MRT: Tracing the Evolution of Scientific Publications

Da Yin, Weng Lam Tam, Ming Ding, and Jie Tang

Backgrounds

- Science evolution is becoming more and more fast
 - Computer Science: Number of publications in DBLP has grown a lot
 - 2000 (77k) -> 2020 (408k) +430%
 - For example, top AI conferences accept over 1,000 papers every year
 - 2020: CVPR (1,467), AAAI (1,591)

Number of publications in DBLP

Background

- Other research fields
 - Biology, Math, Physics, etc. : the number of arXiv publications also increases a lot at various speed.
 - STM report: The number of all kinds of publications in 2018 reaches over **3 million** and continuously goes up with a rate of **6%** each year.
- Researchers need to digest lots of latest papers!
- Data mining techniques can be used to help scholars find useful information

Number of publications in arXiv

Background

- Previous research on academic data mining
 - Concept extraction: Extract concepts from papers and construct taxonomy
 - Citation analysis: Analyse the roles of citations
 - Algorithm roadmap: Sketch algorithm evolution graph from papers
- Problem: Mainly focus on the over generalized information and lose lots of paper details

Zhang C, Tao F, Chen X, et al. Taxogen: Constructing topical concept taxonomy by adaptive term embedding and clustering[C]. KDD. 2018

Yu, W., Yu, M., Zhao, T., & Jiang, M. Identifying Referential Intention with Heterogeneous Contexts[C]. WWW. 2020

Zha H, Chen W, Li K, et al. Mining algorithm roadmap in scientific publications[C]. KDD. 2019

Background

- What researchers need?
- For example, where does BERT's ideas come from?
 - Some ideas come from Language
 Model
 - Pre-training: GPT / ULMFit / ELMo
 - Word Embedding: GloVe, Word2vec
 - Sequence Encoding: LSTM
 - Some ideas come from Machine
 Translation
 - Transformer: Attention
 - MLM: MaskGAN
 - Some come from Reading Comprehension ...

Problem Definition

- Given source publication q and other configurations (N_p, N_t, N_l) , generate an evolution roadmap, including:
 - $V: N_p$ nodes, each represents a paper
 - $E: N_p 1$ edges, represents evolution footprint
 - C: N_t evolution tracks, represents various evolution path. Each track contains N_l labels
 - W : Importance scores, including N_p 1 papers and N_t evolution tracks

- 1. Fetch reference papers
- 2. Generate paper embeddings
- 3. Generate evolution tracks
- 4. Generate labels and importance scores
- 5. Interact with users

- 1. Fetch reference papers
 - Data source
 - SemanticScholar & AMiner
 - Web API
 - Only metadata (title + abstract)
 - Extend higher order reference papers
 - Build citation graph
 - Use PageRank (or other algorithm) to select papers

- 2. Generate paper embeddings
 - Use TF-IDF / S-BERT to encode paper semantic information (title + abstract)
 - TF-IDF focuses on literal information and is good at identifying keywords
 - Sentence-BERT focuses on latent semantic information
 - Use **spectral propagation** in **ProNE** to incorporate structural information
 - ProNE propagates information to neighbourhoods

Readmap 0 err 0 ELMs 0 err 0 ELMs 0 exception 0 exc

- 2. Generate paper embeddings
 - TF-IDF: Term Frequency Inverse Document Frequency
 - Lemmatization & N-gram
 - Take n_w most frequent words in subgraph to build TF-IDF document vector

$$\mathsf{TF-IDF}(word_k|d_i) = \frac{\#word_{ki}}{|d_i|} \log \frac{N_p}{\sum_{i'} 1\{\#word_{ki'} > 0\}}$$

- 2. Generate paper embeddings
 - S-BERT: SentenceBERT
 - Fine-tune sentences on top of pre-trained BERT model
 - Encode latent semantic information

Reimers N, Gurevych I. Sentence-bert: Sentence embeddings using siamese bert-networks[J]. arXiv preprint arXiv:1908.10084, 2019

- 2. Generate paper embeddings
 - ProNE
 - Fast matrix factorization to initialize node embeddings
 - Spectral propagation to enhance representation capability on local and global signals
 - Propagation process
 - $x \leftarrow D^{-1}A(I_N \tilde{L})x$

- 2. Generate paper embeddings
 - Propagation

$$\begin{split} \tilde{x}_i^t &= \text{TF-IDF}(p_i), \ \tilde{x}_i^s &= \text{S-BERT}(p_i) \\ \hat{x}_i^t &= \text{Propagate}(\tilde{x}_i^t, G), \ \hat{x}_i^s &= \text{Propagate}(\tilde{x}_i^s, G) \\ x_i &= \text{Propagate}([\hat{x}_i^t; \hat{x}_i^s], G) \end{split}$$

- 3. Generate evolution tracks
 - Use kernel k-means to cluster $N_p 1$ reference papers into N_t topics

• Connect papers according to their publication date or citation order

- 4. Generate labels and importance scores
 - Label generation
 - First extract label candidates
 - N-gram + Frequency threshold
 - Then sort candidates according to three criteria
 - Label should cover the paper content in current evolution tracks
 - Label should be different from other evolution tracks
 - Label should be related to the source paper

 $KL(C_t||l)$ $= \sum_{word_i} p(word_i | C_t) \log \frac{p(word_i | C_t)}{p(word_i | l)}$ $= -\sum_{word_i} p(word_i|C_t) \log \frac{p(word_i, l|\cdot)}{p(word_i|\cdot)p(l|\cdot)}$ $+ KL(C_t||\cdot) + \sum_{word_i} p(word_i|C_t) \log \frac{p(word_i|l, \cdot)}{p(word_i|l)}$ $= - \sum p(word_i|C_t)PMI(word_i, l|\cdot)$ word $+ KL(C_t || \cdot) - Bias(l, \cdot)$ $= -\mathbb{E}_{C_t}[PMI(word, l|\cdot)] + KL(C_t||\cdot) - Bias(l, \cdot)$ $Score(l, C_t) = (1 + \frac{\mu}{N_t - 1}) \mathbb{E}_{C_t}[PMI(word, l|\cdot)]$

$$-\frac{\mu}{N_t-1}\sum_{j=1}^{N_t}\mathbb{E}_{C_j}[PMI(word, l|\cdot)] + \phi\mathbb{E}_q[PMI(word, l|\cdot)]$$

Mei Q, Shen X, Zhai C. Automatic labeling of multinomial topic models[C]. KDD. 2007.

- 4. Generate labels and importance scores
 - Importance scores generation
 - Directly use the kernel weight in clustering
 - Evolution track importance is the sum of all paper importance scores inside

$$w_{p_i} = K_{i_q i}$$

$$w_{C_t} = \sum_{p_i \in C_t} w_{p_i}$$

- 5. Interact with users
 - Design a recommendation module to highlight most related papers
 - Two strategies
 - When no user data available, recommend paper by selecting papers with the closest embeddings
 - When user data available, train a reinforcement learning model to make dynamic recommendation to maximize the expected clicks.

$$\nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} [\mathcal{R}(\tau)] \approx \sum_{\tau \sim \pi_{\theta}} \sum_{t=0}^{|\tau|} \hat{r}_t \nabla_{\theta} \log \alpha_{\theta}(p_i | s_t)$$

Evaluations

- Dataset
 - KDD & ACL 2019~2020 conference papers as source paper
 - Use SemanticScholar data source
 to generate papers

Main configurations for experiments

Symbol	Description	Value
N_p	Number of publications for each roadmap	100
N_t	Number of evolution tracks	6
N_l	Number of labels for each evolution track	5
k	Number of recommended publications	5

Dataset statistics for evaluations.

Dataset	Papers ¹	Retrieved References ²	Citation Links ³
KDD	534	126,499	1,663,063
ACL	679	88,876	3,202,684

¹ *Papers* refer to the publications used as the query publication *q*. This is also the number of *evolution roadmaps* we tested.

- ² *Retrieved References* refer to the first-order and secondorder references we retrieved from Semantic Scholar, which are not necessarily inside the same conference with the query publications.
- ³ *Citation Links* indicate how many links are considered between publications. This is the number of links we used while using PageRank to select related papers.

Evaluations

- Neighborhood Similarity
 - Evaluate the quality of paper embeddings
 - Use neighborhood similarity as ground truth
 - If two papers share similar neighborhoods (have lots of reference or cited papers in common), they should have close paper embeddings
 - Use Spearman correlation coefficient to measure

 $\mathcal{N}(p_i) = \{p \mid \texttt{cite}(p, p_i) \lor \texttt{cite}(p_i, p)\} \cup \{p_i\}$

$$sim_{\mathcal{N}}(p_i, p_j) = \frac{|\mathcal{N}(p_i) \cap \mathcal{N}(p_j)|}{\sqrt{|\mathcal{N}(p_i)| \cdot |\mathcal{N}(p_j)|}}$$

5		
Method	KDD	ACL
TF-IDF ¹	0.50	0.49
S-BERT ²	0.41	0.36
ProNE ³	0.72	0.75
node2vec ⁴	0.65	0.64
TF-IDF+S-BERT	0.41	0.36
TF-IDF+ProNE	0.78	0.79
S-BERT+ProNE	0.75	0.77
TF-IDF+S-BERT+ProNE	0.81	0.82

Neighborhood Similarity Experiment

¹ For TF-IDF, we select top frequent 2000 features and use n-grams ranging from 1 to 5.

² For S-BERT, we use the pre-trained model of bert-base-nlistsb-mean-tokens.

- ³ For ProNE, the embedding dimension is 32 and the order of Chebyshev expansion is 10, according to [29].
- ⁴ For node2vec, the embedding dimension is 32. Walk length and number of walks are set to be 20 and 60, respectively. The window size is 5.

Evaluation

- Co-mention and MST Trials
 - Evaluate the quality of roadmap structure
 - Co-mention: reference papers mentioned together in the source paper should be clustered together
 - MST: Connecting papers into timelines should not break too much close relationships between papers

They either rely on pattern-based methods [14, 32] which extract hierarchical relation leveraging linguistic features, or clustering-based methods [11, 42], which cluster concepts to induce an implicit hierarchy.

Example: [14] and [32] is strongly related, and weakly related to [11]

Co-mention and MST Trials								
Mathad	Co-me	Co-mention*						
Method	KDD	ACL	KDD	ACL				
w/o supervision								
Hierarchical	0.63, 0.48	0.66, 0.51	0.55	0.57				
Spectral	0.62, 0.48	0.65, 0.51	0.55	0.57				
K-means**	0.73, 0.57	0.77, 0.60	0.57	0.59				
Kernel k-means	0.73 , 0.56	0.78, 0.61	0.57	0.59				
w/ supervision								
Strong Co-mention	0.81, 0.58	0.85, 0.64	0.57	0.59				
Weak Co-mention	0.84, 0.73	0.88, 0.77	0.57	0.59				

* The co-mention columns include strong co-mention hit rate (left) and weak co-mention hit rate (right).

^{**} K-means is also a special case for kernel k-means, setting $\alpha = \beta = 0$.

Evaluation

- Inverse Label Distance and Overlap Rate
 - Evaluate the quality of generated labels
 - ILD: For each evolution track, reference papers inside should be mentioned at a close position to the label
 - Overlap: Different evolution tracks, should have different labels

$$\begin{aligned} \text{ILD}(G) &= \frac{1}{N_t} \sum_{t=0}^{N_t - 1} \max_j \frac{1}{|C_t|} \sum_{p_i \in C_t} \frac{1}{dis_{ij}} \\ \text{Overlap}(G) &= 1 - \frac{|\{l_{tj} \mid \forall t, j\}|}{N_t N_l} \end{aligned}$$

Shortcut Connections. Practices and theories that lead to shortcut connections [2, 34, 49] have been studied for a long time. An early practice of training multi-layer perceptrons (MLPs) is to add a linear layer connected from the network input to the output [34, 49]. In [44, 24], a few intermediate layers are directly connected to auxiliary classifiers for addressing vanishing/exploding gradients. The papers of [39, 38, 31, 47] propose methods for centering layer responses, gradients, and propagated errors, implemented by shortcut connections. In [44], an "inception" layer is composed of a shortcut branch and a few deeper branches.

Example: [2, 34, 49] is closely related to Shortcut Connections.

Inverse l	_abel	Distance	and	Overlap	Rate	for	labeling
-----------	-------	----------	-----	---------	------	-----	----------

Mathad	IL	D	Overlap		
Method	KDD	ACL	KDD	ÂCL	
Baseline Methods					
Frequency	0.68	0.69	0.14	0.21	
TF-IDF	0.66	0.64	0.07	0.09	
Proposed Methods					
$\mu = 0.8, \phi = 0.1$	0.75	0.71	0.13	0.16	
$\mu = 0.0, \phi = 0.1$	0.78	0.73	0.40	0.43	
$\mu = 0.8, \phi = 0.0$	0.73	0.69	0.11	0.14	
$\mu = 0.8, \phi = 0.5$	0.79	0.76	0.24	0.27	

Evaluation

- User Feedback
 - Importance Evaluation
 - Papers with more clicks should receive higher important scores
 - Recommendation Evaluation
 - The CTR for the recommended papers
 - Human Evaluation
 - 3.68/5 (Baseline) vs. 3.82/5 (Proposed)

Method	Spearman	NDCG@5	NDCG@20
Citation Number	-0.23	0.19	0.28
Out-degrees	-0.15	0.21	0.36
In-degrees	0.36	0.56	0.65
PageRank	0.38	0.61	0.70
Importance Score	0.41	0.87	0.79

Importance Evaluation with User Click

The out-degrees, in-degrees and PageRank scores are all calculated based on the subgraph of citation network. The subgraph has N_p papers as nodes and all their internal citation links.

Average Rewards for Dynamic Recommendation	
--	--

Poodman	Models				
коастар	Baseline	REINFORCE			
BERT	0.32	0.66			
GAN	0.28	0.40			
ResNet	0.67	0.78			
GraphSage	0.75	0.83			

Case Study

- Paper Embeddings
 - TF-IDF embedding cannot align NLP with "natural language processing" and therefore cannot categorize ULMFit properly.
 - S-BERT cluster QANet into "machine learning" due to its use of lots of machine translation ideas such as backtranslation
 - ProNE is hard to deal papers with high citations such as GPT or GloVe

O [2018 NAACL-HLT] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

											-	
Neural	l Network		Reading Comprehension Polis ICLR] QAVet: Combining Local Convolution with followal SchAritention for Reading Comprehension with Unansweral Weights with Unansweral Weights with Unansweral Weights Polis Activity U. Net: Machine Reading Comprehension with Unansweral Weights Polis Activity U. Net: Machine Reading Comprehension with Comprehension and question answering	200 [2018 ArXiv] The Natural Language Decathion: Multitask Learning as Question Answering	Natural Language [2018 ACL] Universal Language Model [2018 ICLR] MULTAK Bench Natural Language Understanding [2018 COLING] Contextual String Emb [2018 ENNLP] Dissecting Contextual I Representation [2018 ENNLP] Semi-Supervised Sequ Training [2018 ENNLP] Semi-Supervised Sequ Training [2018 ENNLP] SWAG: A Large-Scale Ar Commonseite Inference [2018 NAACL-HLT] Deep contextualize	I Fine-tuning for Text Classification mark and Analysis Platform for eddings for Sequence Labeling Nord Embeddings: Architecture and bility Judgments ence Modeling with Cross-View nding by Generative Pre-Training Aversarial Dataset for Grounded d word representations	Language Model	learning sentence representations	Machine Translation [2018 ICLR] MaskGAN: Better Text Gene [2018 AAA] Character-Level Language Attention	ration via Filling in the Modeling with Deeper Self-		
Quota ArXiv Gaussian Ei	v] Bridging Nonlinearities an rror Linear Units	d Stochastic Regularizers with	Da17 ACL 1 TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension [2017 ACL] Simple and Effective Hulti-Paragraph Reading Comprehension [2017 JJCAI] Reinforced Mnemonic Reader for Machine Reading Comprehension	O 2017 ACL (Gated Self Matching Hetworks for Reading Comprehension and Question Answering	DIGT EMILPJ Supervised Learning of Representations from Natural Langua [2017 NAACL-HLT] A Broad-Coverage of Understanding through Inference [2017 NIPS] Learned in Translation: C [2017 SemEval@ACL] SemEval-20171 Multilingual and Crosslingual Focuse [2017 ACL] Semi-supervised sequence language models	Universal Sentence age inference Data Challenge Corpus for Sentence ontextualized Word Vectors fask 1: Semantic Textual Similarity a Evaluation tagging with bidirectional	2017 ArXivi Discourse-Based Objective Representation Learning	s for Fast Unsupervised Sentence	(2017 NIPS) Attention Is All You Need			
			 [2016 ICLR] Bidirectional Attention Flow for Machine Comprehension [2016 EMMLP] SQuAD: 100, 000+ Questions for Machine Comprehension of Text 	 [2016 ICLR] Dynamic Coattention Networks For Question Answering [2016 ACL] A Thorough [2016 ACL] A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task 	 [2016 EMNLP] A Decomposable Attent Inference [2016 CONLI) context2vec: Learning O Bidirectional LSTM 	tion Model for Natural Language Generic Context Embedding with	[2016 HLT-NAACL] Learning Distributed from Unlabelled Data	Representations of Sentences	[2016 ArXiv] Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation	[2016 ArXiv] Exploring the Limits of La	Doop Architecture	
		(2016 IEEE Conference on Computer Vi (CVPR)] Deep Residual Learning for Im	ision and Pattern Recognition age Recognition	(2015 NIPS) Teaching Machines to Read and Comprehend (2015 ICLR) The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations	 [2015 NIPS] Skip-Thought Vectors [2015 EMNLP] A large annotated corp inference [2015 NIPS] Semi-supervised Sequen 	us for learning natural language ce Learning	(2015 ACL] Improved Semantic Representations From Tree- Structured Long Short-Term Memory Networks	[2015 IEEE International Conference on Computer Vision (ICCV)] Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books	2015 ICML] Show, Attend and Tell: New with Visual Attention [2015 EMNLP] Effective Approaches to Translation	IT Deep Architecture	0 [2015 Nature] Deep Learning
features in	i] How transferable are deep neural networks?	R2014 ICLRI Very Deep Convolutional N [2014 ECCV] Microsoft COCO: Common [2014 ECCV] Microsoft COCO: Common [2014 International Journal of Comput Visual Recognition Challenge	letworks for Large-Scale Image Objects in Context ter Vision) ImageNet Large Scale		2014 EMNLP] Glove: Global Vectors f	or Word Representation	[2014 ICML] Distributed Representations of Sentences and Documents	2014 ACL] A Convolutional Neural Net (2014 Transactions of the Association Grounded Compositional Semantics fo with Sentences	twork for Modelling Sentences for Computational Linguistics] or Finding and Describing Images	[2014 ICLR] Neural Machine Translation Translate [2014 ICLR] Adam: A Method for Stoch- [2014 ALR] Lagrange Transe Represe Decoder for Statistical Machine Transl [2014 NIP5] Grammar as a Foreign Lam	by Jointly Learning to Align and stic Optimization ming with Neural Networks entations using RNN Encoder- tion guage	 [2014 J. Mach. Learn. Res.] Dropout: a simple way to prevent neural networks from overfitting
					[2013 NIPS] Distributed Representations of Words and Phrases and their Compositionality [2013 NIPERSPECT One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling	[2013 ICLR] Efficient Estimation of Word Representations in Vector Space	[2013 EMNLP] Recursive Deep Models fo Over a Sentiment Treebank	or Semantic Compositionality		2013 ArXiv] Generating Sequences Wit [2013 EMNLP] Recurrent Continuous Ti	th Recurrent Neural Networks ranslation Models	
		[2012 NIP5] ImageNet Classification wi	ith Deep Convolutional Neural		(2011 AAAI Spring Symposium: Logic, Reasoning] The Winograd Schema Ch	I Formalizations of Commonsense allenge		[2012 EMNLP-CoNLL] Semantic Comp Matrix Vector Spaces [2012 ACL] Improving Word Represent Multiple Word Prototypes [2011 EMNLP] Semi-Supervised Recur Sentiment Distributions [2011 INPS] Dynamic Pooling and Unfo Paraphrase Detection	ositionality through Recursive tations via Global Context and ssive Autoencoders for Predicting olding Recursive Autoencoders for			[2011 J. Mach. Learn. Res.] Hatural Language Processing (almost) from Scratch
Loog IEEE	Conference on Computer Vi A large-scale hierarchical in	sion and Pattern Recognition] vage database			[2006 EMNLP] Domain Adaptation with Structural Correspondence (2006 MPQ/SCILP) (2006 MPQ/SCILP) (2006 MPQ/SCILP) (2000 CoNLL) Introduction to the Contu. 2003 Shared Task: Language-Independent Named Entity Recognition [1953] "Cloze procedure": a new tool for measuring readability.	 [2005 MLCW] The PASCAL Recognising Textual Intaliment (1997 Neural Computation) Long Short-Term Memory 	23030 ACL Word Representations: A Simple and General Method for 52008 [CM]. A unified architecture for natural language processing: deep neural networks with multitask learning [2008 J. Mach. Learn. Res.] A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data [1992 Computational Linguistics] Class-Based n-gram Models of Hatural Language	Clause Court Adaptive Subgradient Met Stochastic Optimization [2010.J.Attl.Intell.Res.] From Freque Models of Semantics [2010.Courtive Science] Composition Semantics [2000.Worl5] A Heural Probabilistic Lan [2000] WordNet : an electronic lexical	thods for Online Learning and ency to Meaning: Vector Space a in Distributional Modets of nguage Model database	[2010] INTERSPEECH] Recurrent neuril network based language (2003) ACI [Bucu a Nethod for (2003) ACI [Bucu a Nethod for (20	[2008 ICML] Extracting and composing robust features with denoising autoencoders	ISOT Foundations and Trends in Matchine Learning Learning Deep (2001) Charles and Charles and Charles (2001) Charles and Charles and Sequence Data [1999] Cardient-based learning applied to document recognition

System Deploy

- Deployed to AMiner
 - Over 7,000 users
 - About 20,000 access (Mar. 2021)
- Async online service
 - Single MRT generation requires tens of seconds
 - Mostly spends on accessing Web API to retrieve paper data
 - When cache is available, MRT can be calculated in 2~3 seconds with the help of GPU
 - If S-BERT is disabled, the MRT can be generated more fast even without GPU

Average Running Time for Each Algorithm

Algorithm	Time(s)
Select reference papers (PageRank) Encode papers (TF-IDF, S-BERT, ProNE) Cluster papers (Kernel k-means) Generate labels (Automatic Labeling)	$\begin{array}{c} 0.51^{0.25} \\ 1.39^{0.33} \\ 0.48^{0.34} \\ 0.29^{0.09} \end{array}$