attentive group recommendation,” in SIGIR. ACM, 2018,
pp. 645–654.

[22] J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T.-S. Chua, “Attentive
collaborative filtering: Multimedia recommendation with item-
and component-level attention,” in SIGIR, 2017, pp. 335–344.

[23] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, 2010, pp. 807–814.

[24] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“Bpr: Bayesian personalized ranking from implicit feedback,” in
UAI. AUAI Press, 2009, pp. 452–461.

[25] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks
for machine learning lecture 6a overview of mini-batch gradient
descent,” COURSERA: Neural Networks for Machine Learning 4,
2012.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural net-
works from overfitting,” The Journal of Machine Learning Research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[27] B. Hu, C. Shi, W. X. Zhao, and P. S. Yu, “Leveraging meta-
path based context for top-n recommendation with a neural co-
attention model,” in KDD. ACM, 2018, pp. 1531–1540.

[28] C. Shi, Z. Zhang, P. Luo, P. S. Yu, Y. Yue, and B. Wu, “Semantic path
based personalized recommendation on weighted heterogeneous
information networks,” in CIKM. ACM, 2015, pp. 453–462.

[29] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in WWW. International World Wide Web
Conferences Steering Committee, 2017, pp. 173–182.

[30] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, “Deepinf:
Social influence prediction with deep learning,” in KDD. ACM,
2018, pp. 2110–2119.

[31] P. Sun, L. Wu, and M. Wang, “Attentive recurrent social recom-
mendation,” in SIGIR, 2018, pp. 185–194.

[32] J. Tang, S. Wang, X. Hu, D. Yin, Y. Bi, Y. Chang, and H. Liu,
“Recommendation with social dimensions.” in AAAI, 2016, pp.
251–257.

[33] A. J. Chaney, D. M. Blei, and T. Eliassi-Rad, “A probabilistic model
for using social networks in personalized item recommendation,”
in RecSys. ACM, 2015, pp. 43–50.

[34] H. Ma, I. King, and M. R. Lyu, “Learning to recommend with
social trust ensemble,” in SIGIR. ACM, 2009, pp. 203–210.

[35] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The graph neural network model,” IEEE Transactions on
Neural Networks, vol. 20, no. 1, pp. 61–80, 2009.

[36] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” in NIPS, 2017, pp. 1025–1035.

[37] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[38] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in
IJCAI, 2018, pp. 3634–3640.

[39] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale
recommender systems,” in KDD, 2018, pp. 974–983.

[40] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in AAAI, 2018,
pp. 7444–7452.

[41] T. H. Nguyen and R. Grishman, “Graph convolutional networks
with argument-aware pooling for event detection,” in AAAI, 2018,
pp. 5900–5907.

[42] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive
session-based recommendation,” in CIKM, 2017, pp. 1419–1428.

[43] X. He, Z. He, J. Song, Z. Liu, Y. Jiang, and T. Chua, “NAIS: neural
attentive item similarity model for recommendation,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 12, pp. 2354–2366, 2018.

[44] Z. Cheng, Y. Ding, X. He, L. Zhu, X. Song, and M. S. Kankanhalli,
“Aˆ 3ncf: An adaptive aspect attention model for rating predic-
tion.” in IJCAI, 2018, pp. 3748–3754.

11

Yang Liu received the bachelor’s degree at Sun
Yat-sen University, Guangzhou, China, in 2019.
He is currently pursuing the master’s degree with
the School of Data and Computer Science, Sun
Yat-sen University, Guangzhou, China. His main
research interests include recommendation sys-
tems, machine learning and data mining tech-
niques.

Liang Chen received the Ph.D. and bache-
lors degrees from the Advanced Computing
and System Laboratory, College of Computer
Science and Technology, Zhejiang University,
China, in 2015 and 2009, respectively. He is
currently a Distinguished Research Fellow with
the School of Data and Computer Science, Sun
Yat-Sen University, Guangzhou, China. His re-
search areas include services computing, social
networks, recommendation systems, and het-
erogeneous information networks, with a focus

on solving traditional challenges via heterogeneous data sources and
data mining techniques.

Xiangnan He is currently a research fellow with
School of Computing, National University of Sin-
gapore (NUS). He received his Ph.D. in Com-
puter Science from NUS. His research inter-
ests span recommender system, information re-
trieval, natural language processing and multi-
media. His work on recommender system has
received the Best Paper Award Honorable Men-
tion in WWW 2018 and SIGIR 2016. Moreover,
he has served as the PC member for top-tier
conferences including SIGIR, WWW, MM, KDD,

WSDM, CIKM, AAAI, and ACL, and the invited reviewer for prestigious
journals including TKDE, TOIS, TKDD, TMM, and WWWJ.

Jiaying Peng received the bachelor’s degree
at South China Normal University, Guangzhou,
China, in 2019. He is currently pursuing the
master’s degree with the School of Data and
Computer Science, Sun Yat-sen University,
Guangzhou, China. His main research interests
include social networks, recommendation sys-
tems, machine learning and data mining tech-
niques.

Zibin Zheng received the Ph.D. degree from
The Chinese University of Hong Kong, in 2011.
He is currently a Professor with the School of
Data and Computer Science, Sun Yat-sen Uni-
versity, Guangzhou, China. His research inter-
ests include services computing, software engi-
neering, and blockchain. He received the ACM
SIGSOFT Distinguished Paper Award at the
ICSE10, the Best Student Paper Award at the
ICWS10, and the IBM Ph.D. Fellowship Award.

Jie Tang is an associate professor with the De-
partment of Computer Science and Technology,
Tsinghua University. His main research interests
include data mining algorithms and social net-
work theories. He has been a visiting scholar
with Cornell University, Chinese University of
Hong Kong, Hong Kong University of Science
and Technology, and Leuven University. He has
published more then 100 research papers in
major international journals and conferences in-
cluding: KDD, IJCAI, AAAI, ICML, WWW, SIGIR,

SIGMOD, ACL, Machine Learning Journal, TKDD, and TKDE.

	1 Introduction
	2 METHODOLOGY
	2.1 Task Description
	2.2 User Representation Learning
	2.2.1 Initial Embeddings
	2.2.2 Modeling First-Order Neighbors
	2.2.3 Modeling High-Order Neighbors

	2.3 Attentive Layer Aggregation
	2.3.1 Model Prediction

	2.4 Model Optimization
	2.5 Time Complexity Analysis

	3 EXPERIMENTS
	3.1 Settings
	3.2 Performance Comparison (RQ1)
	3.2.1 Overall Comparison.
	3.2.2 Performance Comparison w.r.t Interaction Sparse Levels.

	3.3 Component Analysis (RQ2)
	3.4 Effect of dropout (RQ3)

	4 RELATED WORK
	4.1 Social Recommendation
	4.2 Graph Neural Network
	4.3 Attention Mechanism

	5 CONCLUSION and FUTURE WORK
	References
	Biographies
	Yang Liu
	Liang Chen
	Xiangnan He
	Jiaying Peng
	Zibin Zheng
	Jie Tang

