
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 1

Automated Unsupervised Graph Representation
Learning

Zhenyu Hou, Yukuo Cen, Yuxiao Dong, Jie Zhang, and Jie Tang?, IEEE Fellow

Abstract—Graph data mining has largely benefited from the recent developments of graph representation learning. Most attempts to
improve graph representations have thus far focused on designing new network embedding or graph neural network (GNN)
architectures. Inspired by the SGC and ProNE models, we instead focus on enhancing any existing or learned graph representations
by further smoothing them via graph filters. In this paper, we introduce an automated framework AutoProNE to achieve this.
Specifically, AutoProNE automatically searches for a unique optimal set of graph filters for any input dataset, and its existing
representations are then smoothed via the selected filters. To make AutoProNE more general, we adopt self-supervised loss functions
to guide the optimization of the automated search process. Extensive experiments on eight commonly used datasets demonstrate that
the AutoProNE framework can consistently improve the expressive power of graph representations learned by existing network
embedding and GNN methods by up to 44%. AutoProNE is also implemented in CogDL, an open source graph learning library, to help
boost more algorithms.

Index Terms—Representation learning, Graph embedding, Graph filter

F

1 INTRODUCTION

G RAPHS have been commonly used for modeling structured
and relational data, such as social networks, knowledge

graphs, and biological networks. Over the past few years, mining
and learning with graph data have been shifted from structural
feature engineering to graph representation learning, which offers
promising results in various applications, including node clas-
sification [1], recommender system [2], and machine cognitive
reasoning [3].

Broadly, research on graph representation learning can be
grouped into two categories: unsupervised network embedding
methods and graph neural networks (GNNs). The network em-
bedding methods aim to project the structure of a network into a
latent low-dimensional space such as its structural properties are
encoded in the latent vectors. Usually, the input to them contains
only the graph topology without input features. Representative
network embedding models include skip-gram based methods
such as DeepWalk [4], LINE [5], and node2vec [6] as well
as matrix factorization based methods such as HOPE [7], and
NetMF [8].

Graph neural networks (GNNs) on the other hand usually take
both node/edge features and graph structures as the input and
iteratively aggregate neighbors’ features to update each node’s
representation. Most early GNN models are end-to-end (semi) su-
pervised frameworks with the label information for optimization,
such as the graph convolutional network (GCN) [1] and graph
attention network (GAT) [9]. Recently, self-supervised graph
neural networks gain significant attention due to their enormous

• Zhenyu Hou, Yukuo Cen and Jie Zhang are with the Department
of Computer Science and Technology, Tsinghua University, China. E-
mail:{houzy21, cyk20, j-z16}@mails.tsinghua.edu.cn.

• This work was done when Yuxiao Dong was at Microsoft Research, Red-
mond, and he is now at Facebook AI, USA. Email: ericdongyx@gmail.com

• Jie Tang is with the Department of Computer Science and Technology, Ts-
inghua University, and Tsinghua National Laboratory for Information Sci-
ence and Technology (TNList), China. E-mail: jietang@tsinghua.edu.cn,
corresponding author.

potential in shaping the future of graph mining and learning. For
example, the GraphSage model [10] with the unsupervised loss
can be considered as a self-supervised framework. DGI [11] and
GCC [12] leverage the idea of contrastive learning [13], [14] to
pre-train graph neural networks via self-supervised signals from
the unlabeled input data.

Among the exciting progress in graph representation learning,
two recent developments are particularly attractive. First, Wu
et al. [15] discover that the non-linearity between GCN layers
can be simplified, based on which the SGC model without non-
linearity is proposed. By removing the non-linearity, it is easy
to decouple the feature transformation and propagation steps in
GCNs’ neighborhood aggregation process, enabling us to design
these two steps separately. The second one is the ProNE model,
in which Zhang et al. [16] show that using a modulated Gaussian
filter to propagate/smooth the node embeddings can significantly
improve the expressive power of the embeddings.

Inspired by these two works, we propose to study whether
we can improve graph representation learning by focusing on
the propagation step, that is, given the input embeddings such
as learned by DeepWalk or DGI, the goal is to further enhance
their expressive power by propagating/smoothing the embeddings.
First, instead of relying on label information, we are interested
in techniques that can benefit graph representation learning in
an unsupervised or self-supervised manner. Second, rather than
a fixed Gaussian filter, we would like to answer the question of
whether there exist better graph filters for propagating existing
embeddings. Finally, the natural need is to avoid the manual
design or choice of graph filters for each dataset, that is, can we
automatically find the best filters for each specific graph?

Solutions. To address these issues, we present the AutoProNE
framework to automatically find the appropriate graph filters to
smooth existing graph representations in a self-supervised manner.
Different from ProNE that uses a fixed Gaussian kernel for all
graphs, the proposed framework leverages the idea of AutoML

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 2

Heat

PPR

Gaussian

SR

𝐀𝐩

𝐋𝐠

Dimension

Reduction

(1) Parameter selection with AutoML (2) Propagation via graph filter :
𝐗 = DimRe[𝐀𝐩𝐗|| 𝐋𝐠𝐗]

𝑓𝑝 𝜆 =
𝛼

1 − 𝛼 𝜆 + 𝛼

𝑓𝑔 𝜆 = 𝑒−
1
2 𝑥−𝜇 2𝜃

𝐗

Readout(𝐗)

Infomax

InfoNCE

Gaussia

n(𝜇, 𝜃)

PPR(𝛼)

AutoML

Fig. 1. The Overview of the AutoProNE Framework. The input is the node embeddings learned by any other network embedding or GNN methods
and the output is the smoothed embeddings with enhanced expressive power. AutoProNE includes two components: (1) Parameter selection: the
AutoML parameter generator automatically select graph filters and corresponding hyperparameters. (2) Embedding propagation: once the graph
filters are selected, they are used to smooth the input embeddings. In the example, the PPR and Gaussian graph filters as well as their parameters
are selected for the specific input graph. And as a result, each node pays attention to its indirect neighbors.

to search for the best filter(s) for the given graph, such as low-
pass, band-pass, and signal-rescaling filters. Moreover, rather than
using supervised signals to guide the AutoML process, the opti-
mization of AutoProNE is built upon the recent advancements in
self-supervised graph representation learning, that is, AutoProNE
adopts self-supervised loss to direct the AutoML optimization.
Figure 1 illustrates the framework of AutoProNE.

We conduct extensive experiments on eight publicly available
datasets. By using both network embedding methods without input
features (e.g., DeepWalk) and graph neural networks with node
features (e.g., DGI), we show that the AutoProNE framework
can consistently and significantly enhance the expressive power of
graph representations learned by these base methods. For example,
the simple, automated, and unsupervised AutoProNE can boost
the node classification performance of LINE’s representations
by 34–44% on the PPI dataset. Furthermore, we show that the
graph filters automatically decided by the AutoML process of
AutoProNE are always among the best options across all different
datasets. Finally, we find that AutoProNE requires only 2–4% of
the running time of DeepWalk to offer outperformance by up to
8%, and also demonstrate that its scalability is linear to the number
of nodes in the graph, enabling it for handling large-scale data. The
code is available at https://github.com/THINK2TRY/AutoProNE.
and CogDL 1 [17] , a open source graph learning library, to make it
more convenient to collaborate with existing graph representation
algorithms.

Contribution. The main contributions of this work include:
• We investigate the role of graph filters on unsupervised graph

representation learning and provide insights into various graph
filters.

• We propose a comprehensive framework AutoProNE that in-
tegrates automatic machine learning and graph representation
learning.

• We conduct extensive experiments to evaluate our framework.
The results demonstrate the effectiveness of AutoProNE where

1. https://github.com/THUDM/cogdl

our framework achieves significant improvements over various
methods and datasets.

2 PRELIMINARIES

2.1 Concepts

Graph Notations. Let G=(V, E ,X) denote an undirected graph
with V as the set of its n nodes and E as its edges, and X ∈ Rn×d
as the feature matrix of V . Given G, we have its (symmetric)
adjacency matrix as A = (aij) with aij = 1 if and only if there
exists an edge between vi and vj , as well as its degree matrix
D = diag(d1, d2, ..., dn) with di =

∑
j aij . In practice, the

row-normalized adjacency matrix Ârw = D−1A and symmetric
normalized adjacency matrix Âsym = D−1/2AD−1/2 are more
commonly used. In this work, we simplify Ârw and Âsym as Â.

Network Embedding. The problem of network embedding aims
to learn a mapping function f : V → Rd that projects each node
to a d-dimensional space (d� |V|). Network embedding methods
mainly focus on neighborhood similarity and capture the structural
properties of the network. Extensive studies have shown that the
learned node representations can benefit various graph mining
tasks, such as node classification and link prediction. DeepWalk,
LINE, Node2Vec and NetMF are all network embedding methods.

Graph Signal Processing. In this part, we introduce a recent
formulation [18] of graph signal processing [19], [20] on irregular
graphs. The Laplacian matrix of graph G is defined as L = D−A.
L̂ = In − Â is the augmented normalized Laplacian. A vector
x ∈ Rn defined on the nodes of G is called a graph signal. A
useful property of graph Laplacian L is that its quadratic form
measures the smoothness of the graph signal. It is easy to verify
that

xTLx =
∑
i,j

Aij(xi − xj)2 =
∑

(i,j)∈E

(xi − xj)2 (1)

Let U ∈ Rn×n = [u1, ...,un]T be the eigenvectors of L̂
and we have L̂ = UΛUT , where Λ = diag[λ1, ..., λn] is

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 3

the eigenvalues of L̂ corresponding to U. The graph Fourier
transform F : Rn → Rn is defined by Fx = x̃ = UTx, and
the inverse graph Fourier transform F−1 is F−1x̃ = x = Ux̃
because FF−1 = UTU = In.

Graph filter is defined based on the graph Fourier transform.
Let g: R → R be a function mapping x

g−→ y. In frequency
domain, the graph filter specified by g is defined by the relation:
ỹ = g(Λ)x̃, that is, ỹ(λi) = g(λi)x̃(λi). In the spatial domain,
the above equation is equivalent to y = g(L̂)x.

For multi-dimensional cases, the graph Fourier transform is
FX = X̃ = UTX and the inverse form is F−1X̃ = X = UX̃.
Then the graph filter is represented as

Y = g(L̂)X = Ug(Λ)UTX (2)

Generally, for computational efficiency, Taylor or Chebyshev
approximation is applied to avoid the eigendecomposition of L̂.
Without loss of generality, let T ∈ Rn×n be the transition
matrix and θi be the weight coefficients. The k-order expansion
is represented as

g(L̂) ≈
k∑
i=0

θiT
i ∈ Rn×n (3)

Graph Convolution. In spectral graph convolution networks, the
graph convolution operation is fast approximated with the layer-
wise propagation rule [1]. GCN simplifies Eq 3 by only keeping
the first two items with θ0 = θ1:

g(L̂) = θ0In + θ1Â

= θ(In + Â)
(4)

In is an identity matrix. The eigenvalues of I + Â is in the
range [0, 2]. To alleviate the problem of numerical instability and
exploding/vanishing gradients when used in deep neural networks,
the following renormalization trick is introduced:

In + Â→ D̃−1/2(I + A)D̃−1/2 = D̃−1/2ÃD̃−1/2

where D̃ii =
∑
j Ãij . Furthermore, multiple layers are stacked

to recover a rich class of convolutional filter functions and each
layer is followed by a linear transformation and a point-wise
non-linearity. Then the one-layer graph convolution becomes as
follows:

H(i+1) = σ(ÃH(i)Θ(i)) (5)

where Θ(i) is a layer-specific trainable matrix, H(i) ∈ Rn×d is
the d-dimensional hidden node representation in the ith layer.

2.2 ProNE
In this part, we give a brief introduction to ProNE. ProNE is a fast
network embedding method based on matrix factorization. First,
it formulates network embedding as a sparse matrix factorization
for efficient representation transformation. Second, it utilizes a
Gaussian graph filter for representation smoothing to improve the
representation.

Network Embedding as Sparse Matrix Factorization ProNE
leverages an edge to represent a node-context pair. Let ri, ci ∈ Rd
be the node embedding and context vectors of node vi respectively.
The concurrence of context vj given vi is

p̂i,j = σ(rTi cj) (6)

σ() is the sigmoid function. To maximize the concurrence proba-
bility and avoid trivial solution (ri = ci&p̂i,j = 1) for each pair,
the objective can be expressed as the weighted sum of log loss
over all edges accompanied with negative sampling

Loss = −
∑

(i,j)∈E

[pi,j lnσ(rTi cj) + τPE,j lnσ(σ(−rTi cj))]

(7)
where pi,j = Ai,j/Di,i indicates the weight of pair (vi, vj), τ
is the ratio negative sampling, PE,j ∝ (

∑
i:(i,j)∈E p(i, j))

α with
α = 1 or 0.75. To minimize the objective equals to let the the
partial derivative with respect to rTi cj be zero. And hence we get

rTi cj = ln pi,j − ln(τPE,j) (8)

ProNE proposes to define a proximity matrix M with each
entry as rTi cj , which represents the similarity between embedding
of vi and context embedding of vj .

M =

{
ln pi,j − ln(τPE,j), (vi, vj) ∈ E

0, (vi, vj) /∈ E

Now that the relationship matrix is built, the objective is trans-
formed into matrix factorization. ProNE uses a fast randomized
tSVD to achieve fast sparse matrix factorization and finally gets
X̂ ∈ RN×d as node embedding matrix.

Spectral Propagation To address the representation smoothing
problem, ProNE proposes to leverage a Gaussian graph filter as
the smoothing function f(Â). ProNE designs the graph filter as
g(λ) = e−[12 (λ−µ)2−1]θ and formulates the transformation as the
following rule:

f(Â) = D−1Â(In − L̃) (9)

where In is the identity matrix and L̃ is defined as the Laplacian
filter as:

L̃ = Udiag([g(λ1), ..., g(λn)])UT (10)

Eq 9 can be viewed as two steps. It first modulates the spectral
property with modulator In − L̃ and then re-propagates informa-
tion between neighbors.

3 AUTOMATED UNSUPERVISED GRAPH REPRE-
SENTATION LEARNING

3.1 Problem

One GCN layer consists of three steps: neighborhood feature
aggregation, feature transformation,and nonlinear transition. By
stacking multiple layers, GCNs enable the propagation to reach
high-order neighbors. Recently, Wu et al. [15] suggest that the
non-linearity between GCN layers is not critical and thus propose
the simplified graph convolution network (SGC) by removing non-
linearity and having only one step of feature propagation and
transformation, i.e.,

HSGC = ÂKXΘ1 · · ·ΘK = ÂKXΘ (11)

Inspired by SGC, we can further abstract graph convolution
as:

H = ÂXΘ = f(Â)h(X,Θ) (12)

where f(Â) and h(X,Θ) are two independent steps for feature
representation learning. To make Eq. (12) generalize to unsuper-
vised graph embedding methods, such as DeepWalk and node2vec,
we have h(·) as h(A,X,Θ). In these methods, the input feature

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 4

matrix X is empty and the node representations are learned only
based on the graph topology A. Therefore we can have

H = f(Â)h(A,X,Θ) (13)

In other words, graph representation learning, including both
GNNs and unsupervised methods, can be simplified and ab-
stracted as two independent processes: representation transforma-
tion h(A,X,Θ) and propagation (or smoothing) f(Â).

In representation transformation X̂ = h(A,X,Θ), the node
representations X̂ are either learned solely from graph structures
without input features X (such as by DeepWalk or NetMF) or
transformed with X by learnable parameters (such as MLP or
GNNs).

In the representation smoothing f(Â) step, the representations
initialized in the previous step are propagated to (high-order)
neighbors. Note that in traditional unsupervised methods, this step
is ignored. In SGC, the features are smoothed via the high order
propagation, that is, ÂK .

Problem. The focus of this work is on the smoothing step
of graph representation learning. Specifically, given the node
representations of one graph dataset learned by existing methods,
such as DeepWalk, the goal is to automatically design a smoothing
function f(Â) for this graph to effectively propagate them over
its specific structure in an unsupervised manner.

3.2 The AutoProNE Framework
Inspired by ProNE, we propose that graph signal processing can
be a general and powerful method to address the representation
smoothing problem. Graph filters, such as the low-pass filter and
band-pass filter in the frequency domain, or adjusting the structure
importance of nodes in the spatial domain can be used to design
the smoothing function f(Â).

ProNE uses a fixed Gaussian filter to tackle all cases. However,
intuitively, each dataset may require unique graph filters to help
“pass” true features and “filter out” noises. However, the input
dataset is often considered as a black box and thus it is compu-
tationally expensive to analyze its spatial and spectral features.
Therefore, it is infeasible to manually select or design appropriate
graph filters for each given graph dataset.

In light of these challenges, we propose the automated Auto-
ProNE graph representation learning framework to automatically
select graph filters in an unsupervised manner for different input
graphs. Fig 1 shows the overall architecture of AutoProNE, which
first utilizes the idea of AutoML to select suitable graph filters for
modulating graph signals (parameter selection) and then smooth
node representations based on the selected filters (propagation).

In parameter selection, the parameter controller automatically
selects graph filters from the designated graph filter set together
with their hyper-parameters (Cf next section for details). We em-
ploy AutoML to implement this process. Briefly, AutoML is de-
signed to automatically build machine learning applications [21].
It involves two parts—model generation and model evaluation.

First, model generation can be divided into search space and
optimization methods, which are usually classified into hyperpa-
rameter optimization (HPO) and architecture optimization (AO).
In AutoProNE, we mainly focus on AO, which indicates the
model-related parameters, e.g., the selection of graph filters.

Second, for model evaluation, indicators like accuracy on the
validation set are often used as measures. However, our problem
is formalized under the unsupervised setting, that is, there exist

no supervised indicators to help select the model parameters. To
address this issue, we leverage the idea of contrastive learning
to maximize the mutual information of different embeddings to
evaluate the model.

In propagation, the node representations X̂ are propagated
with selected filters. Under the hypothesis that each graph filter
would differently amplify true features and attenuate noises, we
concatenate the results of each filter together to preserve the
information instead of averaging them, if multiple filters are
selected. In order to keep the embedding dimension the same
as the input, it is then followed by the SVD operation on the
concatenated representations.

Finally, the loss is collected to help optimize the search. In
AutoProNE, we directly utilize Optuna [22] as the AutoML
framework. As the designed search space is small, the algorithm
will converge quickly. Algorithm 1 illustrates the process of
AutoProNE described above.

Note that AutoNE [23] also combines network embedding
(NE) with AutoML and attempts to decide the hyperparameters
of a given NE algorithm using meta-learning. Differently, Auto-
ProNE aims to obtain the optimal graph filters for further improv-
ing the embeddings learned by any existing NE algorithms, instead
of searching for hyperparameters to have better NE algorithms. In
other words, AutoProNE runs on the embedding results and is not
related to the learning process of the NE algorithms.

Algorithm 1 The AutoProNE Algorithm

Input: Normalized adjacency matrix Â; Input embeddings X̂;
Search iterations N .

Output: Enhanced embeddings H with the same dimension size
as X̂.

1: for i = 1 to N do
2: Select filters GFs from {PPR,Heat,Gaussian, SR}
3: Let Z be an empty list: Z = []
4: for each gf ∈ GFs do
5: Hgf = Propagation(Â, X̂, gf)
6: Append Hgf into Z
7: end for
8: Concatenate smoothed embeddings in Z to have Zr

9: Conduct dimension reduction on Zr to get H
10: Calculate the corresponding loss and optimize parameters.
11: end for

3.3 Automated Graph Filter Selection
We introduce the design choices of the core components in Auto-
ProNE: Search Space Design and Unsupervised Loss Function.

3.3.1 Search Space Design.
In graph signal processing, different graph filters have been
designed for modulating graph signals. We adopt three existing
simple and efficient graph filters—PPR, Heat kernel, and Gaus-
sian kernel—that have been widely used in graph representation
learning [16], [24], [25] and also propose a new filter based on
signal rescaling. The four graph filters are summarized in Table 1.

PPR [26]. Personalized PageRank(PPR) is defined based on
random walk with restart and reflects the probability of a ran-
dom walk starting from a node to another. PPR is defined as
π(x) = (1 − α)Âπ(x) + αx, and its closed-form matrix is
Ap = α(In − (1 − α)Â). To avoid the high computational cost

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 5

TABLE 1
Graph Filters

Name Graph Filter Parameters

PPR H = ApX̂ α

Heat Kernel H = LhX̂ θ

Gaussian Kernel H = LgX̂ µ, θ
Signal Rescaling H = AsX̂ -

of matrix inversion, we use Taylor expansion to approximate Ap,
that is,

Ap ≈
k∑
i=0

θ(i)
p Â, where θ(i)

p = α(1− α)i (14)

Heat Kernel [27]. The heat kernel is often used in heat condition
and diffusion, and represents the evolution of temperature in a
region whose boundary is held fixed at a particular temperature.
When applied to graphs, Heat kernel is defined as fh(λ) = e−θλ,
in which θ is a scaling hyperparameter. We denote fh(Λ) as
fh(Λ) = diag(e−θλ1 , . . . , e−θλn). In fact, heat kernel works
as a low-pass filter in the frequency domain and the heat graph
filter is defined based on the Laplacian matrix as

Lh = Ufh(Λ)UT = Udiag(e−θλ1 , ..., e−θλn)UT (15)

Gaussian Kernel [28]. Gaussian filter is a widely used band-pass
filter in signal processing. Gaussian kernel in graph is defined as
f(λ) = e−[12 (λ−µ)2−1]θ with µ and θ as the scaling hyperparam-
eters. Gaussian kernel works as a band-pass filter with different
hyperparameters. We have fg(Λ) = diag(e−θλ̄i , . . . , e−θλ̄i) if
we denote λ̄i = 1

2 (λi − µ)2 − 1. Then the Gaussian graph filter
is similar to the heat graph filter:

Lg = Ufg(Λ)UT = Udiag(e−θλ̄1 , ..., e−θλ̄n)UT (16)

Signal Rescaling. In addition to the three existing filters, we also
propose a signal rescaling filter. The intuition is that structural in-
formation plays a central role in networks. An intuitive example is
that nodes of a high degree may be more important and influential
in a network. To capture this phenomenon, we can attenuate node
signals (and perform renormalization) before propagation, that is,

As = Normalize(Âσ(D−1)) (17)

where σ(x) = 1
1+e−x .

Chebyshev Expansion for Efficiency For both the heat ker-
nel and Gaussian kernel, we utilize the Chebyshev expansion
and Bessel function [29] to avoid explicit eigendecomposition.
Chebyshev polynomials of the first kind are defined as Ti+1(x) =
2xTi(x) − Ti−1(x) with T0(x) = 1, T1(x) = x. Then, the
expression of a general graph filter can be expanded as:

L̄ ≈ U
k∑
i=0

ci(θ)Ti(Λ̃)UT =
k∑
i=0

ci(θ)Ti(L̃) (18)

where specifically Λ̃ = Λ, L̃ = L̂ for heat kernel and Λ̃ =
1
2 (Λ−µI)2, L̃ = 1

2 (L̂−µI)2 for Gaussian kernel. The coefficient

ci(θ) can be obtained with the Bessel function:

ci(θ) =
β

π

∫
Ti(x)e−xθ√

1− x2
dx = β(−)iBi(θ) (19)

where β=1 if i=0 otherwise β=2 and Bi(θ) is the modified Bessel
function of the first kind [29]. Then the truncated expansion of
the filter becomes as follows:

L̄ ≈ B0(θ)T0(L̃) + 2
k−1∑
i=1

Bi(θ)Ti(L̃) (20)

This truncated Chebyshev expansion provides a good approxima-
tion for e−λθ with a fast convergence rate.

Taylor expansion and Chebyshev expansion are common ap-
proximation methods. [30] adopts another local spectral em-
bedding method which utilizes random vectors and Gauss-Seidel
iteration to avoid explicit eigendecomposition of the adjacency
matrix.

3.3.2 Unsupervised Loss Function.
Different from most AutoML settings where supervised informa-
tion is used, we aim to guide the AutoML process for graph filter
selection in an unsupervised or self-supervised fashion. The goal
is to derive supervised signals from the input graph data itself for
“supervising” the selection of graph filters.

An additional principle is that the self-supervised loss function
Qf of AutoML in the smoothing phase should be different from
the one utilized in getting the representations in the transformation
phase. The reason lies in that the representations to be smoothed
have already achieved the best loss in the transformation step, and
a different Qf can help further improve the node representations.

In AutoProNE, our strategy for automatic graph filter search
is built upon the recent development of self-supervised learning
techniques, specifically contrastive learning based methods [11],
[12], [31]. Note that AutoProNE is generally designed for im-
proving node representations learned by both network embedding
methods (e.g., DeepWalk) and GNNs. To accommodate their
unique properties, we employ the mutual information maximiza-
tion and instance discrimination as the loss function for both sets
of methods, respectively.

For unsupervised network embedding methods, such as skip-
gram or matrix factorization based methods, we use the local-
global mutual information maximization loss proposed in [11]
to guide the search of graph filters for each graph. Let Z̃ be
the row-wise shuffling of X̂. X̂ and Z̃ are both propagated with
selected graph filters, with the results as H = Prop(X̂) and
H̃ = Prop(Ẑ) respectively. As H̃ is derived from the propaga-
tion based on shuffled features, it is “corrupted” and should be less
similar to initial embeddings X̂. We leverage the mean-readout
function to obtain a graph level representation: s = 1

N

∑
h∈H h.

In such case, H is considered as “positive” samples for s, H̃ as
“negative” samples for H̃ is derived from shuffled features. The
goal is to maximize the mutual information between node features
H and global features s in the mean time minimizing the mutual
information between s and negative node features Ĥ. Then the
loss is formalized as follows:

Qf = − 1

2N
(
N∑
i=1

E(X̂,Â)[log σ(hTi s)]

+
N∑
j=1

E(Z̃,Â)[log σ(1− h̃Tj s)])

(21)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 6

For graph convolution based methods, InfoNCE proposed in
[14] is utilized as the optimization target. From the perspective of
instance discrimination, the contrastive loss is a function whose
value is low when a query q is similar to its positive key k+

and dissimilar to all other keys (negative keys). In most cases,
contrastive learning is often used in conjunction with data aug-
mentation, but data augmentation in graph is still a open problem.
In this paper, we simply take input features and the smoothed
result as positive pairs. For each node hi ∈ H, x̂i ∈ X̂ is the
only positive key and all the other x̂j ∈ X̂, i 6= j are negative
keys. Therefore, we can have the InfoNCE loss with respect to
instance discrimination as:

Qf = −
N∑
i=1

log
exp(hTi x̂i/τ)∑K
j=0 exp(h

T
i x̂j/τ)

(22)

where τ is a temperature hyperparameter.

Algorithm 2 Propagation

Input: Normalized ajacency matrix Â; Initial embedding X̂;
Type of graph filter gf ;

Output: Enhanced embedding H
1: Order of Expansion k = 5
2: Laplacian matrix L̂ = I− Â X̂(0) = X̂
3: if gf ∈ [Heat kernel, Gaussian] then
4: X̄(1) = L̄X
5: H = B(0)X̂(0) − 2B(1)X̂(1)

6: for i = 2 to k do
7: X̄(i) = 2L̂X̂(i−1) − X̂(i−2)

8: H = H + (−1)iB(i)X̂(i)

9: end for
10: else if gf is PPR then
11: H = αX̄(0)

12: for i = 1 to k do
13: X̂(i) = (1− α)ÂX̂(i−1)

14: H = H + X̂(i)

15: end for
16: else
17: H = Normalize(Âσ(D−1))X
18: end if
19: return H

3.3.3 Automatic Searching
Now that search space and unsupervised loss functions have
been defined, we employ automatic machine learning to search
for the best combination of graph filters and hyperparameters.
As the loss functions are often non-convex and it is difficult to
get the derivative and gradients, hyperparameter optimization in
machine learning is generally considered as a problem of black-
box optimization. Bayesian optimization [32] is a common and
powerful method to tackle such cases. The basic idea of Bayesian
optimization is to use the Bayesian rule to estimate the posterior
distribution of the objective function based on dataset, and then
select the next sampling hyperparameter combination according
to the distribution. It aims to find the parameters that achieve the
most improvement by optimizing the objective function, or loss
function. In the implementation, we employ Optuna with Bayesian
optimization as the backend AutoML framework for automatic
searching. As shown in Algorithm 1, AutoProNE explores better
filters and parameters based on previous attempts and losses.

4 ANALYSIS AND DISCUSSIONS

We provide analyses of the impact of graph filters on the expres-
siveness of graph representations.

4.1 Insight into graph filters
4.1.1 PPR as a low-pass filter
PPR is defined in the spatial domain. Intuitively, through random
walk, a node can capture the information of both direct and distant
neighbors. The probability distribution of random walk with restart
converges to a stationary distribution:

Ap = α(In − (1− α)AD−1)−1

= α(αIn − (1− α)L̂)−1

= Udiag(
α

(1− α)λi + α
)UT

(23)

In the frequency domain, PPR kernel can be written as fp(λ) =
α

(1−α)λ+α and is a low-pass filter. This equals to our intuition
that random walk usually assigns higher weights to low-order
neighbors.

4.1.2 Spectral properties of graph filters
Generally, for the convenience of writing and without loss of
generality, we denote a general graph filter matrix with L, where
Ap,Lh and Lq are special cases of L. Let λi be the ith

eigenvalue of L, adjacency matrix A = In − L = In −
Udiag(λ1, ..., λn)UT .

GCN in fact works like a low-pass filter from the spectral
domain. The propagation of node features by multiplying the
(augmented) adjacency matrix Â corresponds to applying graph
filter g(λ) = 1 − λ. The eigenvalues of A lie on the interval [0,
2] and it has been proved in [15] that λmax, the largest eigenvalue
of A and λ̂max, the largest eigenvalue of Â, satisfies:

0 < λ̂max < λmax ≤ 2 (24)

Thus g(λ) = 1 − λ resembles a band-stop filter. The graph
filter of GCN can be described as g(λi) = (1 − λi)

K , where
K = 1 in one GCN layer and can be any positive integer in
Simplified GCN. The spectrum of ÂK actually works as a low-
pass-type filter for K > 1 [33].

PPR and Heat kernel work as a low-pass filter. α and θ adjust
the pass rate. Gaussian kernel can be generally considered as a
band-pass filter. As µ determines the only peak, by adjusting
µ and θ, we can implement different types of filter that passes
frequencies within a certain range: µ ≤ 0 as low-pass; µ ≥ λ̂max

as high-pass; 0 < µ < λ̂max as band-pass [28].
In the spectral domain, the graph filter extracts features in

a certain band of the network. Generally, the true features are
concentrated in a certain frequency band and the noises conform to
uniform or Gaussian distribution. Thus graph filter helps preserve
the intrinsic information and reduce the noise. In the spatial
domain, the graph filters aggregate the information of both direct
and distant neighborhoods into the node embedding. Therefore,
the features are properly smoothed and the learned embedding
can be more expressive.

4.1.3 Spatial Property of SR
The signal rescaling function is inspired by the fact that many
graph convolutional networks are actually performing signal
rescaling. In many networks, there exist nodes of very high

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 7

degrees. For example, the average degree of nodes in BlogCatalog
is 32, but the maximum degree is 1,996; DBLP’s average node
degree is only 2.5, but the maximum degree is also up to 90. The
class of most nodes is not determined by its neighbors of a high
degree, but neighbors with a lower degree. As a result, attenuating
node signals of a high degree helps improve embedding perfor-
mance in some structure information dominated networks.

4.1.4 Visualization of Graph Filters
Fig 2 exhibits the visualization results of the functions of dif-
ferent filters on Karate Clubs dataset. Compared to merely row
normalization, as we can see from the figures, PPR, HeatKernel
and Gaussian kernel enlarge the receptive field and assign dif-
ferent weights to neighbors and also pay attention to nonneighbor
nodes.They do show different forms when capturing the character-
istics of higher-order neighbors. In addition, the three filters assign
high weights to the node itself even without adding self-loops.
Signal rescaling adjusts weights according to the node degrees of
neighbors.

Fig 2 shows the impact of the hyperparameters on filters. And
it can be observed that PPR, HeatKernel and Gaussian Kernel are
sensitive to hyperparameters, which mainly determine how a node
aggregates the features of its neighbors. For PPR, the bigger restart
probability α, the more attention a node pays to neighbor nodes.
Gaussian and heat kernel are more complex in the spatial domain.

4.2 Connection with graph partition
Graph partition aims to reduce a graph into a set of smaller
graphs by partitioning its set of nodes into mutually exclusive
groups. In many cases, graphs have good locality and a node
often tends to have similar features and be in the same class
with its neighbors. The assumption is also the basis of many
algorithms like DeepWalk, LINE and GCN. Therefore, the locality
and connectivity of a graph are highly related to the effectiveness
of the Propagation in our model. Luckily, high-order Cheeger’s
inequality [34], [35] suggests that eigenvalues of Laplacian matrix
are closely associated with a graph’s locality and connectivity.

The effect of graph partition can be measured by graph
conductance(a.k.a. Cheeger constant). For a node subset S ⊆ V ,
the volume of S is vol(S) =

∑
x∈S d(x), d(x) is the degree of

node x. The edge boundary of S is e(S) = {(x, y) ∈ E|x ∈
S, y /∈ S}. Then the conductance of S is defined to be:

Φ(S) =
|e(S)|

min(vol(S), vol(S̄))

To measure the conductance of the whole graph G when parti-
tioned into k parts, let S1, ..., Sk ⊆ V and Si ∩ Sj = ∅ if i 6= j.
The k-way Cheeger constant is defined as:

ρG(k) = min{max{Φ(Si), i = 1, ..., k}}

ρG(k) is positively correlated to graph connectivity. if a graph has
higher conductance(bigger ρG(k)), it is better connected. High-
order Cheeger equality bridges the gap between graph partition
and graph spectrum and shows that the eigenvalues of Laplacian
matrix control the bounds of k-way Cheeger constant as follows:

λk
2
≤ ρG(k) ≤ O(k2)

√
λk (25)

In spectral graph theory, the number of connected components in
an undirected graph is equal to the multiplicity of the eigenvalue
zero in graph Laplacian.

(a) A (b) Âs

(c) AP with α = 0.2 (d) AP with α = 0.8

(e) Lh with θ = 0.2 (f) Lh with θ = 0.2

(g) Lg with µ = 0.2 and θ = 1.0 (h) Lg with µ = −1 and θ = 2

Fig. 2. Visualization of adjacency matrix A, row normalized adjacency
matrix with self-loops Ârw, PPR matrix AP, Gaussian filter matrix Lg,
Heat kernel filter matrix Lh and signal rescaling matrix Ar on dataset
Karate Clubs. The darker the color means the higher the weight of the
node. The weight is between [0, 1].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 8

TABLE 2
Statistics of datasets.

Dataset Nodes Edges Classes Features Degree

BlogCatalog 10,312 333,983 39 - 32.4
PPI 3,890 76,584 50 - 19.7
Wiki 4,777 184,812 40 - 38.7
DBLP 51,264 127,968 60 - 2.5
Youtube 1,138,499 2,990,443 47 - 2.6

Cora 2,708 5,429 7 1,433 2.0
Citeseer 3,327 4,732 6 3,703 1.4
Pubmed 19,717 44,338 3 500 2.2

Eq 25 indicates that we can increase(decrease) the graph
conductance ρG(k) by increasing(decreasing) the lower bound
λk. For example, low-pass filters increases λk for small k and
decreases eigenvalues for big k. As a result, different parts become
more isolated when the graph is partitioned into different groups,
thus improving the locality of the graph and benefiting node
classification. In practical applications, different types of graph
filters can be selected to fit the characteristics of graphs.

4.3 Complexity
The computation of graph filters in Table 1 can be efficiently
executed in a recurrent manner. Let n = |V|,m = |E|. With
Taylor and Chebyshev expansion, we only apply repeated Sparse
Matrix-Matrix multiplication (SPMM) between a sparse n × n
matrix and a dense n × d feature matrix with time complexity
O(md) and avoid explicit eigendecomposition with complexity
O(n3). In addition, Intel Math Kernel Library (MKL) provides
efficient SPMM operators which can handle graph of millions or
even billions of nodes [36]. This makes it possible for AutoProNE
to handle large-scale graph data.

For Taylor expansion, we denote X̄(i) = θiX̂
(i), X̂(i) =

ÂX̂(i−1) with X̂(0) = X̂. For Chebyshev expansion, we de-
note X̄(i+1) = ci(θ)X̂

(i), X̂(i) = 2L̂X̂(i−1) − X̂(i−2) with
X̂(0) = X̂. As L̂ and Â are both sparse matrix, the complexity
of Propagation is O(kdm). The dimension reduction (SVD)
on small matrix is O(nd2). And the complexity of computing
Infomax and InfoNCE loss is also O(nd2) as it only involves the
element-wise multiplication of matrix. All together, the complex-
ity of AutoProNE is O(nd2 + kdm).

5 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness
and efficiency of the proposed AutoProNE framework. Specifi-
cally, we examine to what extent AutoProNE can improve both
shallow network embedding methods (without input feature ma-
trix) and graph neural networks (with input feature matrix).

5.1 Experiment Setup
5.1.1 Datasets.
We use eight datasets that are commonly used for evaluating
graph representation learning, 6 of which are relatively small scale
but are widely used in graph representation learning literature,
including BlogCatalog, PPI, Wiki, Cora, Citeseer and Pubmed.
DBLP and Youtube are relatively large scale networks. Table 2
lists their statistics.

We use the following five datasets without input node features.

• BlogCatalog [37] is a network of social relationships of
online bloggers. The vertex labels represent the interests of the
bloggers.

• PPI [38] is a subgraph of the PPI network for Homo Sapiens.
The vertex labels are obtained from the hallmark gene sets and
represent biological states.

• DBLP [39] is an academic citation network where authors are
treated as nodes and their dominant conferences as labels.

• Wiki [40] is a word co-occurrence network in part of the
Wikipedia dump. Node labels are the Part-of-Speech tags.

• Youtube [37] is a video-sharing website that allows users to
upload, view, rate, share, add to their favorites, report, comment
on videos. The labels represent groups of viewers that enjoy
common video genres.
We consider the following three datasets with input node

features.
• Cora [41] is a paper citation network. Each publication is

associated with a word vector indicating the absence/presence.
• Citeseer [41] is also a paper citation network. Each node has a

human-annotated topic as its label and content-based features.
• Pubmed [42] contains 19717 diabetes-related publications.

Each paper in Pubmed is represented by a term frequency-
inverse document frequency vector.

5.1.2 Baselines
We compare with several state-of-the-art methods including:
• DeepWalk [4] DeepWalk generalizes language model to graph

learning. For each vertex, truncated random walks starting from
the vertex are used to obtain the contextual information.

• LINE [5] LINE preserves the first-order and second-order
proximity between vertexes. And we use LINE with the second
order proximity.

• Node2Vec [6] Node2vec designs a second order random walk
strategy to sample the neighborhood nodes, which interpolates
between breadth-first sampling and depth-first sampling.

• HOPE [7] HOPE preserves high-order proximities of graphs
and capable of capturing the asymmetric transitivity using
matrix factorization.

• NetMF [8] NetMF unifies skip-gram based methods as matrix
factorization.

• ProNE [16] ProNE is a fast network embedding method in-
cluding sparse matrix factorization and spectral propagation.
And we use ProNE(SMF) to represent ProNE only with sparse
matrix factorization.

• GraphSAGE [10] GraphSAGE is an inductive GNN frame-
work generating node embeddings by sampling and aggregating
features from a node’s local neighborhood.

• DGI [11] Deep Graph Infomax (DGI) maximizes mutual infor-
mation and classifies local-global pairs and negative-sampled
counterparts.

• GCN [1] Graph convolution network (GCN) simplifies graph
convolutions by restricting the graph filters to operate in an 1-
step neighborhood around each node.

• GAT [9] Graph attention networks adopt attention mechanisms
to learn the relative weights between two connected nodes.
Stacked with the proposed graph filters block, we evaluate how

the algorithm performance can be improved.

5.1.3 Implementation Details.
For a fair comparison, we set the dimension of embedding d = 128
for all network embedding methods. For all the other parameters,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 9

TABLE 3
Micro-F1 results of node classification by different algorithms w/ and w/o AutoProNE. Ratio indicates the percentage of labeled data.

Numbers in the brackets indicate performance improvements and all are statistically significant (p-value�0.01; t-test).

Datasets Ratio DeepWalk ProDeepWalk LINE ProLINE node2vec ProNode2vec NetMF ProNetMF HOPE ProHOPE

BlogCatalog
0.1 35.6 36.2 (+1.7%) 30.3 32.3 (+6.6%) 35.7 35.7 (0.0%) 35.6 36.8 (+3.4%) 30.4 33.5 (+10.2%)

0.5 40.5 41.8 (+3.2%) 37.1 38.3 (+3.2%) 40.6 41.5 (+2.2%) 41.1 41.9 (+2.0%) 34.0 37.4 (+10.0%)

0.9 42.3 44.2 (+4.5%) 39.6 40.5 (+2.3%) 41.8 43.9 (+5.0%) 41.6 42.3 (+1.7%) 35.3 38.3 (+8.5%)

PPI
0.1 16.7 17.6 (+5.4%) 12.5 17.0 (+34.9%) 16.1 17.5 (+8.7%) 17.9 18.0 (+0.6%) 16.0 17.3 (+8.1%)

0.5 21.6 24.7 (+14.3%) 16.4 23.7 (+44.5%) 20.6 24.1 (+17.0%) 23.1 24.6 (+6.5%) 21.0 23.3 (+10.9%)

0.9 24.0 27.0 (+12.5%) 19.5 26.2 (+34.4%) 23.1 25.7 (+11.2%) 25.5 26.5 (+3.9%) 23.2 24.9 (+7.3%)

Wiki
0.1 43.3 44.5 (+2.8%) 41.8 45.8 (+9.6%) 44.8 44.2 (-1.3%) 45.7 45.9 (+0.5%) 48.8 48.0 (+2.4%)

0.5 49.2 50.0 (+1.6%) 52.5 53.2 (+1.3%) 51.1 50.9 (-0.3%) 50.1 50.9 (+1.6%) 53.1 52.8 (-0.5%)

0.9 50.0 51.4 (+2.8%) 54.7 55.0 (+0.5%) 52.8 52.5 (-0.5%) 50.7 51.9 (+2.4%) 53.1 54.3 (+0.4%)

DBLP
0.01 51.5 55.8 (+8.3%) 49.7 52.4 (+5.4%) 53.4 57.8 (+8.2%) 51.5 52.9 (+2.7%) - -

0.05 58.1 59.0 (+1.5%) 54.9 56.2 (+2.4%) 58.3 60.0 (+2.9%) 57.1 59.5 (+4.2%) - -

0.09 59.4 59.9 (+0.9%) 56.3 57.0 (+1.2%) 59.5 60.6 (+1.8%) 57.9 60.2 (+4.0%) - -

Youtube
0.01 38.2 39.2 (+2.6%) 33.2 39.8 (+19.8%) 38.2 39.7 (+3.9%) - - - -

0.05 41.6 44.7 (+6.0%) 36.2 43.5 (+20.1%) 40.0 45.3 (+12.2%) - - - -

0.09 42.8 46.2 (+7.9%) 38.3 45.9 (+19.8%) 43.0 47.1 (+9.5%) - - - -

TABLE 4
Accuracy results of node classification by unsupervised GNNs.

Significant test (p-value�0.01; t-test).

Dataset Cora Pubmed Citeseer

Semi-supervised
GCN 81.5 79.0 70.3
GAT 83.0 ± 0.7 79.0 ± 0.3 72.5 ± 0.7

Unsupervised

DGI 82.0 ± 0.1 77.1 ± 0.1 71.7 ± 0.2
ProDGI 82.9 ± 0.2 81.0 ± 0.1 70.8 ± 0.2
GraphSAGE 77.2 ± 0.1 78.0 ± 0.1 61.2 ± 0.1
ProSAGE 78.1 ± 0.2 79.5 ± 0.1 62.1 ± 0.2

we follow the authors’ original setup and have the following
settings: For DeepWalk, windows size m = 10, #walks per node
r = 80, walk length t = 40; For Node2Vec, window size m = 10,
#walks per node r = 80, walk length t = 40, p, q are searched over
{0.25, 0.50, 1, 2, 4}. For LINE, #negative-samples k = 5 and total
sampling budget T = r× t× |V |. For HOPE, β is set to be 0.01.
For NetMF, window size r = 5, rank = 256, #negative-samples k =
5. For DeepWalk, LINE and Node2Vec, we use the official code
provided by the original authors and for NetMF and HOPE, we
use the code implemented in CogDL.

To further validate the effectiveness of AutoProNE, we also
implement AutoProNE on unsupervised convolution-based meth-
ods DGI [11] and unsupervised GraphSAGE [10], and compare
with semi-supervised GCN [1] and GAT [9]. All parameters are
set the same as in the authors’ original settings. We use the official
code provided by the original authors of DGI and unsupervisd
GraphSAGE code implemented in CogDL.

For AutoProNE, each filter can only be selected once. The
term number of Taylor and Chebyshev expansion k is set to be 5.
For PPR, α is searched between [0.1, 0.9]. For Heat kernel, θ in
[0.1, 0.9]. For Gaussian Kernel, µ in [0, 2], θ in [0.2, 1.5].

Evaluation For non-convolution based methods, we follow the
same experimental settings used in baseline works [4], [5], [6],
[16] . We randomly sample different percentages of labeled nodes

to train a liblinear classifier and use the remaining for testing.
The training ratio for small datasets(PPI, Wiki, BlogCatalog) is
0.1/0.5/0.9, and 0.01/0.05/0.09 for relatively big datasets(DBLP
and Youtube). The remaining is for predicting. We repeat the
training and predicting 10 times and report the average Micro-
F1 for all methods. Analogous results also hold for Macro-F1,
which are not shown due to space constraints. For unsupervised
convolutional methods, we train a multi-layer perception with a
fixed train/valid/test data splitting the same as in [41]. We repeat
it 50 times and report the average accuracy for all methods.

5.2 Results

5.2.1 Overall Performance.

Tables 3 lists the node classification performance based on the
embeddings learned by different network embedding algorithms
with and without AutoProNE. We test different ratios (0.1, 0.5,
0.9) of labeled data for node classification following existing
work [4], [5], [6] to train a liblinear classifier and repeat the
training and predicting for ten times and report the average Micro-
F1 for all methods.

We observe that the performance of all the base algorithms
can be significantly improved by the AutoProNE framework and
also the improvements are statistically significant. For DeepWalk,
LINE, node2vec, NetMF, and HOPE, the improvements brought
by AutoProNE are up to 14.3%, 44.5%, 17%, 6.5%, and 10.9%,
respectively. On average, LINE benefits more from AutoProNE as
it is in nature an embedding method without incorporating high-
order structural information.

Table 4 reports the results of unsupervised GraphSAGE and
DGI as well as the AutoProNE version of them. As a reference
point, we also list the performance of two popular semi-supervised
GNNs—GCN and GAT. We observe that the unsupervised Auto-
ProNE framework can help improve the performance of both DGI
and GraphSAGE in most cases. This suggests that by automated
usage of graph filters, the simple AutoProNE strategy is capable
of enhancing graph representation learning with or without input

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 10

TABLE 5
Results of base embedding methods with different graph filters.

Ratio=0.5 for BlogCatalog, PPI, and Wiki; 0.05 for DBLP and
Youtube.

Dataset Type DeepWalk LINE node2vec NetMF HOPE

BlogCatalog

Heat 41.4 38.3 41.0 41.6 34.6

PPR 41.7 38.8 41.3 41.8 35.6

Gaussian 41.4 38.4 41.1 41.3 37.5

SR 41.9 38.7 40.9 41.6 34.5

AutoProNE 41.8 38.3 41.5 41.9 37.4

PPI

Heat 23.4 21.1 22.8 24.0 21.7

PPR 23.9 22.7 23.6 24.3 22.3

Gaussian 23.2 21.3 22.8 23.7 21.1

SR 24.5 23.0 24.8 25.0 23.0

AutoProNE 24.7 23.7 24.1 24.6 23.3

Wiki

Heat 48.2 52.8 50.5 47.4 53.1

PPR 48.4 52.6 49.9 48.1 53.2

Gaussian 48.2 52.6 50.3 47.2 53.0

SR 49.0 54.1 52.2 50.7 53.0

AutoProNE 50.0 53.2 50.9 50.9 52.8

DBLP

Heat 58.8 54.7 59.4 58.8 -

PPR 59.0 55.4 59.7 59.0 -

Gaussian 58.9 54.7 59.7 58.5 -

SR 58.7 54.1 59.7 58.9 -

AutoProNE 59.0 56.2 60.0 59.5 -

Youtube

Heat 44.5 42.7 44.7 - -

PPR 44.6 43.5 45.1 - -

Gaussian 44.3 40.5 44.3 - -

SR 44.5 43.0 45.1 - -

AutoProNE 44.7 43.5 45.3 - -

TABLE 6
Results of base GNNs with different graph filters.

Dataset Type Cora Citeseer Pubmed

DGI

Heat 82.0 71.8 77.5

PPR 64.2 70,1 77.4

Gaussian 82.9 71.4 80.7

SR 13.1 70.1 77.2

AutoProNE 82.9 70.8 81.0

GraphSAGE

Heat 76.5 61.7 77.4

PPR 62.1 62.0 77.6

Gaussian 77.8 62.3 76.6

SR 16.5 62.7 77.1

AutoProNE 78.1 62.2 79.5

node features. With the help of AutoProNE, DGI can even yield
better performance than the end-to-end semi-supervised GCN and
GAT models on Pubmed.

Finally, we observe that the AutoProNE prefers the newly
proposed signal rescaling (SR) filter for BlogCatalog, PPI, Wiki,
DBLP and Youtube, while it tends to favor Gaussian kernel for
Cora, Citeseer, and Pubmed. We leave the reason behind this
difference for future work.

5.2.2 The Role of AutoML.
Tables 5 and 6 report the performance of base methods with
each of the four graph filters in AutoProNE’s search space. We

103 104 105 106 107

#nodes

10 2

10 1

100

101

102

103

tim
e(

in
 se

co
nd

s)

BlogCatalog

PPI

Wiki

DBLP

Youtube

Cora
Citeseer

Pubmed

PPR
Heat
Gaussian
SR

(a) Different graph filters.

103 104 105 106 107

#nodes

10 1

100

101

102

103

tim
e(

in
 se

co
nd

s)

BlogCatalog

PPI

Wiki

DBLP

Youtube

Cora

Citeseer

Pubmed

Infomax
Infonce

(b) Different loss function.

Fig. 3. AutoProNE’s Scalability w.r.t. network volume. Running time
as #node grows with node degree fixed to 10. As the network size
increases, the time cost of both graph filters and computing loss also
grows linearly.

can observe that different filters have unique impacts on the
performance across datasets. For example, Signal Rescaling(SR)
and PPR perform relatively better than other filters in dataset PPI,
BlogCatalog and Wiki, but for Cora, Citeseer and Pubmed, Gaus-
sian filter exhibits better performance. And the tables show that the
performance of AutoProNE is equal to the best result of one single
filter, which may imply that AutoProNE finally picks this filter, or
our model yields better performance than any single filter, which
means AutoProNE learns a better combination of graph filters.
These all suggest the need for AutoML to select the best filter(s)
for each dataset. The proposed AutoProNE strategy consistently
and automatically picks the optimal filter(s) and parameters in an
unsupervised manner.

The graph filter used for the embedding smoothing in
ProNE [16] is a modified 2nd-order Gaussian kernel. For sim-
plicity, the 1st-order Gaussian kernel is covered in AutoProNE’s
search space. Table 7 reports the performance for ProNE(SMF)
enhanced by ProNE graph filter and AutoProNE respectively. We
can see that the automated search strategy empowers AutoProNE
to generate better performance than ProNE in most cases, further
demonstrating the effectiveness of using AutoML for smoothing
graph representations.

From the experiment results of AutoML searching, we also
have some interesting findings. PPR, Heat kernel and Gaussian
kernel perform better if high-order neighbor information matters
such as Cora, because SR only aggregates 1st-order neighbors.
Besides, low-order methods(like LINE) may benefit more because
the original embeddings fail to incorporate abundant neighborhood
information.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 11

TABLE 7
Results of ProNE and AutoProNE. With ProNE and With AutoProNE mean the result of ProNE(SMF) improved by the graph filter of ProNE and

AutoProNE respectively.

Method BlogCatalog PPI Wiki DBLP Youtube

Ratio 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.01 0.05 0.09 0.01 0.05 0.09

ProNE(SMF) 33.0 37.8 39.1 15.1 22.0 24.5 47.8 54.5 55.6 46.7 54.0 55.6 36.4 41.4 42.5
With ProNE 36.4 40.9 42.2 17.5 24.0 26.5 48.0 54.6 56.0 46.7 55.2 56.3 37.6 42.9 43.9

With AutoProNE 35.8 41.0 42.2 17.7 24.3 26.5 48.6 55.5 56.8 50.0 56.1 57.5 38.7 43.7 44.6

TABLE 8
Efficiency of AutoProNE (seconds). SMF stands for ProNE(SMF).

Dataset DeepWalk LINE node2vec SMF NetMF HOPE AutoProNE

PPI 272 70 716 2 10 12 +11 (4.0%)
Wiki 494 87 819 4 23 17 +12 (2.4%)
BlogCatalog 1,231 185 2,809 12 144 136 +29 (2.3%)
DBLP 3,825 1,204 4,749 15 186 - +100 (2.6%)
Youtube 68,272 5,890 30,218 302 - - +3,213 (4.7%)

TABLE 9
Efficiency of AutoProNE (seconds).

Dataset DGI GraphSAGE AutoProNE

Cora 341 118 +15 (4.1%)
Citeseer 490 131 +21 (4.2%)
Pubmed 4,863 1,254 +183 (3.7%)

5.2.3 Efficiency and Scalability.

We follow the common practice for efficiency evaluation by the
wall-clock time and AutoProNE ’s scalability is analyzed by the
time cost in multiple-scale networks [5].

Tables 8 and 9 report the extra running time (seconds) when
stacked with AutoProNE for 100 searching iterations in 10 threads.
Note that AutoProNE is a dataset specific and base agnostic frame-
work. The percentage of extra running time in terms of DeepWalk
and DGI is also reported inside the brackets, respectively.

We can observe that AutoProNE is very efficient compared
to base methods. Overall, AutoProNE costs only 2.3–4.7% of
DeepWalk’s or DGI’s running time. Take the Youtube graph as an
example, it takes DeepWalk 68,272 seconds (∼19 hours) for gen-
erating the embeddings of its 1,000,000+ nodes. However, Auto-
ProNE only needs 4.7% of its time to offer 2.6–7.9% performance
improvements (Cf. Table 3). For convolutional methods, GNNs
are usually less efficient for large scale datasets. This suggests
that AutoProNE will take less of the additional percentage of time
to achieve improvement.

We use synthetic networks to demonstrate the scalability of
AutoProNE. We generate random regular graphs with a fixed node
degree as 10 and the number of nodes ranging between 1,000 and
10,000,000. In addition, we also add the running time on each
dataset with the heat kernel and the corresponding loss.

AutoProNE is ideal for parallel implementation. The com-
putation of our model is mainly spent on iteratively selecting
different filters and hyperparameters to evaluate the effectiveness.
Therefore, running multi-progresses will speed up the searching
of AutoML and achieves great efficiency.

Table 8 shows that ProNE(SMF) is a fast network embedding
method. With ProNE(SMF) as the base embedding method, Auto-
ProNE works as a general network embedding method with high

efficiency and also achieves comparable performance, as shown in
Table 7.

6 RELATED WORK

6.1 Network Embedding
Network embedding has been extensively studied by machine
learning communities in the past few years and aims to train
low dimension vectors that are available for a wide range of
downstream tasks.

The recent emergency of network embedding research begins
when skip-gram model [43], [44], which is originally used in
word representation learning and network mining, is applied to
derive the embedding of nodes in networks. DeepWalk [4] and
Node2Vec [6] employ random walks to explore the network
structure and LINE [5] takes a similar idea with an explicit
objective function by setting the walk length as one. These
random walk based methods can be understood as implicit matrix
factorization [8].

The other explicit matrix factorization based network embed-
ding methods have also been proposed. GraRep [45] directly
factorizes different k-order proximity matrices and HOPE [7]
proposes to use generalized SVD to preserve the asymmetric
transitivity in directed networks. [46] also proposes a framework
to unify the aforementioned methods. ProNE [16] formalizes
network embedding as sparse matrix factorization and preserves
the distributional similarity. ProNE enhances the result of sparse
matrix factorization with spectral propagation, which modulates
the adjacency matrix mainly to incorporate the global properties
in the spatial domain. AutoProNE generalizes the operation to
be stacked with existing unsupervised representation learning
algorithms in an automated way and improves their performance.

6.2 Graph Convolution Networks
Recently semi-supervised graph learning with graph neural net-
works, such as graph convolution networks (GCNs) [1], [47],
[48], draws considerable attention. Various variants [49], [50],
have also been designed to boost the performance. In GCNs,
the convolution operation is defined in the spectral space and
parametric filters are learned via back-propagation. [24], [51],
[52], [53] replace the adjacency matrix in GCNs with graph filters
(PPR and Heat kernel), which they called graph diffusion matrix,
to combine the strengths of both spatial and spectral methods
and the performance improves. They apply graph filters to semi-
supervised learning in which graph filters are entangled with the
model’s training process. AutoProNE proposes a more flexible
combination of graph filters in both spectral and spatial domains,
which can filter the frequency in any specific band and better
extract the intrinsic information and is model-agnostic. Besides,
self-supervised learning [54] is emerging recently and contrastive

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 12

learning shows great potential. Contrastive methods may employ
a scoring function to evaluate the similarity of pairs of data.
[14], [55] employ InfoNCE to maximize the gap between positive
and negative pairs. One possible intuition behind this is that
InfoNCE can shorten the distance between positive pairs, and
make the distance between negative pairs as far as possible. [13]
is based on classifying local-global pairs and negative-sampled
pairs. And the ultimate goal is to maximize the local-global mutual
information. [11], [56], [57], [58], [59], [60] apply contrastive
methods in graph representation learning and achieves promising
results. [56] contrasts the diffusion result of two graph filters,
which also indicates that different filters captures different views
of the graph. [12] employs contrastive coding to pre-train graph
neural networks. AutoProNE also maximizes InfoNCE and local-
global mutual information in AutoML loss for optimization.

6.3 Automated Machine Learning
With the arising of AutoML [61], [62], several works also
apply it in graph representation learning. GraphNAS [63] and
AutoGNN [64] aim to generate neural architectures of GNNs
in spatial domain with recurrent neural network generator by
using reinforcement learning with neural architecture search [65].
Both of them suffer from high computation costs to find the best
model architecture for a given dataset. AutoProNE is more like a
plug-and-play framework that can be applied to any graph node
embeddings efficiently. Besides, Bayesian optimization [32], with
the Gaussian process [66] as the underlying surrogate model,
is a popular technique for finding the globally optimal solution
of an optimization problem. And this technique is widely used
especially in hyperparameter optimization. As AutoProNE mainly
aims to search for the best hyperparameters for graph filters,
Bayesian Optimization is the principle behind the searching.
AutoProNE is an unsupervised and task-independent model that
aims to pre-train general embeddings.

7 CONCLUSION

In this paper, we investigate the role of graph filters and propose an
automated and unsupervised framework AutoProNE to generate
improved graph embeddings for unsupervised graph represen-
tation learning. AutoProNE comprises four graph filters(PPR,
HeatKernel, Gaussian Kernel and Signal Rescaling) and automati-
cally searches for a combination of graph filters and corresponding
hyperparameters for the given dataset. Specifically, AutoProNE
operates on the adjacency matrix to enrich the context information
of each node. It is a flexible and adaptive framework, as the
graph filter set can simulate many kinds of filtering functions.
It’s also very efficient and costs only a little extra time to obtain
the improvement in performance.

The developed method is model-agnostic and can be eas-
ily stacked with all unsupervised graph representation learn-
ing methods such as DeepWalk, LINE, node2vec, NetMF, and
HOPE. On eight publicly available datasets, AutoProNE helps
significantly improve the performance of various algorithms. In
addition, AutoProNE can also enhance the performance of self-
supervised/unsupervised GNN methods, e.g., DGI and Graph-
Sage. We show that the self-supervised DGI model with the
unsupervised AutoProNE can generate comparable or even better
performance than semi-supervised end-to-end GNN methods, such
as GCN and GAT. We have implemented AutoProNE in CogDL,
an open-source graph learning library, to help more graph repre-
sentation learning methods.

ACKNOWLEDGMENTS

The work is supported by the National Key R&D Program
of China (2018YFB1402600), NSFC for Distinguished Young
Scholar (61825602), and NSFC (61836013).

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[2] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in KDD, 2018.

[3] M. Ding, C. Zhou, Q. Chen, H. Yang, and J. Tang, “Cognitive graph for
multi-hop reading comprehension at scale,” in ACL, 2019.

[4] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning of
social representations,” in KDD, 2014.

[5] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding.” in WWW, 2015.

[6] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in KDD, 2016.

[7] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding,” in KDD, 2016.

[8] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network embedding
as matrix factorization: Unifying deepwalk, line, pte, and node2vec,” in
WSDM, 2018.

[9] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio, “Graph attention networks,” in ICLR, 2018.

[10] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learn-
ing on large graphs,” in NIPS, 2017.

[11] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” in ICLR, 2019.

[12] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang, and
J. Tang, “Gcc: Graph contrastive coding for graph neural network pre-
training,” in KDD, 2020.

[13] R. H. Devon, F. Alex, L.-M. Samuel, G. Karan, B. Phil, T. Adam,
and B. Yoshua, “Learning deep representations by mutual information
estimation and maximization,” in ICLR, 2019.

[14] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in CVPR, 2020.

[15] F. Wu, A. H. S. Jr., T. Zhang, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” in ICML, 2019.

[16] J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding, “Prone: fast and
scalable network representation learning,” in IJCAI, 2019.

[17] Y. Cen, Z. Hou, Y. Wang, Q. Chen, Y. Luo, X. Yao, A. Zeng, S. Guo,
P. Zhang, G. Dai et al., “Cogdl: An extensive toolkit for deep learning
on graphs,” arXiv preprint arXiv:2103.00959, 2021.

[18] B. Girault, A. Ortega, and S. S. Narayanan, “Irregularity-aware graph
fourier transforms,” IEEE Transactions on Signal Processing, vol. 66,
no. 21, pp. 5746–5761, 2018.

[19] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,”
IEEE transactions on signal processing, vol. 61, no. 7, pp. 1644–1656,
2013.

[20] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
signal processing magazine, vol. 30, no. 3, pp. 83–98, 2013.

[21] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-the-art,”
arXiv preprint arXiv:1908.00709, 2019.

[22] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in KDD, 2019.

[23] K. Tu, J. Ma, P. Cui, J. Pei, and W. Zhu, “Autone: Hyperparameter
optimization for massive network embedding,” in KDD, 2019.

[24] J. Klicpera, S. Weißenberger, and S. Günnemann, “Diffusion improves
graph learning,” in NIPS, 2019, pp. 13 333–13 345.

[25] B. Xu, H. Shen, Q. Cao, K. Cen, and X. Cheng, “Graph convolutional
networks using heat kernel for semi-supervised learning,” in IJCAI, 2019.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[27] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other
discrete structures,” in ICML, 2002.

[28] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency
analysis on graphs,” Applied and Computational Harmonic Analysis,
vol. 40, no. 2, pp. 260–291, 2016.

[29] L. C. Andrews, “Special functions of mathematics for engineers,” vol. 49,
1998.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2021 13

[30] C. Deng, Z. Zhao, Y. Wang, Z. Zhang, and Z. Feng, “Graphzoom: A
multi-level spectral approach for accurate and scalable graph embed-
ding,” in ICLR, 2020.

[31] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “Infograph: Unsuper-
vised and semi-supervised graph-level representation learning via mutual
information maximization,” in ICLR, 2020.

[32] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in NIPS, 2012.

[33] H. NT and T. Maehara, “Revisiting graph neural networks: All we have
is low-pass filters,” arXiv preprint arXiv:1905.09550, 2019.

[34] J. R. Lee, S. O. Gharan, and L. Trevisan, “Multiway spectral partitioning
and higher-order cheeger inequalities,” JACM, 2014.

[35] A. S. Bandeira, A. Singer, and D. A. Spielman, “A cheeger inequality for
the graph connection laplacian,” SIAM Journal on Matrix Analysis and
Applications, vol. 34, no. 4, 2013.

[36] J. Qiu, L. Dhulipala, J. Tang, R. Peng, and C. Wang, “Lightne: A
lightweight graph processing system for network embedding,” in SIG-
MOD, 2021.

[37] R. Zafarani and H. Liu, “Social computing data repository at asu,” 2009.
[38] B.-J. Breitkreutz, C. Stark, T. Reguly, L. Boucher, A. Breitkreutz,

M. Livstone, R. Oughtred, D. H. Lackner, J. Bähler, V. Wood et al.,
“The biogrid interaction database: 2008 update,” Nucleic acids research,
vol. 36, no. suppl 1, pp. D637–D640, 2007.

[39] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in KDD, 2008.

[40] M. Mahoney, “Large text compression benchmark,” URL: http://www.
mattmahoney. net/text/text. html, 2009.

[41] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating
the construction of internet portals with machine learning,” Information
Retrieval, vol. 3, no. 2, pp. 127–163, 2000.

[42] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
“Collective classification in network data,” AI magazine, vol. 29, no. 3,
pp. 93–93, 2008.

[43] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[44] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in NIPS, 2013.

[45] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with
global structural information,” in CIKM, 2015.

[46] T. Chen and Y. Sun, “Task-guided and path-augmented heterogeneous
network embedding for author identification,” in WSDM, 2017.

[47] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[48] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in NIPS, 2016.

[49] H. Chen, H. Yin, X. Sun, T. Chen, B. Gabrys, and K. Musial, “Multi-level
graph convolutional networks for cross-platform anchor link prediction,”
in KDD, 2020.

[50] H. Chen, H. Yin, T. Chen, Q. V. H. Nguyen, W.-C. Peng, and X. Li,
“Exploiting centrality information with graph convolutions for network
representation learning,” in ICDE, 2019.

[51] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in ICML, 2018, pp. 5449–5458.

[52] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank,” in ICLR, 2019.

[53] B. Jiang, D. Lin, J. Tang, and B. Luo, “Data representation and learning
with graph diffusion-embedding networks,” in CVPR, 2019.

[54] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang,
“Self-supervised learning: Generative or contrastive,” TKDE, 2021.

[55] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” arXiv preprint
arXiv:2002.05709, 2020.

[56] A. K. Sankararaman, S. De, Z. Xu, R. W. Huang, and T. Goldstein,
“Contrastive multi-view representation learning on graphs,” ICML, 2020.

[57] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Deep graph
contrastive representation learning,” arXiv preprint arXiv:2006.04131,
2020.

[58] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph
contrastive learning with augmentations,” in NIPS, 2020.

[59] Y. You, T. Chen, Y. Shen, and Z. Wang, “Graph contrastive learning
automated,” in ICML, 2021.

[60] Y. Jiao, Y. Xiong, J. Zhang, Y. Zhang, T. Zhang, and Y. Zhu, “Sub-graph
contrast for scalable self-supervised graph representation learning,” in
ICDM, 2020.

[61] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in ICML, 2013.

[62] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hutter, “To-
wards automatically-tuned neural networks,” in Workshop on Automatic
Machine Learning, 2016.

[63] Y. Gao, H. Yang, P. Zhang, C. Zhou, and Y. Hu, “Graphnas: Graph
neural architecture search with reinforcement learning,” arXiv preprint
arXiv:1904.09981, 2019.

[64] K. Zhou, Q. Song, X. Huang, and X. Hu, “Auto-gnn: Neural architecture
search of graph neural networks,” arXiv preprint arXiv:1909.03184,
2019.

[65] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[66] J. Močkus, “On bayesian methods for seeking the extremum,” in Opti-
mization techniques IFIP technical conference. Springer, 1975.

Zhenyu Hou is an undergraduate with the de-
partment of Computer Science and Technology,
Tsinghua University. His main research interests
include graph neural networks and representa-
tion learning.

Yukuo Cen is a PhD candidate in the Depart-
ment of Computer Science and Technology, Ts-
inghua University. He got his bachelor degree
in Computer Science and Technology from Ts-
inghua University. His research interests include
social influence and graph embedding.

Yuxiao Dong received his Ph.D. in Computer
Science from University of Notre Dame in 2017.
He is a research scientist at Facebook AI, Seat-
tle, was previously a senior researcher at Mi-
crosoft Research, Redmond. His research fo-
cuses on data mining, representation learning,
and networks, with an emphasis on developing
machine learning models to addressing prob-
lems in large-scale graph systems.

Jie Zhang Jie Zhang obtained his Bachelor’s
degree in Mathematics and Physics from the
Department of Physics at Tsinghua University in
2016, and received his master degree in Depart-
ment of Computer Science and Technology, Ts-
inghua University in 2019. His research interests
include graph neural networks, and data mining
on graphs.

Jie Tang received the PhD degree from Ts-
inghua University. He is a professor in the De-
partment of Computer Science and Technology,
Tsinghua University. His main research inter-
ests include data mining, social network, and
machine learning. He has published over 200
research papers in top international journals and
conferences.

