
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 1

Hierarchical Representation Learning for
Attributed Networks

Shu Zhao, Ziwei Du, Jie Chen, Yanping Zhang, Jie Tang, Senior Member, IEEE, and Philip S. Yu , Fellow,
IEEE

Abstract—Network representation learning, also called network embedding, aiming to learn low dimensional vectors for nodes while
preserving essential properties of the network, benefits plenty of practical applications. However, how to do representation learning on
the network quickly and effectively is a meaningful and challenging task, especially for the attributed networks. In this paper, we
propose HANE, a Hierarchical Attributed Network Embedding framework, which is a fast and effective method by quickly constructing a
hierarchical attributed network of different granularities to learn nodes representations. Specifically, for an attributed network, HANE
first builds a hierarchy of successively smaller attributed network from fine to coarse by the fast granulation strategy fusing topological
structure and node attributes. After using any unsupervised network embedding method to learn nodes representations of the coarsest
network, HANE refines the nodes representations of the hierarchical attributed network from coarse to fine. HANE improves the speed
of network representation learning while maintaining its performance and the representation learning method of the coarsest network is
flexible. We conduct extensive evaluations for the proposed framework HANE on six datasets and two benchmark applications.
Experimental results demonstrate that HANE achieves significant improvements over previous state-of-the-art network embedding
methods in efficiency and effectiveness.

Index Terms—Network representation learning, network embedding, attributed network, hierarchical attributed network, granulation.

F

1 INTRODUCTION

N ETWORK is an important data structure to explore and
model complex systems in the real world. More and

more machine learning applications conduct classification
or prediction based on network data. As a fundamental
tool to analyze networks, network representation learning
has attracted increasing attention in the recent few years.
Network representation learning, also called network em-
bedding, aims to map each node into a low-dimensional
vector representation by preserving network structure and
inherent properties. It has attracted tremendous attention
recently due to significant progress in downstream network
analysis tasks such as node classification, link prediction.
Recently, a large number of network representation learning
methods have been proposed. For instance, DeepWalk [1],
node2vec [2], LINE [3] are pioneering works that introduce
deep learning techniques into network analysis to learn
node embeddings. NetMF [4] gives a theoretical analysis of

• Shu Zhao, Ziwei Du, Jie Chen are with the Key Laboratory of Intelligent
Computing and Signal Processing, Ministry of Education. School of Com-
puter Science and Technology, Anhui University, Hefei, Anhui, 230601,
P.R.China .
E-mail: zhaoshuzs@ahu.edu.cn, duziwei1225@163.com .
chenjie200398@163.com

• Yanping Zhang is with the Key Laboratory of Intelligent Computing and
Signal Processing, Ministry of Education. School of Computer Science
and Technology, Anhui University, Hefei, Anhui, 230601, P.R.China. .
E-mail: zhangyp2@gmail.com .
*Corresponding author

• Jie Tang is with the Department of Computer Science and Technology .
Tsinghua University, and Tsinghua National Laboratory for Information
Science and Technology (TNList), Beijing, China, 100084. .
E-mail: jietang@tsinghua.edu.cn

• Philip S. Yu is with the Department of Computer Science, University of
Illinois at Chicago, Chicago, IL, USA .
E-mail: psyu@uic.edu .

equivalence for the different network embedding algorithm-
s, such as DeepWalk [1], node2vec [2], PTE [5], and LINE [3].
CNRL [6] simultaneously detects community distribution
of each node and learns the representation of both nodes
and communities. MCNE [7] to learn multiple conditional
network representations, so that various preferences for
multiple behaviors could be fully captured. STNE [8], CAN
[9], ASNE [10], DANE [11], BANE [12], metapath2vec [13]
and GATNE [14] are proposed for attributed network em-
bedding that combines the network topological structure
and node attributes simultaneously (homogeneous or het-
erogeneous). DeepGL [15] is a general inductive network
representation learning framework for learning deep node
and edge embeddings that generalize across-networks. N-
evertheless, these methods are computationally expensive
to handle the network in a single granularity that needs to
calculate the entire network and most methods to solve the
problems of attributed networks are time-consuming and
difficult to apply to large-scale attributed networks. More
recently, a few embedding methods that have proposed fast
approaches to learn node embeddings have been developed.
One of them is the study of hierarchical network represen-
tation. MILE [16], HARP [17] and LouvainNE [18] adopt
hierarchical frameworks to preserve the network’s local or
global structure across granularities. Some of them can make
large-scale problems solvable. However, they do not take
into account node attributes that are also important for net-
work analysis. Hierarchical attributed network embedding
has been least studied. Recently Deng and Zhao et al. [19]
propose that GraphZoom first integrates the fusion of at-
tribute information to generate a new graph, and then adopt
hierarchical frameworks to improve accuracy and scalabil-
ity. However, in many real-world applications, a variety of

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 2

networks, such as coauthor network, citation network, are
not only accompanied with a rich set of attributes, but pre-
sented in a hierarchical way. As shown in Fig.1, according
to the attribute of the nodes, the citation network about
computer science can be divided into hierarchical structure,
a branch of the hierarchical structure from coarse to fine
are Artificial Intelligence (AI), Natural Language Processing
(NLP), Information Extraction (InfoE) and citations. Among
them, computer science represents the coarsest node, and
citations represent the finest node. Such attributed networks
with hierarchical topology structure and attribute informa-
tion are helpful to learn the relationship between nodes from
different aspect and different granularity. Preserving the
hierarchical attribute information is still a challenge. HANE
(Hierarchical Attributed Network Embedding) can obtain
hierarchical attribute information through fusion layer by
layer, and builds the relationship between different granu-
larities.

InfoEMTrans

NLP

CM

RP

MPP

SL

UnSL

LP

AL

BLTL

LS

Machine Learning

Artificial Intelligence

MTrans: Machine Translation

NLP: Natural Language Processing

InfoE: Information Extraction

RP: Robotic Planning

MPP: Motion Path Planning

CM: Control Methods

TL: Transfer Learning

BL: Batch Learning

AL: Active Learning

LS: Learning Settings
SL: Supervised Learning
UnSL: Unsupervised Learning

LP: Learning paradigms

Fig. 1. An illustration of citation network with hierarchical topology struc-
ture and attribute information. Among them, nodes represent papers,
edges represent citation relationships, and nodes with the same color
have similar keywords.

The graph neural network that promotes the deep neural
network model to graph structure data has attracted the
attention of many researchers in recent years. There are
some recent works on hierarchically learning network repre-
sentation analogous to the pooling step in conventional con-
volutional neural (CNN) networks, including DIFFPOOL
[20], EigenPooling [21], and so on. These methods divide
the nodes into subgraphs (supernodes), coarsening them
according to the subgraphs, and then reduce the entire
graph information to coarsening graphs by generating the
features of the supernodes from the corresponding nodes
in the subgraphs. However, most of them are used for
graph classification or semi-supervised node classification
and they need labeled data to train the representation
model, which is usually difficult in practice. We focus on
the unsupervised network embedding methods rather than
supervised/semi-supervised ones [22], [23], [24], [25], [26],
[27] in this paper.

The rapid development of large-scale networks, exist-
ing unsupervised network embedding approaches are still
with the following challenges posed by the characteristics
of large-scale attributed networks in real-world applica-
tions. First, how to reduce the scale of the network so
that the large-scale attributed network can be represented
more effectively? Second, how to quickly and effectively
preserve the network topology and the hierarchical attribute

information during the node representation learning process
to ensure the validity of the results? To tackle the above
challenges, in this paper, we present HANE, a Hierarchical
Attributed Network Embedding framework to learn node
embeddings for the attributed network in a hierarchical way.
We use the granulation module to compress the network
structure and attributes, shrink the network scale, and thus
reduce the computational complexity of the network repre-
sentation learning. HANE mainly includes three modules as
follows. (1) Granulation Module (GM). Given an attributed
network, a hierarchical attributed network from large-scale
to small-scale are generated by the continuous fusion of the
granulation of the network structure and node attributes.
The network topology and node attributes are preserved
between these networks of different scales from fine-grained
to coarse-grained, so that we can obtain an approximate
solution at the coarsest granularity. (2) Network Embedding
Module (NE). At the coarsest granularity, we use one of the
existing unsupervised network embedding (attributed or
structure-only) methods for network representation learn-
ing with high speed because the scale of the attributed
network becomes small and the approximate solution ex-
pressed of the original network node is obtained. (3) Refine-
ment Module (RM). This module refines the node embed-
dings from coarse to fine. It mainly inherits the embeddings
from the coarse granularity and uses an unsupervised graph
convolutional neural network to update them according to
the topological structure and node attributes of the network
at the current granularity. This process is highly efficient
because we do not need to use a network embedding
method to relearn node embeddings at each granularity.

In this paper, we study an unsupervised method for fast
learning the representation of each node of an attributed net-
work in a hierarchical way. We summarize the contributions
of this paper as follows.
• We investigate the large-scale attributed network embed-

ding problem in a hierarchical way that not only incorpo-
rates the network topological structure information and
node attributes information within one granularity, but
infers these two kinds of information across granularities.

• We propose a fast and efficient framework HANE, which
consists of a granulation module (GM), a network embed-
ding module (NE), and a refinement module (RM). Also,
the NE module of HANE is flexible that structure-only
network embedding methods and attributed network em-
bedding methods are both suitable for it at the coarsest
granularity.

• Our extensive evaluations show that the effective-
ness of HANE, which outperforms state-of-the-art net-
work embedding methods on node classification (e.g.,
0.73%∼3.48% average relative lift in Micro F1 scores)
and link prediction (e.g., 0.62%∼3.61% relative lift in
AUC scores) tasks. More importantly, HANE is efficient
in the representations learning process, showing its high
average speedup (e.g., 1.72×∼1016.88×) over state-of-the-
art baselines.

2 RELATED WORK
In this section, we review the related state-of-the-art of
network embedding methods from four aspects, includ-

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 3

ing single-granularity structure-only network embedding
methods, single-granularity attributed network embedding
methods, hierarchical structure-only network embedding
methods, and hierarchical attributed network embedding.
Single-granularity Structure-only Network Embedding.
This kind of method projects the nodes of a network into
a low-dimension vector space by preserving network local
or global structure-property. Representative works include
DeepWalk [1], node2vec [2], LINE [3], NetMF [4], GraRep
[28], HOPE [29], etc. DeepWalk [1] and node2vec [2] are
random walk based methods which generate a corpus on
networks by some random walks and then train a skip-gram
model on the corpus. LINE [3] learns node representations
on large-scale networks while preserving both first-order
and second-order proximities. GraRep [28], HOPE [29] and
NECS [30] are capable to preserve high-order proximities
of networks. NetMF [4] is a unified matrix factorization
framework for theoretically understanding and improving
DeepWalk and LINE, etc. ProNE [31] is a fast, scalable, and
effective model that first initializes network embeddings
efficiently by formulating the task as sparse matrix factor-
ization and then enhances the embeddings by propagating
them in the spectrally modulated space. DNE [32] is the
first work that learns a discrete representation for networks.
SPINE [33] jointly captures the local proximity and prox-
imities at any distance while being inductive to deal with
unseen nodes efficiently. NodeSketch [34] preserves high-
order node proximity via recursive sketching that generates
node embeddings in Hamming space. This kind of method
has been proved to have good performances on a variety
of regular network analysis tasks, such as link prediction
or multi-label classification. However, they do not take
into account utilizing node attributes information that is
important for network analysis.
Single-granularity Attributed Network Embedding. At-
tributed network embedding aims to seek low-dimensional
vector representations for nodes in a network, such that the
original network topological structure and node attribute
proximity can be preserved in such representations. STNE
[8] adopts a content-to-node translation model to preserve
contents and structure properties. CAN [9] proposes a
variational auto-encoder that embeds each node and at-
tribute with means and variances of Gaussian distributions.
AANE [35] enables a joint learning process to be done in
a distributed manner for accelerated attributed network
embedding. SNE [10] proposes a generic framework for
embedding social networks by capturing both the structure
proximity and attribute proximity. TADW [36] incorporates
text features of nodes into network representation learning
under the framework of matrix factorization. CANE [37]
learns context-aware embeddings for nodes with mutual
attention mechanisms and is expected to model the semantic
relationships between nodes more precisely. ANRL [38] uses
a neighbor enhancement auto-encoder to model the node
attributes and an attribute-ware skip-gram model based
on the attribute encoder to capture the network structure.
DGENE [39] is a general end-to-end model that leverages
the complementary information of network structure and
content. ProGAN [40] is a proximity generative adversarial
network for network embedding. PGE [41] incorporates not
only the network topological structure and node attributes

but edge properties into the network embedding procedure.
DANE [11] captures the high nonlinearity and preserve
various proximities in both topological structure and node
attributes. SANE [42] learns the topological structure and s-
parse node attribute information simultaneously in a united
approach. metapath2vec [13], GATNE [14] and HERec [43]
are for heterogeneous network embedding. GCN [22] uses
graph convolutional networks to learn node embeddings,
by merging local graph structures and features of nodes to
obtain embeddings from the hidden layers. GraphSAGE [23]
uses node property information in neighbor aggregation to
efficiently generate node embeddings for previously unseen
data. Yet, there are generally time-consuming. In this paper,
we increase the speed by reducing the size of the network,
many of the above methods can be applied to our method.
Hierarchical Structure-only Network Embedding. This
kind of method generally captures the hierarchical network
structure. HARP [17] proposes a hierarchical paradigm for
network embedding based on iterative learning methods
(e.g., DeepWalk and node2Vec). HARP focuses on improv-
ing the quality of embeddings by using the learned em-
beddings from the previous level as the initialized embed-
dings for the next level. MILE [16] repeatedly coarsens the
network into smaller ones by merging nodes with similar
local structures. It then applies existing embedding methods
on the coarsest and refines the embeddings to the original
network through a graph convolution neural network that
it learns. LouvainNE [18] creates the partition hierarchy of
the original graph by reusing the Louvain algorithm, and
generates a level-specific node embedding of each partition
in the hierarchy and combines the embeddings of all levels
to compute the node embeddings in the original graph. GNE
[44] formulates an optimization problem with spherical con-
straints to describe the hierarchical community structure-
preserving network embedding. spaceNE [45] preserves
hierarchies formed by communities through subspace, man-
ifolds with flexible dimensionalities and is inherently hierar-
chical. MINES [46] incorporates multi-dimensional relations
and hierarchical structure into a coherent model for node
representation learning. HSRL [47] recursively compresses
an input network into a series of smaller networks using a
community-awareness compressing strategy to capture both
the local and global topological information of a network.
Ma and Cui et al. [48] propose a network embedding mod-
el NetHiex that captures the latent hierarchical taxonomy,
which is generally unknown. However, these embedding
techniques only account for the network structure. Our
model follows the idea to captures the hierarchical network
structure, but we integrate the attribute information of the
node to obtain a higher quality node representation.
Hierarchical Attributed Network Embedding. This kind
of methods fuse the attribute information of nodes while
capturing the hierarchical structure. GraphZoom [19] first
fused the topology and attributes of the original network
to generate a new network. Then, by merging nodes with
high spectral similarity, this fused network is repeatedly
coarsened into a much smaller network and the embeddings
obtained at the coarsest level to increasingly finer networks.
However, GraphZoom is based on the spectral method, the
scalability is not good enough, and GraphZoom can only
capture the attribute information of the original network,

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 4

but cannot preserve the hierarchical attribute information.
HANE can obtain hierarchical attribute information through
fusion layer by layer, and constructs a hierarchical attributed
network of different granularities to learn nodes representa-
tion.

3 PROBLEM FORMULATION
Let G = (V,E,X) be an attributed network, where V
denotes the set of n nodes and E represents the set of m
edges. X ∈ Rn×l is a matrix that encodes all node attributes
information, and xi describes the attributes associated with
node vi. We will give some formal definitions of the problem
for a better description. First, the definition of attributed
network embedding is given, as in definition 3.1.

Definition 3.1 (Attributed Network Embedding) Given
an attributed network G = (V,E,X), we aim to represent
each node vi ∈ V as a low-dimensional vector zi by learning
a mapping function fG : V → Z ∈ Rn×d, where d � n
and the mapping function fG preserves not only network
structure but also node attributes proximity.

In this paper, we let � to denote finer. Gi � Gi+1

means Gi is at a finer granularity than Gi+1. That is,
| V i |>| V i+1 |. Thus, hierarchical attributed network
constructed by networks with different granularities can be
defined as follows.

Definition 3.2 (Hierarchical Attributed Network) Given
an attributed network G = (V,E,X), let G0 = G, a series
of networks at different granularities G0 � G1 � · · · �
Gk is called a hierarchical attributed network. Gi � Gi+1,
i = 0, 1, 2, · · ·, k − 1, represents that Gi+1 is at a coarser
granularity than Gi, Gi = (V i, Ei,Xi), | V i |>| V i+1 |.
k is the granularities of the hierarchical network. vi+1

j ∈
V i+1 denotes the jth node of the network Gi+1, which is a
supernode formed by a node subset V ij composed of several
nodes of the network Gi.

In order to granulate Gi to Gi+1, we first introduce
the definition of equivalence relation and equivalence class.
Then we define two equivalence relations used in this paper,
i.e., structure-based equivalence relation Rs and attribute-
based equivalence relation Ra. Based on these definitions,
we give a granulation strategy in section 4 to build a
hierarchical attribute network.

Definition 3.3 (Equivalence Relation and Equivalent
Class [49]) Assume that A is a set, R is a binary relation on
A, for any a, b, c ∈ A,

(1) Reflexivity: aRa.
(2) Symmetry: If aRb, then bRa.
(3) Transitivity: If aRb and bRc, then aRc.
R is called an equivalence relation on A. The equiv-

alence class of a under R, denoted [a]R, is defined as
[a]R = {b ∈ A|aRb}. Two elements of the given set are
equivalent to each other if and only if they belong to the
same equivalence class. Let A/R denote the collection of
equivalence classes. Any equivalence relation provides a
partition of the underlying set into disjoint equivalence
classes.

Inspired by the study of networks that community struc-
ture is an important and quite common characteristic in
the network [50], we give the structure-based equivalence
relation Rs as Definition 3.4.

Definition 3.4 (Structure-based Equivalence Relation
Rs) Define a binary relation Rs on node set V , denoted
viRsvj , if vi and vj are in the same non-overlapping com-
munity which is detected based on the network topological
structure, where vi and vj ∈ V .

Obviously, Rs is an equivalence relation.
According to the proverb that birds of a feather flock

together, we give the attribute-based equivalence relation
Ra in this paper.

Definition 3.5 (Attribute-based Equivalence Relation
Ra) Define a binary relation Ra on the node set V , denoted
viRavj , if vi and vj are in a same non-overlapping clustering
which is clustered based on node attributes, where vi and
vj ∈ V .

Similarly, Ra is an equivalence relation.
Lemma 3.1 If Rs and Ra are equivalence relations on

node set V , Rnode = Rs
⋂
Ra is an equivalence relation on

node set V .
Based on the definitions above, a hierarchical attributed

network embedding framework is proposed, we formulate
the hierarchical attributed network embedding problem as
follows.

Problem Formulation (Hierarchical Attributed Net-
work Embedding) Given an attributed network G = (V,E,
X), granulate G to a hierarchical attributed network G =
G0 � G1 � · · · � Gk. The goal is to find a function
fG : V → Z ∈ Rn×d, where d � n, preserving both the
network topological structure and node attributes proximity
from the network Gk at the coarsest granularity to the
original network G.

4 METHODOLOGY
To address the problem above, we propose a hierarchical
attributed network embedding framework HANE, which
is a fast and effective method by quickly incorporates
both the network topological structure and node attributes
in a hierarchical way. We first compress the scale of at-
tributed network by continuous granulation and fusion
of attributes and structures. And the small-scale network
retains the backbone information of the network structure
and attributes. Thereby reducing the complexity of network
representation. Fig. 1 shows an overview of the proposed
HANE framework, which contains three key modules: GM,
NE, and RM. Granulation module (GM) to construct a hier-
archical attributed network by considering both the network
topological structure and node attributes from fine to coarse.
Network embedding module (NE) is to learn the node rep-
resentations on the coarsest attributed network. The choice
of the underlying network representation learning technol-
ogy at this stage is flexible, we can use any unsupervised
method of network representation (attribute or structure-
only). Refinement module (RM) utilizes the unsupervised
graph convolutional neural networks to refine the node
representations on the hierarchical attributed network from
coarse to fine. In the following three subsections, we discuss
the details of the above three modules.

4.1 Granulation Module (GM)
Given an attributed network G = (V,E,X), the purpose
of the granulation module GM is to construct a hierar-
chical attributed network from fine to coarse G = G0 =

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 5

∩
NG

GM

AG

EG
GM GM

PCA

RM

NE

RM

A
ss
ig
n

RM

Input

Output

GCN

.....................

•••••• ••••••

•••••• ••••••

A
ss
ig
n

A
ss
ig
n

→ Granulation Process →

← Refinement Process ←

Fig. 2. The overview of our proposed framework HANE. GM is the granulation module which constructs a hierarchical attributed network from fine
to coarse G = G0 � G1 � · · · � Gk. NE is the network embedding module for the network Gk at the coarsest granularity. RM is the refinement
module which refines the node representations on the hierarchical attributed network from coarse to fine Zk, Zk−1, · · ·, Z0, Z. NG, EG, and AG
are the nodes granulation submodule, edges granulation submodule, and attributes granulation submodule in granulation module GM. Rs and Ra

are structure-based equivalence relation and attribute-based equivalence relation which are combined to granulate nodes in the NG submodule.

(V 0, E0,X0) � G1 = (V 1, E1,X1) � · · · � Gk =
(V k, Ek,Xk), where Gi+1 is a new abstraction level of
Gi, i = 0, 1, · · ·, k − 1. In this phase, we propose a gran-
ulation strategy that combines attributes and structure to
improve the effectiveness of the results. In order to granulate
Gi to Gi+1 preserving attributes and structure, there are
three steps: nodes granulation (NG) which granulates V i

to V i+1 to generate super-nodes, edges granulation (EG)
which forms super-edges Ei+1 based on V i+1 and Ei,
attributes granulation (AG) which forms attributes Xi+1 of
super-nodes based on V i+1 and Xi.
Nodes Granulation (NG). Based on the definitions of sec-
tion 3, we will discuss how to granulate the nodes in
Gi to form super-nodes in Gi+1 by combing the network
topological structure and node attributes simultaneously.
Then we give the details of nodes granulation by combining
Rs and Ra.

First, here the Louvain algorithm [51] is employed,
which is one of the most popular and fast community
detection methods. Many community detection methods
can be also used to detect the non-overlapping communities
of Gi. According to Definition 3.4 Rs, node set V i is parti-
tioned into several equivalence classes, denoted as V i/Rs =
{V is1 , V

i
s2 , · · ·}, where V ij is the jth equivalence class of V i.

We then use mini-batch k-means algorithm [52] which is one
of the widely-used clustering methods to partition the node
set V i into several non-overlapping clusters. According to
Definition 3.5Ra, node set V i is also partitioned into several
equivalence classes, denoted as Vi/Ra = {V ia1 , V

i
a2 , · · ·}.

Finally, according to Leamma 3.1, we fuse the network
structure and node attributes to partition V i of Gi by Rnode,
denoted as V i/Rnode = V i/(Rs

⋂
Ra) = {V i1 , V i2 , · · ·}. Each

equivalence class V ij , j = 1, 2, · · ·, is regarded as a super-
node vi+1

j in V i+1 of Gi+1.
The above nodes granulation process successfully forms

V i+1 = {vi+1
1 , vi+1

2 , · · ·}, from the attributed network Gi =
(V i, Ei,Xi) by its network structure and node attributes.
Edges Granulation (EG). After acquiring the node set V i+1

of network Gi+1 from the network Gi, we will discuss how
to form the edge set Ei+1 of the network Gi+1.

Given an attributed network Gi = (V i, Ei,Xi) and
V i+1 = {vi+1

1 , vi+1
2 , · · ·}, where vi+1

j is a super-node
granulated by an equivalence class V ij of V i. For ∀vi+1

p and
vi+1
q ∈ V i+1, ei+1

pq = (vi+1
p , vi+1

q) ∈ Ei+1,

ei+1
pq =

{
True, if ∃viw ∈ V ip , vis ∈ V iq , (viw, vis) ∈ Ei,
False, otherwise.

(1)
This edges granulation process forms edge set Ei+1 of

Gi+1 according to node set V i+1 of Gi+1 and edge set Ei of
Gi. If ei+1

pq = True, vi+1
p and vi+1

q will be connected.
Attributes Granulation (AG). In order to obtain coarse-
grained attribute information, we will discuss how to form
the attribute Xi+1 of Gi+1 from Xi of Gi.

Given the network Gi = (V i, Ei,Xi) and V i+1 =
{vi+1

1 , vi+1
2 , · · ·}, each dimension of Xi represents different

attribute information, the attribute xi+1
j of each super node

vi+1
j ∈ V i+1 should contain the attribute information of

nodes in Gi it contains. Assume the attribute values are
numerical, here we use the mean to represent the attribute
information of the super node, the attribute vector xi+1

j of
the node vi+1

j is calculated as Equation (2), j = 1, 2, · · ·

xi+1
j =

1

|V ij |

|V i
j |∑

p=1

xip, (2)

where xip is the attribute vector of the node vip in the jth

node subset V ij of the node set V i, i.e., vip ∈ V ij ⊆ V i.
After the process of granulation module, we generate a

super-network and iteratively granulation to construct a se-
ries of attributed networksG0, G1, ···, Gk at different granu-
larities which reveal the hierarchical network structures and
node attributes of the original network G. It is obvious that
| V i |>| V i+1 |, | Ei |>| Ei+1 |, i = 0, 1, 2, · · ·, k − 1.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 6

4.2 Network Embedding on the Coarsest Attributed
Network
From above, a hierarchical attributed network from fine to
coarse G = G0 � G1 � · · · � Gk is constructed by
iteratively implementing granulation module (GM).

For the coarsest network Gk = (V k, Ek,Xk) which is s-
maller than the original attributed networkG. And it retains
the backbone information of the original network structure
and attributes. We learn the representation of nodes on Gk

to acquire the approximate solution of the original network
as Equation (3).

Zk = PCA(α · fGk(V k)⊕ (1− α)Xk), (3)

where fGk(·) is a network representation learning method
to learn the nodes representation of the coarsest attributed
network. α is a parameter. If fGk(·) is a structure-only-
based network embedding method, 0 ≤ α ≤ 1, here we
set α = 0.5. If fGk(·) is an attributed network embedding
method, α = 1. The attributed network embedding method
can combine attribute information well, so operation ⊕
and PCA(·) is no longer executed. ⊕ means concatenation
operator, so that network structure and node attributes are
fused for the attributed network embedding at the coars-
est granularity. Principal components analysis (PCA) [53]
aimed to find a linear projection of the original data, here
used to reduce the dimensionality of the learned embedding
from (d + l) to d, so that the coarsest network embeddings
Zk ∈ R|V

k|×d. It is worth noting that | V k | is much smaller
than | V |, so the speed of network embedding for Gk is far
faster than for G.

In this stage, we choose network representation learning
technology as fGk(·) is very flexible. Many existing unsu-
pervised network embedding methods can be used, such
as structure-only network embedding DeepWalk, node2vec
and attributed network embedding STNE, CAN, and so on.

4.3 Refinement Module (RM)
Our goal is to learn the node representation of the original
attributed network, preserving both the network topological
structure and node attributes proximity from the network
Gk at the coarsest granularity to the original network G. So
our final stage is to refine the representation of nodes from
coarse to fine.

Given a hierarchical attributed network G = G0 � G1 �
· · · � Gk and the embedding Zk of the coarsest network
Gk, we will discuss how to learn the embedding Z of the
original network G by refinement module RM from Gk to
G.

For a better description, we first study an easier sub-
task: learn embedding Zi according to Gi and Zi+1. Once
we solved this subtask, we can then iteratively apply the
technique on each pair of hierarchical attributed networks
from the coarsest network Gk to the finest network G0

and eventually derive the node embeddings on the original
network G. Next, we focus on Zi = RM(Gi,Zi+1).

First, we inherit coarse-grained embeddings Zi+1 and
fuse the network structure and node attributes of Gi to
initialize the embedding Zi of finer-grained network Gi as
Equation (4).

Zi = PCA(Assign(Zi+1, Gi)⊕ Xi), (4)

where Assign(·) assigns Zi+1 ∈ R|V
i+1|×d to Zi ∈ R|V

i|×d

as initial embeddings of Gi. Specifically, if vip ∈ V ij and
viq ∈ V ij , zip = ziq = zi+1

j , where vi+1
j is granulated as a

super-node by a subset V ij , and zi+1
j is the embedding of

node vi+1
j . ⊕ means concatenation operator, and PCA(·) is

used to reduce the dimensionality of the embedding from
(d+ l) to d.

Second, we optimize the embedding matrix Zi ∈ R|V
i|×d

inspired by literature [22] as Equation (5).

Zi = H(Zi,Mi), (5)

where Mi ∈ R|V
i|×|V i| is the adjacency matrix of the

network Gi. H(·) a simple layer-wise linear GCN model
that makes calculation faster. And we can stack multiple
H(·) to achieve a model of higher capacity.

The jth layer of GCN is updated by Equation (6).

Hj(Zi,Mi) = σ(D̃i
−1/2

M̃iD̃i
−1/2

Hj−1(Zi,Mi)∆j), (6)

where σ(·) is an activation function, ∆j ∈ Rd×d is a layer-
specific trainable weight matrix. M̃i = Mi + λDi, Di ∈
R|V

i|×|V i| is a diagonal matrix. Di(p, p) =
∑
q Mi(p, q).

λ ∈ [0, 1] is a hyper-parameter for controlling the weight
of self-loop. D̃i(p, p) =

∑
q M̃i(p, q).

In our model, the learning of the refinement module is
essentially learning ∆j for each j ∈ [1, s], s is the number
of hidden layers. We learn ∆j only once at the coarsest
granularity k and assign it to the refinement module at other
granularities. Inspired by MILE [16], here we define a loss
function to learn ∆j .

loss =
1

|V k|
‖(Zk −Hs(Zk,Mk))‖2, (7)

we adopt AdamOptimizer to learn ∆j .
Based on the above calculation, we can obtain the node

representation of each layer of the hierarchical attributed
network. For the original network G, we concatenate Z0

and its node attributes to compensate for the loss of node
attributes information. The embedding Z is calculated as
Equation (8), where PCA(·) is used to reduce the dimen-
sionality of the embedding from (d+ l) to d.

Z = PCA(Z0 ⊕ X0). (8)

The proposed framework is summarized in Algorithm 1.
We first use a fast granulation module in lines 2-7 to reduce
the network size gradually and build a hierarchical attribute
network. Then, in line 8, we learn the representation of
the nodes in the coarsest network by any unsupervised
network representation learning method. In the remainder
of Algorithm 1, we gradually refine the node representations
of the network from coarse to fine to obtain the final node
representations of the original network.

5 EXPERIMENTS
We evaluate the effectiveness of the proposed framework
HANE on two benchmark applications, node classification
and link prediction, which are also commonly used tasks for
many existing network embedding methods evaluations. In
addition, we also analyze the efficiency and scalability, flex-
ibility of the NE module, and different granulation layers of
HANE. Finally, we discuss the significant test of HANE.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 7

Algorithm 1 HANE(G, k)
Input: An attributed network G = (V,E,X), number of

granularites k
Output: Embedding Z ∈ Rn×d for all nodes in V .

1: G0 ← G
2: for i = 0, 1, 2, · · ·, k − 1 do //Granulation Module
3: V i+1 = V i/Rnode = {V i1 , V i2 , · · ·}

//Nodes Granulation
4: Ei+1 ← According to Equation (1)

//Edges Granulation

5: Xi+1 ← xi+1
j = 1

|V i
j |

∑|V i
j |

p=1 xip, j = 1, 2 · · · |V i+1|
//Attributes Granulation

6: Gi+1 = (V i+1, Ei+1,Xi+1)
7: end for
8: Zk = PCA(α · fGk(V k) ⊕ (1 − α)Xk), //NE on the

coarsest attributed network
9: for i = k − 1, · · ·, 1, 0 do //Refinement Module

10: Zi = PCA(Assign(Zi+1, Gi)⊕ Xi) //initialize the
embedding Zi

11: Zi = H(Zi,Mi)
12: end for
13: Z← PCA(Z0 ⊕ X0)
14: Return Z

TABLE 1
The statistics of datasets

Datasets #nodes #edges #attributes #labels

Cora 2,708 5,278 1,433 7
Citeseer 3,312 4,660 3,703 6
DBLP 13,404 39,861 8,447 4

PubMed 19,717 44,338 500 3
Yelp 716,847 6,977,410 300 100

Amazon 1,598,960 132,169,734 200 107

5.1 Datasets

We employ four widely-used datasets for demonstrating the
effectiveness, efficiency, scalability and flexibility of HANE.

• Cora [54] is a citation network containing 2708 machine
learning papers which are classified into seven research
fields. There are 5278 edges between all these papers
which indicating their citation relations. Each paper is
associated with the title and abstract content. The at-
tribute of each node is the bag of words representation
of the corresponding paper.

• Citeseer [54] is also a citation network dataset. It con-
tains 3312 research papers from six research fields, and
there are 4660 edges between them. Each paper is asso-
ciated with the title and abstract content. The attribute
of each node is the bag of words representation of the
corresponding paper.

• DBLP [55] is a citation network dataset, which consists
of 13,404 nodes and 39,861 edges. Each paper is associ-
ated with the title. We learn the TF-IDF weighted word
frequencies of each paper as nodes attributes.

• PubMed [54] is a set of articles (i.e., nodes) related to
diabetes from the PubMed database, and edges here
represent the citation relationship. The node attributes
are TF-IDF weighted word frequencies, and node labels

are the types of diabetes addressed in the articles.
• Yelp [27] is a social network of friends on Yelp. The

node represents an active user. The edge indicates
whether there is a friend relationship between the n-
odes. The node feature contains information of all the
reviews by the users. The label of one node represents
the types of business that the user has been to.

• Amazon [27] is e-commerce network. The node repre-
sents one product. The edge represents purchase rela-
tionship. The node feature contains information of all
the reviews on that product. The label of one node
represents the categories of the product.

5.2 Baselines

We categorize the baselines into the following four groups.
Single-granularity Structure-only Network Embedding

Methods This group of baselines leverage network structure
information only and ignore the node attributes.
• DeepWalk [1] and node2vec [2] use truncated random

walks to generate node sequences, then they are fed
into skip-gram model to learn the latent node represen-
tations.

• LINE [3] exploits the network structure’s first-order
proximity and second-order proximity.

• GraRep [28] considers different powers of the adjacen-
cy matrix to preserve higher-order graph proximity for
graph embedding.

• NodeSketch [34] preserves high-order node proximity
via recursive sketching which generates node embed-
dings in Hamming space.

Single-granularity Attributed Network Embedding
Methods This kind of compared methods seek for low-
dimensional vector representations for nodes in a network,
such that original network topological structure and node
attribute proximity can be preserved.
• STNE [8] adopts a content-to-node translation model to

preserve content and structure properties.
• CAN [9] proposes a variational auto-encoder that em-

beds each node and attribute with means and variances
of Gaussian distributions.

Hierarchical Structure-only Network Embedding
Methods This kind of compared methods adopt hierar-
chical frameworks to preserve the network local or global
structure in a multi-granularity way without considering
node attributes.
• HARP [17] proposes a hierarchical paradigm for net-

work embedding based on iterative learning methods
(e.g., DeepWalk and node2Vec). HARP focuses on im-
proving the quality of embeddings by using the learned
embeddings from the previous level as the initialized
embeddings for the next level.

• MILE [16] repeatedly coarsens the network into smaller
ones using a hybrid matching technique to maintain
the backbone structure of the network. It then applies
existing embedding methods on the coarsest and refines
the embeddings to the original graph through a novel
graph convolution neural network that it learns.

Hierarchical Attributed Network Embedding. This
kind of compared methods seek for low-dimensional vector

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 8

representations for nodes in a network in a hierarchical way,
such that original network preserve the network local or
global structure while considering node attributes.
• GraphZoom [19] GraphZoom encodes graph structure

and node attribute in a single graph and exploiting
spectral coarsening and refinement methods to remove
high frequency noise from the graph.

5.3 Evaluation Metrics
To evaluate the performance of the network representation
methods on node classification and link prediction task, we
use Micro F1, Macro F1, area under curve (AUC) and
average precision (AP) as evaluation metrics.

For nodes classification, we use Micro F1 and
Macro F1 as evaluation metrics, they are defined as fol-
lows.

Micro F1: It does not need to distinguish categories,
and directly uses the Precision and Recall of the overall
sample to calculate the F1 score.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

, (9)

where Precision = TP
TP+FP and Recall = TP

TP+FN . TP ,
FP , FN , TN denote true positive, false positive, false
negative and true negative, respectively.

Macro F1: It needs to be calculated the average F1
score of all labels. It is defined as Equation (10).

Macro F1 =

∑
c∈ξ F1(c)

|ξ|
, (10)

where F1(c) is the F1 score for label c.
We employ AUC and AP scores to evaluate the perfor-

mance of link prediction.
AUC: It is the area under the receiveroperating char-

acteristic (ROC) curve, between 0.1 and 1. As a numerical
value, AUC can directly evaluate the quality of the classifier.
The ROC curve is a performance indicator of the classifier.
The X axis is false postive rate FPR = FP

TN+FP , and the Y
axis true postive rate TPR = TP

TP+FN .
AP: It is the graphic area enclosed by the precision-

recall (PR) curve and the X axis. The PR curve reflects
the trade-off between accuracy of the classifier’s recognition
of positive examples and the coverage ability of positive
examples. The X axis is Recall, the Y axis is Precision.

5.4 Parameter Settings
Running Environment. The experiments in this paper are
conducted on the Inspur NF8460M4 server with 4 Intel E7-
4809CPU @ 2.1GHz, 1T of RAM and 12T Hard Disk. The
codes of our proposed method are implemented with Linux
in python 2.7.
Parameter Configuration. Our all embeddings dimension
d is set to 128. We perform PCA dimensionality reduction
based on the sklearn.decomposition.PCA class and use the
sklearn.svm.LinearSVC method for the node classification
task.

Configuration in Granulation Module (GM): We use the
Louvain algorithm [51] to detect communities. The Louvain

algorithm automatically obtains the number of communi-
ties. We initialize the weight of each edge as one and obtain
the weight of the super edge by summing. The mini-batch
k-means algorithm [52] is used for clustering. The number
of clusters is set as the number of node labels. We use
the sklearn.cluster.MiniBatchKMeans for clustering based
on nodes attributes. The number of granularities k is set
to 1, 2 and 3, respectively, in our experiments. Our results
are the average of the results of five experiments, and the
results are true and valid.

Configuration in Network Embedding module (NE): In
our experiments, we use DeepWalk [1] for network em-
bedding at the coarsest granularity. Finally, to prove the
flexibility of the NE module, we use GraRep, STNE and
CAN for network embedding at the coarsest granularity.
Other methods have similar results, which are not shown
in this paper because of space limitations. The number of
walks for each node is set to 10, and the length of walks is
set to 80. The window size is set to 10 for generating node
contents. For the operator ⊕, we set parameter α = 0.5 to
fuse the network topological structure and node attributes.

Configuration in Refinement Module (RM): Our model
parameters ∆j are updated and optimized by stochastic
gradient descent with AdamOptimizer. For the graph con-
volution network model, the self-loop weight λ is set to 0.05,
the number of hidden layers s is 2 and tanh(·) is used as the
activation function. The learning rate is set to 0.001 for Cora,
Citeseer, and DBLP and 0.0001 for PubMed. The number of
training epochs is 200 for all datasets.
Code Details. The codes of our proposed method on the
Inspur NF8460M4 server, together with our public datasets,
are available. In our experiments, version 1.10 of Tensorflow
is used. Version 2.0 of networkx and version 0.19.0 of scikit-
learn are used. We will release the codes and datasets on
Github.

5.5 Node Classification
Node classification is a traditional task commonly used
to evaluate the quality of the learned node embeddings.
Similar to previous studies [1] [2], we employ Micro F1
and Macro F1 as metrics to measure the performance of
node classification. After the node embeddings are learned,
we randomly sample 10%∼90% labeled nodes to train an
SVM classifier and the rest nodes are used for testing. Each
experiment is independently implemented for five times.
We report performances on both average Micro F1(Mi F1)
and average Macro F1(Ma F1).

To show the effectiveness of our proposed HANE
method on node classification task, the results of
Micro F1(Mi F1) and Macro F1(Ma F1) in each datasets
and each ratio display in Tables 2, 3, 4, 5. The best per-
formances are marked in boldface. For HANE, MILE and
GraphZoom the number of granularities k is set to 1, 2, 3 and
DeepWalk is selected as the network embedding method for
the coarsest network in this section. More discussions on the
network embedding method for HANE are given in Section
5.8. From these results shown in Tables 2, 3, 4, 5, we have
the following observations and analysis.

First and foremost, HANE consistently generates better
results in Micro F1 and Macro F1 scores than all the com-
petitors for all settings across four datasets. HANE achieves

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 9

TABLE 2
Node classification results on Cora dataset

10% 20% 30% 40% 50% 60% 70% 80% 90%
Algorithm Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1

DeepWalk 76.6 75.8 79.9 79.0 80.8 80.1 81.7 81.01 83.4 82.9 83.7 83.1 84.5 84.2 82.3 82.0 81.6 81.7
LINE 67.6 65.7 72.9 71.3 75.5 74.8 76.1 75.1 77.4 76.3 75.6 74.2 77.4 76.3 76.9 76.2 75.6 74.4
Node2vec 76.6 75.2 79.2 78.1 79.9 79.5 79.0 78.4 80.6 80.1 80.3 79.7 81.8 81.5 81.4 80.5 81.5 81.1
GraRep 74.4 72.5 76.6 75.3 77.7 75.9 77.1 75.7 77.2 75.1 78.0 76.3 80.7 79.0 78.8 77.7 77.1 76.9
NodeSketch 76.2 74.7 79.2 78.1 81.2 80.0 82.1 80.8 83.0 81.9 83.8 82.4 85.0 83.9 84.4 83.2 84.7 83.3

STNE 81.1 79.5 83.3 82.3 83.9 82.7 83.9 82.7 85.2 84.1 86.4 85.7 86.7 86.1 87.3 86.9 88.6 88.9
CAN 82.2 80.5 84.1 82.9 85.1 83.8 85.8 84.6 86.5 85.3 86.9 85.9 86.7 85.5 86.8 85.8 88.2 87.2

HARP 75.2 73.8 77.2 76.2 79.1 78.0 79.8 78.8 80.3 79.2 80.6 79.7 81.2 80.5 81.7 81.0 82.4 82.1
MILE(k=1) 76.1 75.0 79.5 78.4 80.6 79.6 81.7 80.8 82.1 80.1 82.4 81.7 82.9 82.4 82.6 81.6 83.7 82.8
MILE(k=2) 76.3 74.7 79.8 78.2 81.2 79.8 82.4 81.1 82.3 81.0 83.5 82.4 83.2 81.9 83.0 81.8 84.2 83.1
MILE(k=3) 75.1 73.7 79.0 77.8 80.1 79.0 80.5 79.3 81.6 80.5 82.0 80.9 82.2 81.1 82.7 81.7 82.1 81.5

GraphZoom(k=1) 77.6 76.0 80.8 79.3 83.6 82.4 83.8 82.7 84.9 83.9 84.9 83.8 85.6 84.7 85.6 84.6 85.5 84.6
GraphZoom(k=2) 77.6 76.0 80.4 79.2 82.2 81.1 82.7 81.7 82.9 82.1 83.2 82.5 84.1 83.2 83.0 81.9 84.3 82.9
GraphZoom(k=3) 77.4 75.8 80.5 79.1 82.1 81.0 82.5 81.5 82.7 82.0 83.4 82.5 83.8 82.8 82.9 81.8 83.8 82.3

HANE(k=1) 81.8 80.7 84.5 83.3 85.1 83.9 86.0 84.8 86.1 85.0 86.9 85.6 87.5 86.5 87.6 86.5 88.2 86.7
HANE(k=2) 82.6 81.3 84.6 83.3 86.0 84.7 85.9 84.5 87.0 85.8 87.1 85.8 87.9 86.5 87.8 86.7 87.8 86.4
HANE(k=3) 82.7 81.3 84.7 83.4 85.7 84.2 86.5 85.2 86.8 85.6 88.1 87.0 87.8 86.6 88.0 86.9 88.6 87.2

TABLE 3
Node classification results on Citeseer dataset

10% 20% 30% 40% 50% 60% 70% 80% 90%
Algorithm Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1

DeepWalk 52.9 48.5 53.9 49.3 56.5 51.5 57.6 53.2 57.2 53.0 57.9 53.4 58.3 53.1 59.0 54.0 55.8 51.8
LINE 44.0 40.4 45.9 42.2 47.5 43.2 47.8 43.2 48.8 44.1 48.7 44.3 49.4 45.0 49.5 44.8 48.8 43.8
Node2vec 55.4 50.6 56.6 51.6 57.9 51.6 58.8 53.1 59.1 53.6 60.3 54.5 60.8 55.3 60.3 55.6 58.7 54.1
GraRep 53.6 47.0 54.6 49.0 54.3 47.7 55.3 48.4 55.4 48.5 55.6 48.7 55.7 48.9 55.5 48.8 55.1 49.6
NodeSketch 45.6 41.0 55.1 51.6 60.5 57.0 64.5 61.0 67.3 63.5 69.6 66.1 71.6 67.7 73.0 68.7 75.5 71.7

STNE 69.2 62.0 70.3 63.1 71.7 64.6 72.3 65.8 72.6 67.1 71.8 65.7 70.7 64.6 69.7 63.9 69.6 63.3
CAN 66.6 62.3 69.3 64.9 71.6 66.9 72.2 67.2 73.0 68.3 73.6 68.7 73.6 68.6 74.2 68.8 73.9 68.1

HARP 53.7 49.2 56.2 51.2 57.8 52.9 58.7 53.7 59.4 54.3 60.0 54.7 60.2 54.9 60.4 54.9 60.4 54.0
MILE(k=1) 52.9 48.2 55.5 50.2 56.6 50.8 57.2 51.4 58.2 52.1 58.1 52.2 58.3 52.3 58.8 52.6 58.0 50.9
MILE(k=2) 53.2 48.0 55.6 50.1 56.6 50.1 58.1 51.0 57.7 50.4 57.8 50.5 58.1 50.4 59.3 50.9 58.3 50.7
MILE(k=3) 52.4 47.2 54.3 58.7 55.7 49.6 55.5 49.2 55.7 59.2 55.6 48.9 55.8 49.0 56.5 50.1 56.0 49.0

GraphZoom(k=1) 59.5 55.3 64.3 60.2 66.9 62.4 67.7 63.5 68.6 63.6 69.7 64.7 69.7 64.5 69.8 64.6 69.4 63.9
GraphZoom(k=2) 60.6 55.9 63.4 59.2 65.9 61.2 67.7 63.3 68.4 63.3 68.9 64.0 69.5 64.5 69.4 64.4 70.4 65.6
GraphZoom(k=3) 60.7 56.0 63.9 59.4 66.2 61.1 67.9 63.2 68.7 63.6 68.9 63.8 69.6 64.7 69.0 63.8 69.4 64.1

HANE(k=1) 68.8 64.0 71.0 66.8 72.5 68.7 73.5 69.2 74.6 70.9 75.1 71.1 74.8 70.8 75.7 71.8 75.3 71.2
HANE(k=2) 69.7 65.5 71.7 67.4 73.4 69.1 73.8 69.8 74.8 70.7 74.9 70.5 75.1 71.2 75.4 70.9 76.4 71.4
HANE(k=3) 69.7 64.9 71.9 67.5 73.4 69.4 74.4 70.3 74.4 70.8 74.9 70.8 75.8 71.7 75.6 71.9 76.9 72.8

state-of-the-art performance with 0.73% average relative lift
on Cora dataset, 2.18% on Citeseer dataset, 1.37% on DBLP
dataset and 3.48% on PubMed dataset in Micro F1 scores,
and with 0.43% on average relative lift Cora dataset, 3.96%
on Citeseer dataset, 1.60% on DBLP dataset and 3.73%
on PubMed dataset in Macro F1 scores, compared with
best results from previous state-of-the-art algorithms. The
performance of HANE is followed by that of the single-
granularity attributed network embedding methods STNE
and CAN, then followed by that of GraphZoom. Single-
granularity structure-only network embedding methods
which use only the network structure perform the worst.
The attributed network embedding baselines that fuse the
network topological structure and node attributes infor-
mation generally perform better than the structure-only
baselines that use network topological structure information
without node attributes. This further proves the usefulness
of the attributes for network embedding.

Second, it is worth noting that hierarchical repre-
sentation learning methods outperform most of single-
granularity approaches. Among the seven structure-only
network embedding method, hierarchical structure-only
network embedding methods get a better representation
in most cases. Building hierarchical attributed networks
and properly modeling can lead to better representation
learning and benefit downstream applications. This possible
hierarchical attributed networks are obtained in HANE,

which strengthens the close interaction between the network
structure and attribute information. Although we have the
same or slightly worse comparison with the STNE method
in the case of a higher test set ratio on Cora dataset with
the 90% training ratio in the last column of Table 2, from
Tabel 7, we find that the proposed HANE method is much
faster than STNE. When STNE is selected as the base net-
work embedding method, as shown in Fig.4, our method
HANE(STNE) is superior to STNE in speed and perfor-
mance. Furthermore, a hierarchical attributed network em-
bedding method GraphZoom is behind single-granularity
attributed method. However, GraphZoom is much faster
than single-granularity attributed method in speed. Graph-
Zoom fuses the attributes and the topology structure only
once and the attribute information of supernodes is very
difficult to get, so that the attribute information was not
fully utilized in the model.

These observations demonstrate the effectiveness of the
proposed HANE.

5.6 Link Prediction
Next, we evaluate the quality of network embedding for
link prediction, which is a typical task in network analysis.
We perform a link prediction task on four datasets.

In this task, we use the same setting as in [34]. Specifical-
ly, we randomly sample 20% of the edges from each network
and we randomly sample an equal number of node pairs

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 10

TABLE 4
Node classification results on DBLP dataset

10% 20% 30% 40% 50% 60% 70% 80% 90%
Algorithm Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1

DeepWalk 80.0 72.8 82.1 76.0 82.7 76.9 83.0 77.4 83.1 77.5 82.9 77.4 83.3 77.9 82.8 77.2 83.3 77.8
LINE 68.7 57.1 70.8 59.9 71.1 60.2 71.4 60.5 72.2 61.4 71.9 61.2 72.1 61.3 72.3 61.4 72.0 61.0
Node2vec 80.1 73.1 81.5 75.3 82.2 75.8 82.6 76.6 82.6 76.7 82.7 76.6 82.8 76.8 82.9 76.9 83.0 77.3
GraRep 81.1 74.1 81.9 75.7 82.1 76.2 82.4 76.2 82.4 76.6 82.5 76.5 82.7 77.1 82.4 76.5 82.8 77.0
NodeSketch 62.5 46.1 68.6 56.9 72.1 62.1 74.6 65.4 76.4 67.9 77.7 69.6 78.9 70.7 80.1 72.0 80.1 72.8

STNE 82.1 75.9 82.3 76.3 83.0 77.1 82.9 77.1 83.1 77.4 83.5 78.1 83.1 77.9 83.2 78.2 83.5 78.4
CAN 82.1 75.4 82.7 76.4 83.2 77.3 83.3 77.5 83.4 77.5 83.4 77.6 83.8 77.9 83.7 77.9 83.6 78.0

HARP 79.6 72.9 80.9 74.4 81.4 75.4 81.6 75.7 81.9 76.0 81.7 75.9 81.7 75.8 81.7 75.8 81.9 76.2
MILE(k=1) 81.8 75.6 82.5 76.6 83.1 77.4 83.0 77.2 83.2 77.5 83.4 77.9 83.7 78.2 83.2 77.8 82.9 77.2
MILE(k=2) 81.3 74.7 82.6 76.7 83.0 77.2 83.1 77.4 83.1 77.5 83.1 77.6 83.4 77.8 83.1 77.5 82.9 77.6
MILE(k=3) 81.1 74.5 82.1 76.0 82.7 76.8 82.7 77.0 82.8 77.0 82.9 77.4 83.1 77.6 83.0 77.7 83.1 77.4

GraphZoom(k=1) 80.9 74.5 82.8 77.2 83.3 78.0 83.4 78.2 83.6 78.4 83.6 78.5 83.6 78.6 83.9 79.0 83.5 78.6
GraphZoom(k=2) 81.3 75.2 82.6 76.9 83.0 77.5 83.2 77.8 83.4 78.2 83.4 78.2 83.7 78.6 83.9 78.6 83.3 77.6
GraphZoom(k=3) 81.3 75.2 82.5 76.7 83.0 77.6 83.2 77.9 83.5 78.4 83.4 78.4 83.7 78.7 83.8 78.6 83.4 77.8

HANE(k=1) 83.0 77.0 83.8 78.0 84.2 78.4 84.3 78.7 84.6 79.2 84.3 78.9 84.4 78.6 84.5 79.0 84.4 78.6
HANE(k=2) 83.4 77.6 84.1 78.7 84.3 78.9 84.5 79.2 84.6 79.3 84.8 79.5 84.6 79.6 84.6 79.6 84.8 79.6
HANE(k=3) 83.4 77.8 84.0 78.6 84.3 78.9 84.6 79.2 84.7 79.4 84.9 79.9 84.8 79.7 84.7 79.5 84.6 79.4

TABLE 5
Node classification results on PubMed dataset

10% 20% 30% 40% 50% 60% 70% 80% 90%
Algorithm Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma F1

DeepWalk 79.0 77.4 80.5 79.1 81.2 79.6 80.5 79.1 80.7 79.4 80.6 79.4 80.5 79.3 80.4 78.9 80.0 78.2
LINE 71.3 68.7 72.4 69.8 72.8 70.4 72.9 70.5 73.1 70.8 72.8 70.5 73.1 70.7 73.1 70.7 72.6 70.0
Node2vec 79.8 78.4 80.6 79.1 80.6 79.3 80.3 79.0 80.3 79.0 80.3 79.0 80.5 79.2 80.4 78.9 80.8 79.2
GraRep 79.0 77.5 79.9 78.5 79.9 78.6 79.6 78.3 79.6 78.3 79.3 78.1 79.3 78.0 79.4 77.9 79.1 77.4
NodeSketch 72.5 69.7 77.9 76.1 80.0 78.5 81.2 79.8 82.3 81.0 82.5 81.3 83.1 82.0 83.3 82.1 83.8 82.7

STNE 83.6 82.8 84.3 83.4 84.6 83.9 84.5 83.8 84.6 83.9 84.4 83.7 84.4 83.7 84.2 83.4 83.8 83.1
CAN 83.8 83.3 84.3 83.7 84.5 84.0 84.7 84.2 84.9 84.4 84.9 84.8 84.2 84.4 85.2 84.7 84.9 84.3

HARP 79.3 77.9 80.3 78.9 80.6 79.3 80.8 79.4 80.9 79.6 80.9 79.6 80.7 79.5 81.1 79.8 81.2 79.9
MILE(k=1) 80.5 79.2 81.2 79.9 81.6 80.3 81.5 80.2 81.7 80.4 81.8 80.5 81.5 80.2 81.9 80.6 82.2 81.1
MILE(k=2) 80.7 79.5 81.5 80.3 81.6 80.5 81.8 80.7 81.8 80.8 81.9 80.7 82.2 81.1 81.9 80.8 81.7 80.5
MILE(k=3) 80.2 78.9 80.9 79.7 81.3 80.1 81.4 80.2 81.5 80.3 81.3 80.1 81.6 80.4 81.5 80.3 82.7 81.5

GraphZoom(k=1) 79.7 78.3 80.5 79.3 80.9 79.6 81.0 79.8 81.2 79.9 81.2 79.9 81.3 80.0 81.1 79.9 81.1 79.7
GraphZoom(k=2) 79.7 78.4 80.6 79.3 80.9 79.6 80.8 79.6 80.7 79.4 80.8 79.6 81.0 79.8 81.0 79.7 81.2 79.9
GraphZoom(k=3) 79.6 78.3 80.6 79.2 80.7 79.4 80.8 79.6 80.7 79.4 80.8 79.6 81.0 79.7 80.9 79.6 81.0 79.6

HANE(k=1) 86.2 85.9 87.1 86.9 87.2 87.0 87.4 87.2 87.5 87.3 87.6 87.4 87.6 87.4 87.7 87.4 87.8 87.5
HANE(k=2 86.5 86.3 87.1 86.9 87.4 87.2 87.6 87.3 87.5 87.2 87.7 87.5 87.7 87.4 87.8 87.6 87.8 87.6
HANE(k=3) 86.6 86.4 87.2 87.0 87.6 87.3 87.5 87.3 87.8 87.6 87.8 87.6 87.9 87.6 87.9 87.7 87.8 87.6

TABLE 6
Performance of link prediction

Cora Citeseer DBLP PubMed
Algorithms AUC AP AUC AP AUC AP AUC AP

DeepWalk 90.7 92.1 88.3 88.9 94.8 95.3 94.1 93.7
LINE 83.3 86.4 81.8 83.5 85.3 87.1 73.8 73.9
node2vec 89.3 89.8 85.0 83.0 93.9 93.7 93.7 93.0
GraRep 88.5 90.3 83.4 83.7 93.8 93.3 89.8 87.8
NodeSketch / / / / / / / /

STNE / / / / / / / /
CAN 82.6 84.6 97.2 96.6 90.8 90.3 74.4 73.7

HARP 90.1 90.7 88.4 88.7 94.0 94.5 93.1 92.6
MILE(k = 1) 89.9 91.3 89.2 90.3 95.3 95.9 94.5 94.4
MILE(k = 2) 90.0 91.5 90.2 91.1 94.7 95.5 93.8 93.9
MILE(k = 3) 88.7 90.3 89.9 90.8 93.3 94.4 92.4 92.8

GraphZoom(k = 1) 91.5 91.8 88.8 89.3 95.8 95.7 94.9 94.1
GraphZoom(k = 2) 91.4 91.2 87.9 88.0 95.7 95.6 94.7 93.8
GraphZoom(k = 3) 90.9 91.0 87.9 87.9 95.6 95.5 94.7 93.9

HANE(k = 1) 93.6 93.8 95.7 95.4 96.4 96.2 94.9 93.7
HANE(k = 2) 94.8 94.6 97.8 97.4 97.1 96.9 95.7 94.7
HANE(k = 3) 92.9 93.3 95.4 95.2 96.7 96.5 95.6 94.7

without edge connections from the network to generate
negative examples, as test data. The rest of the network is
used for training. We predict the link between nodes based
on the cosine similarity of their embeddings. We employ
AUC and AP scores to evaluate the performance of link
prediction, which are commonly used in related literature
[34] [2] [9]. Higher values of AUC and AP indicate the better
performance of the network embedding method. For HANE

and MILE, the number of granularities k is set to 1, 2, 3.
Without loss of generality, DeepWalk is selected to learn
the embeddings of the coarsest network for HANE, HARP
and MILE. Each experiment is independently implemented
for 10 times and the average performances on the test set
are reported in Table 6. Among them, the parameters of
NodeSketch have too much influence on the results. We did
not find a suitable parameter to make the results of the link
prediction normal. The results of STNE is poor here. Maybe
STNE is not suitable for link prediction tasks. For Table 6,
the best performances are marked in boldface.

Empirical results show, the proposed HANE consistently
outperforms all the other baselines on all four datasets.
HANE achieves state-of-the-art performance with 3.61%,
0.62%, 1.36% and 0.84% relative lift in AUC scores on
Cora, Citeseer, DBLP, and PubMeb datasets, and with 3.05%,
0.83%, 1.25% and 0.64% relative lift in AP scores across these
four datasets, compared with best results from previous
state-of-the-art algorithms. The proposed HANE consistent-
ly outperforms the competitors which further verifies the
effectiveness of the proposed method.

From Tabel 6 shows, we can find that the performance
of hierarchical network representation learning outperforms
single-granularity approaches. It demonstrates that the hier-
archical structure helps to capture the potential relationships
between nodes in the network.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 11

0 1 2 3 4 5 6
Number of granularities k

0%

20%

40%

60%

80%

100%

Gr
an

ul
at

ed
_R

at
io

Cora

NG_R EG_R

0 1 2 3 4 5 6
Number of granularities k

20%

40%

60%

80%

100%

Gr
an

ul
at

ed
_R

at
io

Citeseer

NG_R EG_R

0 1 2 3 4 5 6
Number of granularities k

0%

20%

40%

60%

80%

100%

Gr
an

ul
at

ed
_R

at
io

DBLP

NG_R EG_R

0 1 2 3 4 5 6
Number of granularities k

0%

20%

40%

60%

80%

100%
Gr

an
ul

at
ed

_R
at

io

PubMed

NG_R EG_R

Fig. 3. The Granulated Ratio of hierarchical network. X axis is
the number of granularities k, we set k = 0, 1, 2, 3. Y axis is the
Granulated Ratio of hierarchical network. The red line represents the
Granulated Ratio of the nodes(NG R) and the blue line denotes the
Granulated Ratio of the edges(EG R).

5.7 Efficiency and Scalability

We compare the efficiency and demonstrate the scalability
of the proposed HANE. Table 7 reports the network rep-
resentations learning time of HANE at different granulari-
ties and nine baselines divided into four groups. The best
performances are marked in boldface. The representation
learning time of NodeSketch is not given for comparison in
this paper because the running environment (Matlab 2017b
on MacOS) of the codes from the corresponding author is
different from ours. In this section, DeepWalk is selected as
the network embedding method for the coarsest network.

We define Granulated Ratio to measure the s-
cale change of the networks at different granularity.
Granulated Ratio means the ratio of numbers of node and
edge after granulation to the original numbers of node and
edge.

The Granulated Ratio of nodes (NG R): NG R = n′

n ,
where n is the number of nodes in the original network, and
n′ is the number of nodes in the coarse-grained network.

The Granulated Ratio of edges (EG R): EG R = m′

m ,
wherem is the number of nodes in the original network, and
m′ is the number of nodes in the coarse-grained network.

Fig. 3 showsGranulated Ratio at different granularities
on all four datasets. We have the following observations and
analysis.

First, from Table 7, HANE shows its notable speed
against all the competitors, especially against these single-
granularity attributed network embedding competitors. The
hierarchical network representation learning methods are
much faster than the single-grained network representation
learning methods, which further shows that the representa-
tion learning can be accelerated in a hierarchical way. HANE
significantly outperforms the single-granularity structure-
only network embedding baselines with 9.81×∼154.44×
speedup, the single-granularity attributed network embed-

TABLE 7
Time comparison for network representation learning (in Seconds)

Algorithm Cora Citeseer DBLP PubMed avgSpeedup

DeepWalk 131.94 (4.94×) 125.32 (2.81×) 1247.66 (21.94×) 841.76 (9.56×) 9.81×
LINE 403.27 (15.09×) 395.11 (8.85×) 2,207.13 (38.83×) 3,860.38 (43.86×) 50.92×
node2vec 56.95 (2.13×) 57.54 (1.29×) 672.58 (11.83×) 455.80 (5.18×) 5.12×
GraRep 233.82 (8.75×) 295.53 (6.62×) 9,764.31 (171.73×) 37,904.82 (430.64×) 154.44×

STNE 2,880.50 (107.76×) 1,380.00 (30.91×) > 4days (/) 231,900.00 (2634.63×) 1016.88×
CAN 345.98 (12.94×) 782.50 (17.53×) 3,495.28 (61.47×) 22,001.38 (249.96×) 85.48×

HARP 36.28 (1.36×) 32.18 (0.72×) 173.17 (3.05×) 281.42 (3.20×) 2.08×
MILE(k = 1) 117.58 (4.40×) 115.03 (2.58×) 375.71 (6.61×) 575.86 (6.54×) 5.03×
MILE(k = 2) 65.85 (2.46×) 68.45 (1.53×) 193.91 (3.41×) 360.83 (4.10×) 5.62×
MILE(k = 3) 35.25 (1.32×) 41.71 (0.93×) 118.23 (2.08×) 222.62 (2.53×) 1.72×

GraphZoom(k = 1) 76.82 (2.87×) 110.16 (2.47×) 490.06 (8.62×) 774.85 (8.80×) 5.60×
GraphZoom(k = 2) 30.89 (1.16×) 49.96 (1.12×) 197.12 (3.47×) 272.40 (3.09×) 2.21×
GraphZoom(k = 3) 29.01 (1.09×) 47.07 (1.05×) 187.71 (3.30×) 263.56 (2.99×) 2.10×

HANE(k = 1) 73.01 (2.73×) 98.65 (2.21×) 300.49 (5.28×) 314.60 (3.57×) 3.25×
HANE(k = 2) 50.54 (1.89×) 63.40 (1.42×) 132.50 (2.33×) 150.05 (1.70×) 1.84×
HANE(k = 3) 26.73 44.64 56.86 88.02 1

TABLE 8
Time comparison with three base network embedding methods (in

Seconds)

Datasets Cora Citeseer DBLP PubMed

GraRep 233.82(3.42×) 295.53(4.48×) 9,764.31(78.83×) 37,904.82(278.10×)
HANE(GR, k=1) 158.60(2.32×) 160.09(2.43×) 276.05(2.23×) 281.11(2.06×)
HANE(GR, k=2) 113.30(1.66×) 111.83(1.70×) 193.59 (1.56×) 222.20(1.63×)
HANE(GR, k=3) 68.27 65.95 123.87 136.30

STNE 2,880.50(29.3×) 1,380.00(11.84×) > 4days (/) 231,900.00(1629.20×)
HANE(STNE, k=1) 168.39(1.71×) 186.17 (1.60×) 589.46(3.73×) 626.39 (4.40×)
HANE(STNE, k=2) 133.27(1.36×) 151.45 (1.30×) 262.52(1.66×) 200.06(1.41×)
HANE(STNE, k=3) 98.22 116.53 158.04 142.31

CAN 345.98 (21.10×) 782.50(24.73×) 3,495.28(61.23×) 22,001.38(252.34×)
HANE(CAN, k=1) 65.86(4.02×) 89.43 (2.83×) 621.17(10.88×) 704.98 (8.09×)
HANE(CAN, k=2) 28.63(1.75×) 45.52 (1.44×) 135.50(2.37×) 202.06 (2.32×)
HANE(CAN, k=3) 16.40 31.64 57.08 87.19

ding baselines with 85.48×∼1016.88× speedup and the hi-
erarchical structure-only network embedding baselines with
at least 1.71× speedup across these four datasets, averagely.
Our method HANE is faster than the hierarchical attributed
network embedding GraphZoom with 2.10×∼5.60×, aver-
agely.

Second, HANE achieves state-of-the-art learning time
performance on all datasets except for the Citeseer dataset.
It seems that HARP and MILE (k = 3) are slightly faster
than the proposed HANE on this dataset. However, it is
worth noting that the proposed HANE fuses the network
structure and node attributes while HARP and MILE only
consider network topological structure without considering
node attributes. Attributed network embedding baselines
are generally more time-consuming than structure-only net-
work embedding baselines from Table 7.

Third, with the increase of the number of granularities k,
we find that the Granulated Ratio dramatically decreases
(see Fig. 3) and the speedup increases further (see Table 7)
while the quality of the embeddings is preserved reflected
by achieving the best Micro F1 and Macro F1 (See Table 2
∼ Table 5). In Fig. 3, we further find that the number of
granularities k generally is not large. We granulate them
once, the nodes scale are reduced by at least 52% on all
datasets. When we granulate them three times, the nodes
scale/edges scale of all datasets remain less than 20% /25%.
This shows that our granulation module can better capture
the community structure in the network. HANE has an effi-
cient granulation module because the granulation process is
based on the community detection for network topological
structure and clustering for node attributes.

From above, we conclude that HANE is an efficient,
scalable, and effective network embedding approach.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 12

Cora Citeseer DBLP PubMed
(a)

50

55

60

65

70

75

80

85

90

M
i_F

1

GraRep
HANE(GR,k=1)

HANE(GR,k=2)
HANE(GR,k=3)

Cora Citeseer DBLP PubMed
(b)

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

M
i_F

1

STNE
HANE(STNE,k=1)

HANE(STNE,k=2)
HANE(STNE,k=3)

Cora Citeseer DBLP PubMed
(c)

60

65

70

75

80

85

90

M
i_F

1

CAN
HANE(CAN,k=1)

HANE(CAN,k=2)
HANE(CAN,k=3)

Cora Citeseer DBLP PubMed
(d)

40

50

60

70

80

90

M
a_

F1

GraRep
HANE(GR,k=1)

HANE(GR,k=2)
HANE(GR,k=3)

Cora Citeseer DBLP PubMed
(e)

60

65

70

75

80

85

90

M
a_

F1

STNE
HANE(STNE,k=1)

HANE(STNE,k=2)
HANE(STNE,k=3)

Cora Citeseer DBLP PubMed
(f)

60

65

70

75

80

85

90

M
a_

F1

CAN
HANE(CAN,k=1)

HANE(CAN,k=2)
HANE(CAN,k=3)

Fig. 4. The performance of node classification with different base network embedding methods for the coarsest network in HANE (i.e., NE module).
Red bars indicate the results of methods GraRep, STNE, and CAN. Three different blue bars represent the results of HANE(GR), HANE(STNE),
and HANE(CAN) with different granularities k=1, 2, 3, respectively. (a), (b), (c) show the comparison of Micro F1 scores for GraRep, STNE, CAN,
respectively. The Macro F1 scores of them are shown in (d), (e), (f). The training ratio is set 20%, similar conclusions are on other training ratios.

5.8 Flexibility
In this section, we will show the proposed HANE is flex-
ible that structure-only network embedding methods and
attributed network embedding methods are both suitable
for the NE module of HANE. Table 8 shows the embedding
learning time of HANE on different datasets with three
network embedding methods, GraRep, STNE, and CAN, at
the coarsest granularity. The best performances are marked
in boldface. Fig. 4 summarizes the performances of the pro-
posed HANE with different network embedding methods
and the original embedding methods with the 20% training
ratio and similar conclusions can be drawn on other training
ratios.

As shown in Fig. 4 and Table 8, we have the same
observations as the above. First, HANE achieves higher
Micro F1 and Macro F1 scores than all the competitors
across all four datasets within a much shorter time. Sec-
ond, HANE significantly outperforms GraRep that is a
single-granularity structure-only network embedding com-
petitor with 3.42×∼278.10× speedup, STNE and CAN
which are attributed network embedding competitors with
29.30×∼1629.20× speedup and 21.10×∼252.34× speedup.

At the coarsest granularity, we can use any of the existing
structure-only network embedding methods and attributed
network embedding methods for the NE module of HANE
that is flexible.

5.9 Different Granulation Layers
In this section, we study how the number of granularities
k affect the performance of HANE. Starting from k = 1,

we increase k until it reaches 6 or the coarsest graph
contains less than 100 nodes. From Fig. 5, we find that
node classification performance of HANE are not sensitive
to the number of granularities k on all four datasets. This is
because in the refinement module, we integrate the attribute
information of each layer as the supplementary information
of the topology, which can better refine the representation of
the coarsest network layer by layer. Before the compression
reduction rate converges, the larger k is, the shorter the
running time is. This further shows that HANE can increase
the speed while maintaining performance.

5.10 Large-scale Attributed Network Representation
Learning

In Fig.6, we show the Micro F1 and running time of
HANE, MILE and GraphZoom with k varying 1 to 3 on
Yelp dataset, and comparison of HANE and MILE with
k varying 1 to 4 on Amazon dataset. Yelp and Amazon
are large-scale attribute networks. We use DeepWalk for
network embedding at the coarsest granularity, the training
ratio is set 20%, similar conclusions are on other training
ratios. We have executed GraphZoom for more than four
days on Amazon dataset, but no results were obtained.
When increasing k, HANE achieves a higher speedup while
the Micro F1 decreases slowly while effectively granulate
the large-scale network without losing key information,
thereby greatly reducing the embedding time, and improve
the quality of embedding methods on large-scale attribute
networks.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 13

1 2 3 4 5 6
Number of granularities k

82

83

84

85

86

87

M
icr

o_
F1

Cora
HANE(DW)
HANE(GR)

HANE(STNE)
HANE(CAN)

1 2 3 4 5 6
Number of granularities k

70

71

72

73

74

75
Citeseer

HANE(DW)
HANE(GR)

HANE(STNE)
HANE(CAN)

1 2 3 4 5 6
Number of granularities k

81

82

83

84

85

86
DBLP

HANE(DW)
HANE(GR)

HANE(STNE)
HANE(CAN)

1 2 3 4 5 6
Number of granularities k

84

85

86

87

88

89
PubMed

HANE(DW)
HANE(GR)

HANE(STNE)
HANE(CAN)

1 2 3 4 5 6
Number of granularities k

0

20

40

60

80

100

120

140

160

180

Ru
nn

in
g

Ti
m

e(
s)

HANE(DW)
HANE(GR)

HANE(STNE)
HANE(CAN)

1 2 3 4 5 6
Number of granularities k

20

40

60

80

100

120

140

160

180

200
HANE(DW)
HANE(GR)

HANE(STNE)
HANE(CAN)

1 2 3 4 5 6
Number of granularities k

0

100

200

300

400

500

600

700
HANE(DW)
HANE(GR)

HANE(STNE)
HANE(CAN)

1 2 3 4 5 6
Number of granularities k

0

100

200

300

400

500

600

700

800
HANE(DW)
HANE(GR)

HANE(STNE)
HANE(CAN)

Fig. 5. The performance changes as the number of granulation layers increases. Micro F1 and running time are reported in the first and second
rows, respectively.

1 2 3
Number of granularities k

40

45

50

55

60

65

70

M
i_F

1

MILE(DW)
GraphZoom(DW)

HANE(DW)

1 2 3
#Number of granularities k

103

104

105

106

107

Ru
nn

in
g

Ti
m

e(
s)

MILE(DW)
GraphZoom(DW)

HANE(DW)

1 2 3 4
#Number of granularities k

10

20

30

40

50

60

70

M
i_F

1

HANE(DW)
MILE(DW)

1 2 3 4
#Number of granularities k

104

105

106

Ru
nn

in
g

tim
e(

s)

HANE(DW)
MILE(DW)

Fig. 6. Comparisons of HANE, MILE and GraphZoom on Yelp dataset
and run HANE and MILE on Amazon dataset. Micro F1 and running
time are reported in the first and second columns respectively. The
running time is showed in seconds.

5.11 Significant Test

In this section, we analyze the statistical significance of
method performance improvement through a significant
test. First we learn the representation of nodes and random-
ly sample 10%∼90% labeled nodes to train a SVM classifier
and the rest nodes are used for testing. Each experiment
is independently implemented for five times. Then, the
average performances (Micro F1) on the testing set of
HANE(k=2) performs an independent samples t-test [56]
with all baselines on four datasets separately, and calculates
p-value as shown in Tabel 9, significance level α = 0.05. In

TABLE 9
p-value of independent samples t-test

Datasets Cora Citeseer DBLP PubMed

DeepWalk 1.31E-06 1.91E-10 2.28E-05 8.42E-11
LINE 3.01E-08 1.13E-14 1.52E-11 2.22E-15

node2vec 1.13E-10 7.67E-11 1.42E-06 3.39E-12
GraRep 5.98E-09 3.07E-10 3.61E-11 4.95E-11

NodeSketch 5.97E-06 6.57E-03 6.6E-04 0.0002

STNE 5.4E-03 2.89E-03 7.23E-09 1.15E-08
CAN 0.0182 1.70E-05 1.47E-07 1.05E-09

HARP 1.43E-09 7.02E-14 2.54E-09 6.24E-14
MILE(k = 1) 2.54E-08 5.34E-13 3.07E-07 1.07E-13
MILE(k = 2) 3.07E-07 1.98E-12 1.96E-07 1.03E-13
MILE(k = 3) 1.08E-08 1.54E-11 1.89E-08 4.51E-11

GraphZoom(k = 1) 4.11E-05 1.14E-06 8.75E-05 1.93E-14
GraphZoom(k = 2) 2.79E-08 1.77E-07 8.41E-06 8.22E-15
GraphZoom(k = 3) 1.75E-08 8.10E-08 7.00E-06 3.11E-15

HANE(k = 1) 0.06 0.03 0.002 0.013
HANE(k = 2) 1.0 1.0 1.0 1.0
HANE(k = 3) 0.15 0.12 0.438 0.021

Table 9, the last three row is an independent samples t-test
for HANE(k=1, k=2, k=3), they do not differ. It can be seen
that the average p-value=6.09E−04< α of HANE(k=2) over
the baselines in four datasets. When k = 1 and k = 3, there
are similar conclusions. This proves that the performance
improvement of HANE is statistically significant.

6 CONCLUSION AND FUTURE WORK
In this paper, we formalize the hierarchical attributed net-
work embedding problem and propose an effective frame-
work HANE to solve it with both network topological
structure and node attributes in a hierarchical way. HANE
not only incorporates these two kinds of information within
one granularity but infers them across granularities. Fur-
thermore, HANE is highly efficient for attributed network

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 14

embedding. We split the overall network embedding into
three modules: granulation module GM, network embed-
ding module NE on the coarsest network, and refinement
module RM. GM mainly constructs a hierarchical attributed
network from fine to coarse based on both the network
topological structure and node attributes so that we can
capture the relationships between different granularities
and get a series of smaller attributed networks. NE module
is flexible with many existing network embedding methods
for the attributed network at the coarsest granularity. RM
inherits and updates embeddings of the constructed hierar-
chical attributed network from coarse to fine so that we can
quickly get the embeddings of the original network. The
proposed framework HANE shows notable speedup and
achieves significantly better performances compared to pre-
vious state-of-the-art methods on two tasks, including node
classification and link prediction, across several datasets.

In future, we will explore the following directions:
1) We seek to investigate the extensibility of our model

on dynamic network, such as learning new node represen-
tations without repeatedly training the model.

2) Another interesting direction is semi-supervised learn-
ing of our model. We will adjust our framework according
to specific tasks such as node clustering and graph classifi-
cation, and consider the label information of the training set
to improve the quality of the node representation used for
prediction.

ACKNOWLEDGMENT

This work was partially supported the National Natural
Science Foundation of China (Grants #61876001, #61602003
and #61673020), National High Technology Research and
Development Program (Grant #2017YFB1401903), and the
Recruitment Project of Anhui University for Academic and
Technology Leader.

REFERENCES

[1] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in KDD’14. ACM, 2014, pp. 701–710.

[2] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in KDD’16. ACM, 2016, pp. 855–864.

[3] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in WWW’15, 2015,
pp. 1067–1077.

[4] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network
embedding as matrix factorization: Unifying deepwalk, line, pte,
and node2vec,” in WSDM’18. ACM, 2018, pp. 459–467.

[5] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding
through large-scale heterogeneous text networks,” in KDD’15.
ACM, 2015, pp. 1165–1174.

[6] C. Tu, X. Zeng, H. Wang, Z. Zhang, Z. Liu, M. Sun, B. Zhang,
and L. Lin, “A unified framework for community detection and
network representation learning,” TKDE, vol. 31, no. 6, pp. 1051–
1065, 2018.

[7] H. Wang, T. Xu, Q. Liu, D. Lian, E. Chen, D. Du, H. Wu, and W. Su,
“Mcne: An end-to-end framework for learning multiple condition-
al network representations of social network,” in KDD’19, 2019,
pp. 1064–1072.

[8] J. Liu, Z. He, L. Wei, and Y. Huang, “Content to node: Self-
translation network embedding,” in KDD’18. ACM, 2018, pp.
1794–1802.

[9] Z. Meng, S. Liang, H. Bao, and X. Zhang, “Co-embedding attribut-
ed networks,” in WSDM’19. ACM, 2019, pp. 393–401.

[10] L. Liao, X. He, H. Zhang, and T.-S. Chua, “Attributed social
network embedding,” TKDE, vol. 30, no. 12, pp. 2257–2270, 2018.

[11] H. Gao and H. Huang, “Deep attributed network embedding,” in
IJCAI’18, 2018, pp. 3364–3370.

[12] H. Yang, S. Pan, P. Zhang, L. Chen, D. Lian, and C. Zhang,
“Binarized attributed network embedding,” in ICDM’18. IEEE,
2018, pp. 1476–1481.

[13] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in KDD’17.
ACM, 2017, pp. 135–144.

[14] Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, and J. Tang, “Represen-
tation learning for attributed multiplex heterogeneous network,”
in KDD’19, 2019, pp. 1358–1368.

[15] R. A. Rossi, R. Zhou, and N. Ahmed, “Deep inductive graph
representation learning,” TKDE, pp. 1–15, 2018.

[16] J. Liang, S. Gurukar, and S. Parthasarathy, “Mile: A multi-level
framework for scalable graph embedding,” in arXiv preprint arX-
iv:1802.09612, 2018.

[17] H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical
representation learning for networks,” in AAAI’18. AAAI Press,
2018, pp. 2127–2134.

[18] A. K. Bhowmick, K. Meneni, M. Danisch, J.-L. Guillaume, and
B. Mitra, “Louvainne: Hierarchical louvain method for high qual-
ity and scalable network embedding,” in WSDM’20, 2020, pp. 43–
51.

[19] C. Deng, Z. Zhao, Y. Wang, Z. Zhang, and Z. Feng, “Graphzoom:
A multi-level spectral approach for accurate and scalable graph
embedding,” in ICLR’20, 2020.

[20] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable
pooling,” in NeurIPS’18.

[21] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional
networks with eigenpooling,” in KDD’19, 2019, pp. 723–731.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR’17, 2017.

[23] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NeurIPS’17, 2017, pp. 1024–1034.

[24] B. Xu, H. Shen, Q. Cao, Y. Qiu, and X. Cheng, “Graph wavelet
neural network,” in ICLR’19, 2019.

[25] W. Huang, E. Chen, Q. Liu, Y. Chen, Z. Huang, Y. Liu, Z. Zhao,
D. Zhang, and S. Wang, “Hierarchical multi-label text classifica-
tion: An attention-based recurrent network approach,” in CIK-
M’19, 2019, pp. 1051–1060.

[26] X. Huang, J. Li, and X. Hu, “Label informed attributed network
embedding,” in WSDM’17. ACM, 2017, pp. 731–739.

[27] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna,
“Graphsaint: Graph sampling based inductive learning method,”
ICLR’20, 2020.

[28] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in CIKM’15. ACM, 2015, pp.
891–900.

[29] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transi-
tivity preserving graph embedding,” in KDD’16. ACM, 2016, pp.
1105–1114.

[30] Y. Li, Y. Wang, T. Zhang, J. Zhang, and Y. Chang, “Learning
network embedding with community structural information,” in
IJCAI’19, 2019, pp. 2937–2943.

[31] J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding, “Prone: fast and
scalable network representation learning,” in IJCAI’19, 2019, pp.
4278–4284.

[32] X. Shen, S. Pan, W. Liu, Y.-S. Ong, and Q.-S. Sun, “Discrete network
embedding,” in IJCAI18, 2018, pp. 3549–3555.

[33] J. Guo, L. Xu, and E. Chen, “Spine: Structural identity preserved
inductive network embedding,” in IJCAI’19, 2019, pp. 2399–2405.

[34] D. Yang, P. Rosso, B. Li, and P. Cudre-Mauroux, “Nodesketch:
Highly-efficient graph embeddings via recursive sketching,” in
KDD’19, 2019, pp. 1162–1172.

[35] X. Huang, J. Li, and X. Hu, “Accelerated attributed network
embedding,” in SDM’17. SIAM, 2017, pp. 633–641.

[36] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network
representation learning with rich text information,” in IJCAI’15,
2015, pp. 2111–2117.

[37] C. Tu, H. Liu, Z. Liu, and M. Sun, “Cane: Context-aware network
embedding for relation modeling,” in ACL’17, 2017, pp. 1722–1731.

[38] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester, and
C. Wang, “Anrl: Attributed network representation learning via
deep neural networks.” in IJCAI’18, 2018, pp. 3155–3161.

[39] J. Liu, N. Li, and Z. He, “Network embedding with dual genera-
tion tasks,” in IJCAI’19. AAAI Press, 2019, pp. 5102–5108.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117274, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MAY 2020 15

[40] H. Gao, J. Pei, and H. Huang, “Progan: Network embedding via
proximity generative adversarial network,” in KDD’19, 2019, pp.
1308–1316.

[41] Y. Hou, H. Chen, C. Li, J. Cheng, and M.-C. Yang, “A representa-
tion learning framework for property graphs,” in KDD’19. ACM,
2019, pp. 65–73.

[42] H. Wang, E. Chen, Q. Liu, T. Xu, D. Du, W. Su, and X. Zhang,
“A united approach to learning sparse attributed network em-
bedding,” in 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, 2018, pp. 557–566.

[43] C. Shi, B. Hu, W. X. Zhao, and S. Y. Philip, “Heterogeneous
information network embedding for recommendation,” TKDE,
vol. 31, no. 2, pp. 357–370, 2018.

[44] L. Du, Z. Lu, Y. Wang, G. Song, Y. Wang, and W. Chen, “Galaxy
network embedding: A hierarchical community structure preserv-
ing approach,” in IJCAI’18, 2018, pp. 2079–2085.

[45] Q. Long, Y. Wang, L. Du, G. Song, Y. Jin, and W. Lin, “Hierarchical
community structure preserving network embedding: A subspace
approach,” in CIKM’19, 2019, pp. 409–418.

[46] Y. Ma, Z. Ren, Z. Jiang, J. Tang, and D. Yin, “Multi-dimensional
network embedding with hierarchical structure,” in WSDM’18.
ACM, 2018, pp. 387–395.

[47] G. Fu, C. Hou, and X. Yao, “Learning topological representation
for networks via hierarchical sampling,” in IJCNN’19. IEEE, 2019,
pp. 1–8.

[48] J. Ma, P. Cui, X. Wang, and W. Zhu, “Hierarchical taxonomy aware
network embedding,” in KDD’18. ACM, 2018, pp. 1920–1929.

[49] L. Zhang and B. Zhang, The Theory of Quotient Space and its
Applications. 2nd Version. Beijing: Tsinghua Press, 2007.

[50] M. Girvan and M. E. Newman, “Community structure in social
and biological networks,” in Proceedings of the National Academy of
Sciences, 2002, pp. 7821–7826.

[51] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[52] D. Sculley, “Web-scale k-means clustering,” in WWW’10, 2010, pp.
1177–1178.

[53] S. Wold, K. Esbensen, and P. Geladi, “Principal component analy-
sis,” Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3,
pp. 37–52, 1987.

[54] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI Magazine,
vol. 29, no. 3, pp. 93–106, 2008.

[55] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
Extraction and mining of academic social networks,” in KDD’08.
ACM, 2008, pp. 990–998.

[56] N. A. Weiss and M. J. Hassett, Introductory statistics. pearson
education London, 2012.

Shu Zhao received her PhD degree in Computer
Science from Anhui University in 2007. She is
currently a professor in the Department of Com-
puter Science and Technology, Anhui University.
Her current research interests include quotient
space theory, granular computing, data mining
and machine learning.

Ziwei DU is a postgraduate student in the
School of Computer Science and Technology,
Anhui University. Her research interests include
network representation learning, granular com-
puting.

Jie Chen received her PhD degree in Comput-
er Science from Anhui University in 2014. She
is currently an associate professor in the De-
partment of Computer Science and Technology,
Anhui University. Her current research interests
include deep learning, quotient space theory,
granular computing, and machine learning.

Yanping Zhang received her PhD degree in
Computer Science from Anhui University in
2003. She is currently a professor in the De-
partment of Computer Science and Technology,
Anhui University. Her current research interests
include deep learning, quotient space theory,
granular computing, and machine learning.

Jie Tang is currently a professor and the as-
sociate chair of the Department of Computer
Science and Technology at Tsinghua University.
His research interests include cognitive graph,
data mining, social networks, and artificial in-
telligence. He has been visiting scholar at Cor-
nell University and Southampton University. He
has published more than 300 papers. He served
as PC co-chair of CIKM’16, WSDM’15, EiC of
IEEE Transactions on Big Data, and Acting EiC
of Transactions on Knowledge Discovery from

Data. He leads the project AMiner.org, an AIenabled research network
analysis system. He was honored with the UK Royal Society-Newton
Advanced Fellowship Award.

Philip S. Yu received the B.S. Degree in E.E.
from National Taiwan University, the M.S. and
Ph.D. degrees in E.E. from Stanford University,
and the M.B.A. degree from New York University.
He is a Distinguished Professor in Computer
Science at the University of Illinois at Chicago
and also holds the Wexler Chair in Information
Technology. Before joining UIC, Dr. Yu was with
IBM, where he was manager of the Software
Tools and Techniques department at the Watson
Research Center. His research interest is on big

data, including data mining, data stream, database and privacy. He has
published more than 1,200 papers in refereed journals and conferences.
He holds or has applied for more than 300 US patents. Dr. Yu is a Fellow
of the ACM and the IEEE. Dr. Yu is the recipient of ACM SIGKDD 2016
Innovation Award for his influential research and scientific contributions
on mining, fusion and anonymization of big data, the IEEE Computer
Societys 2013 Technical Achievement Award for pioneering and fun-
damentally innovative contributions to the scalable indexing, querying,
searching, mining and anonymization of big data, and the Research
Contributions Award from IEEE Intl. Conference on Data Mining (ICDM)
in 2003 for his pioneering contributions to the field of data mining. He
also received the ICDM 2013 10-year Highest-Impact Paper Award, and
the EDBT Test of Time Award (2014). He was the Editor-in-Chiefs of
ACM Transactions on Knowledge Discovery from Data (2011-2017) and
IEEE Transactions on Knowledge and Data Engineering (2001-2004).

