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Backgrounds

Science evolution is becoming more and more fast

« Computer Science: Number of publications in DBLP has grown a lot
« 2000 (77k) -> 2020 (408k) +430%
« For example, top Al conferences accept over 1,000 papers every year
« 2020: CVPR (1,467), AAAI (1,591)
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Background

« Other research fields
- Biology, Math, Physics, etc. : the number of 0 by
arXiv publications also increases a lot at ) E‘?ﬂ
various speed. 000 | = i

« STM report: The number of all kinds of
publications in 2018 reaches over 3 million
and continuously goes up with a rate of 6%
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« Researchers need to digest lots of latest papers! o
- Data mining techniques can be used to help =gy

scholars find useful information

Number of publications in arXiv

Johnson R, Watkinson A, Mabe M. The stm report[J]. An overview of scientific and scholarly publishing. 5th edition October, 2018



Background

« Previous research on academic data mining
« Concept extraction: Extract concepts from papers and construct taxonomy
« (Citation analysis: Analyse the roles of citations
« Algorithm roadmap: Sketch algorithm evolution graph from papers
« Problem: Mainly focus on the over generalized information and lose lots of paper details
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Zhang C, Tao F, Chen X, et al. Taxogen: Constructing topical concept taxonomy by adaptive term embedding and clustering[C]. KDD. 2018
Yu, W,, Yu, M., Zhao, T., & Jiang, M. Identifying Referential Intention with Heterogeneous Contexts[C]. WWW. 2020
Zha H, Chen W, Li K, et al. Mining algorithm roadmap in scientific publications[C]. KDD. 2019



Background

What researchers need?
For example, where does BERT's ideas come

from?

Some ideas come from Language
Model

« Pre-training: GPT / ULMFit / ELMo
«  Word Embedding: GloVe, Word2vec
« Sequence Encoding: LSTM

Some ideas come from Machine
Translation

« Transformer: Attention

«  MLM: MaskGAN

Some come from Reading
Comprehension ...

Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]. NAACL-HLT. 2019
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Problem Definition

«  Given source publication g and other
configurations (N, N¢, Np), generate an
evolution roadmap, including:

« VN, nodes, each represents a paper

- E:N,—1edges, represents evolution
footprint

« C: N, evolution tracks, represents
various evolution path. Each track
contains N; labels

« W :Importance scores, including N, —
1 papers and N, evolution tracks
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Methoad

1. Fetch reference papers

2. Generate paper embeddings

3. Generate evolution tracks

4. Generate labels and importance scores

5. Interact with users

References Embeddings
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Methoad

« 1. Fetch reference papers
- Data source
« SemanticScholar & AMiner
«  Web API
« Only metadata (title + abstract)
« Extend higher order reference papers
«  Build citation graph
« Use PageRank (or other algorithm) to
select papers

Query Publication

Sort by depth Selected
and PageRank Publications

Page L, Brin S, Motwani R, et al. The pagerank citation ranking: Bringing order to the web. [R]. Stanford InfoLab, 1999.



Methoad

« 2. Generate paper embeddings
« Use TF-IDF / S-BERT to encode paper semantic information ( title + abstract)
« TF-IDF focuses on literal information and is good at identifying keywords
« Sentence-BERT focuses on latent semantic information
«  Use spectral propagation in ProNE to incorporate structural information
« ProNE propagates information to neighbourhoods
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~— — v

Spectral
Propagation

Paper Embedding

S-BERT



Methoad

« 2. Generate paper embeddings
« TF-IDF: Term Frequency — Inverse Document Frequency
« Lemmatization & N-gram
« Take n,, most frequent words in subgraph to build TF-IDF document vector

#wordy; N,

TF-IDF di|d;) = 1
(wordy|d;) d| 08 Zi’ 1{#wordy; > 0}




Methoad

« 2. Generate paper embeddings
« S-BERT: SentenceBERT

« Fine-tune sentences on top of pre-trained BERT model
« Encode latent semantic information

Softmax classifier
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Reimers N, Gurevych I. Sentence-bert: Sentence embeddings using siamese bert-networks[J]. arXiv preprint arXiv:1908.10084, 2019



Methoad

« 2. Generate paper embeddings

«  ProNE
«  Fast matrix factorization to initialize - \
node embeddings .

« Spectral propagation to enhance
representation capability on local

Fast Embedding Initialization
via Sparse Matrix Factorization

and global signals o 2
- Propagation process
X < D_lA(IN - L)x Input: G = (V,E) Output: R,

Enhance Embedding via
Spectral Propagation

ProNE

J

Zhang J, Dong Y, Wang Y, et al. Prone: fast and scalable network representation learning[C]. IJCAI. 2019: 4278-4284



Methoad

« 2. Generate paper embeddings
«  Propagation

x/ = TF-IDF(p;), X7 = S-BERT(p;)
x! = Propagate(x!, G), x; = Propagate(x},G)

x; = Propagate([x]; 7], G)

v —> ~A
Paper TF-IDF
T — =
Paper Embedding

S-BERT Spectral
Propagation




Methoad

« 3. Generate evolution tracks
«  Use kernel k-means to cluster N,, — 1 reference papers into N, topics
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Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.



Methoad

4. Generate labels and importance scores

« Label generation

First extract label candidates

« N-gram + Frequency threshold

Then sort candidates according to

three criteria

« Label should cover the paper
content in current evolution tracks

« Label should be different from
other evolution tracks

« Label should be related to the
source paper
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Mei Q, Shen X, Zhai C. Automatic labeling of multinomial topic models[C]. KDD. 2007.



Methoad

« 4. Generate labels and importance scores
« Importance scores generation
« Directly use the kernel weight in clustering
« Evolution track importance is the sum of all paper importance scores inside

we, = Z Wp;

pi€Cy



Methoad

« 5. Interact with users
« Design a recommendation module to
highlight most related papers

. Two strategies VeE ., [Z(D] = ) Z 7V g log ag(pils:)
« When no user data available, T~7p t=0
recommend paper by selecting
papers with the closest embeddings click 8_2_86_, CRUCeI Agent
« When user data available, train a Reader Roadmap ~ + Update
reinforcement learning model to S —
make dynamic recommendation to soré
maximize the expected clicks. - — o '

Highlighted Recommended Publication Publications§
Roadmap  Publications Embeddmgs :

Chen M, Beutel A, Covington P, et al. Top-k off-policy correction for a reinforce recommender system[C]. WSDM ’19. 2018.



Fvaluations

Dataset

KDD & ACL 2019~2020
conference papers as source
paper

Use SemanticScholar data source
{0 generate papers

Main configurations for experiments

Symbol  Description Value
Ny Number of publications for each roadmap 100
Nt Number of evolution tracks 6
N, Number of labels for each evolution track 5

k Number of recommended publications 5
Dataset statistics for evaluations.
Dataset Papers! Retrieved References?  Citation Links?
KDD 534 126,499 1,663,063
ACL 679 88,876 3,202,684

! Papers refer to the publications used as the query pub-
lication ¢. This is also the number of evolution roadmaps
we tested.

? Retrieved References refer to the first-order and second-
order references we retrieved from Semantic Scholar,
which are not necessarily inside the same conference
with the query publications.

3 Citation Links indicate how many links are considered
between publications. This is the number of links we
used while using PageRank to select related papers.



Fvaluations

« Neighborhood Similarity
« Evaluate the quality of paper embeddings
« Use neighborhood similarity as ground truth
« If two papers share similar neighborhoods (have lots of reference or cited
papers in common), they should have close paper embeddings
« Use Spearman correlation coefficient to measure

Neighborhood Similar_ity Experiment

Method KDD ACL

TF-IDF! 0.50 0.49

S-BERT? 0.41 0.36

, . ProNE? 0.72 0.75

— 4

A (p)) =1p|citelp.p)veitelp, pluips e R

TF-IDF+ProNE 0.78 0.79

S-BERT+ProNE 0.75 0.77

TF-IDF+S-BERT+ProNE 0.81 0.82

_ () 0 A (p)) 1
sim (pi, p ) = For TF-IDF, we select top frequent 2000 features and use
J \/|./V( )| ] |/V( )| n-grams ranging from 1 to 5.

Pi Pj ? For S-BERT, we use the pre-trained model of bert-base-nli-

stsb-mean-tokens.

? For ProNE, the embedding dimension is 32 and the order
of Chebyshev expansion is 10, according to [29].

4 For node2vec, the embedding dimension is 32. Walk
length and number of walks are set to be 20 and 60,

respectively. The window size is 5.



Fvaluation

Co-mention and MST Trials

Evaluate the quality of
roadmap structure
Co-mention: reference papers
mentioned together in the
source paper should be
clustered together

MST: Connecting papers into
timelines should not break too
much close relationships
between papers

They either rely on pattern-based methods [14, 32] which extract hier-

archical relation leveraging linguistic features, or clustering-based methods

[11, 42], which cluster concepts to induce an implicit hierarchy.

Example: [14] and [32] is strongly related, and weakly related to [11]

Co-mention and MST Trials

Co-mention* MST
Method KDD ACL KDD ACL
w/o supervision
Hierarchical 0.63,0.48 0.66, 0.51 0.55 0.57
Spectral 0.62,0.48 0.65, 0.51 0.55 0.57
K-means** 0.73,0.57 0.77, 0.60 0.57 0.59
Kernel k-means 0.73, 0.56 0.78, 0.61 0.57 0.59
w/ supervision
Strong Co-mention  0.81,0.58  0.85, 0.64 0.57 0.59
Weak Co-mention 0.84,0.73 0.88, 0.77 0.57 0.59

" The co-mention columns include strong co-mention hit
rate (left) and weak co-mention hit rate (right).
K-means is also a special case for kernel k-means,

setting o = 8 = 0.



Fvaluation

« Inverse Label Distance and Overlap Rate
° Eva|uate th e quahty Of geﬂ er ated |abe|5 Shortcut Connections. Practices and theories that lead to

shortcut connections [2, 34, 49] have been studied for a long

. ILD: For each evolution trac |</ reference time. An early practice of training multi-layer perceptrons

(MLPs) is to add a linear layer connected from the network

papers inside should be mentioned at a input to the output [34, 49]. In [44, 24], a few interme-

diate layers are directly connected to auxiliary classifiers

close pOSitiOﬂ to the label for addressing vanishing/exploding gradients. The papers
. . of [39, 38, 31, 47] propose methods for centering layer re-
° OV@H a p: D |ﬁ:e rent e\/O| ution traCkS, ShOU |d sponses, gradients, and propagated errors, implemented by

shortcut connections. In [44], an “inception” layer is com-

have d |ﬂ:e rent |a be | S posed of a shortcut branch and a few deeper branches.

Example: [2, 34, 49] is closely related to Shortcut Connections.

1 Z 1 Inverse Label Distance and Overlap Rate for labeling

- j C dis: ILD Overlap
t t=0 |Gl pi€C; Lj Method KDD ACL KDD ACL

Baseline Methods

|Vt ] Frequency 068 069 014 021
|{IU| L }| TF-IDF 0.66 0.64 007  0.09

N.N Proposed Methods

t4V] ©1=08¢6=01 075 071 013 0.6
n=00,¢6=01 078 073 040 043
1=086=00 073 069 011 0.4
n=08,¢6=05 079 076 024 027

Overlap(G)=1-




Fvaluation

« User Feedback
« Importance Evaluation
«  Papers with more clicks should receive higher important scores
« Recommendation Evaluation
« The CTR for the recommended papers

« Human Evaluation
« 3.68/5 (Baseline) vs. 3.82/5 (Proposed)

Importance Evaluation with User Click

Method Spearman NDCG@5 NDCG@20 Average Rewards for Dynamic Recommendation
Citation Number -0.23 0.19 0.28 Roadma Models
Out-degrees -0.15 0.21 0.36 P Baseline REINFORCE
In-degrees 0.36 0.56 0.65
PageRank 0.38 0.61 0.70 (BE&T g-gg g-gg
41 .87 7 ‘ .

Importance Score 0 0.8 0.79 ResNet 0.67 078

The out-degrees, in-degrees and PageRank scores are all calculated GraphSage 0.75 0.83

based on the subgraph of citation network. The subgraph has N,
papers as nodes and all their internal citation links.



Case Study

Paper Embeddings

TF-IDF embedding cannot align
NLP with “natural language
processing” and therefore cannot
categorize ULMFit properly.
S-BERT cluster QANet into
“machine learning” due to its use
of lots of machine translation
ideas such as backtranslation
ProNE is hard to deal papers with
high citations such as GPT or
GloVe
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System Deploy

« Deployed to AMiner

Over 7,000 users
About 20,000 access (Mar. 2027)

« Async online service

Single MRT generation requires
tens of seconds

Mostly spends on accessing Web
API to retrieve paper data

When cache is available, MRT can
be calculated in 2~3 seconds with
the help of GPU

T S-BERT is disabled, the MRT can
be generated more fast even
without GPU

Read Paper Click MRT — New Task 01
R on AMiner Button created
—_— = - —0 s (M Iq
— — 5
User Paper Web Server Task Queue
Store MRT I
Fetch
' Task
Calculate Fetch

MRT Iviner  metadata _:

.-\ttcntin}n \‘_‘ < —_—O

Lir;ﬁg‘:f;c i Semantic Scholar .

Calculation
Server
Average Running Time for Each Algorithm

Algorithm Time(s)
Select reference papers (PageRank) 0.519-25
Encode papers (TF-IDF, S-BERT, ProNE) 1.399-33
Cluster papers (Kernel k-means) 0.48Y-34
Generate labels (Automatic Labeling) 0.299-09

https://mrt.aminer.cn



