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Interpersonal ties are responsible for the structure of social networks and the transmission of informa-
tion through these networks. Different types of social ties have essentially different influence on people.
Awareness of the types of social ties can benefit many applications such as recommendation and community
detection. For example, our close friends tend to move in the same circles that we do, while our classmates
may be distributed into different communities. Though a bulk of research has focused on inferring particular
types of relationships in a specific social network, few publications systematically study the generalization
of the problem of predicting social ties across multiple heterogeneous networks.

In this work, we develop a framework referred to as TranFG for classifying the type of social relationships
by learning across heterogeneous networks. The framework incorporates social theories into a factor graph
model, which effectively improves the accuracy of predicting the type of social relationships in a target
network, by borrowing knowledge from a different source network. We also present several active learning
strategies to further enhance the inferring performance. To scale up the model to handle real large networks,
we design a distributed learning algorithm for the proposed model.

We evaluate the proposed framework (TranFG) on six different networks and compare with several exist-
ing methods. TranFG clearly outperforms the existing methods on multiple metrics. For example, by lever-
aging information from a coauthor network with labeled advisor-advisee relationships, TranFG is able to ob-
tain an F1-score of 90% (8-28% improvements over alternative methods) for predicting manager-subordinate
relationships in an enterprise email network. The proposed model is efficient. It takes only a few minutes to
train the proposed transfer model on large networks containing tens of thousands of nodes.
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1. INTRODUCTION
In social networks, interpersonal ties generally fall into three categories: strong, weak,
or absent. It is argued that more novel information flows to individuals through weak
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ties rather than strong ties [Granovetter 1973], while strong ties gather close friends
into the same social circles [Krackhardt 1992]. Dunbar’s number [Gladwell 2000] sug-
gests that the number of people who can maintain stable social relationships lies be-
tween 100 and 230, commonly viewed as a value of 150. But the type of relationships
would be very different. For example, among the 150, you may have five intimate
friends, fifteen family members, thirty-five colleagues (or classmates), and other ac-
quaintances [Goncalves et al. 2011].

Recently, the rapid development of online social networks (e.g., Facebook, Twitter,
LinkedIn, YouTube, and Slashdot) offers the opportunity to study the underlying pat-
terns of social ties. For example, Facebook announced that it had hit a billion active
accounts in October 2012. Tencent, one of the largest social networking services in
China, has nearly 800 million users. People are connected via different types of social
ties and the influence between people varies largely with the type of the social tie.
For instance, in a mobile communication network, interpersonal ties can be roughly
classified into four types: family, colleague, friend, and acquaintance. Colleagues have
strong influence on one’s work, while friends have strong influence on one’s daily life. In
an enterprise email network, where people are connected by sending/receiving emails
to/from others, the ties between people can be categorized as manager-subordinate,
colleague, etc. There is little doubt that behaviors in the email network are governed
by the different types of relationships between senders and receivers.

Awareness of these different types of social relationships can benefit many appli-
cations. For example, if we could have extracted friendships between users from a
mobile communication network, we can leverage the friendships for a “word-of-mouth”
promotion of a new product. However, such information (relationship type) is usually
unavailable in online networks. Users may easily add links (relationships) to others
by clicking “friend request”, “follow” or “agree”, but do not often take the time to create
labels for each relationship. Indeed, one survey of mobile phone users in Europe shows
that only 16% of users have created contact groups on their mobile phones [Roth et al.
2010]; our preliminary statistics on a LinkedIn data also shows that more than 70%
of the connections have not been well labeled. In addition, the availability of the type
of relationships in different networks are very unbalanced. In some networks, such
as Slashdot, it might be easy to collect the labeled relationships (e.g., trust/distrust
relationships between users). Facebook and Google+ provide a function to allow users
to create “circles” (or “lists”) [McAuley and Leskovec 2014]. However, in many other
networks, it would be difficult to obtain the labeled information. Can we automatically
predict the types of relationships in a social network? The difficulties of fulfilling the
task vary largely in different networks. Can we leverage the available labeled relation-
ships from one (source) network to help predict the types of relationships in another
different (target) network? The problem is referred to as transfer link prediction across
heterogeneous networks. Compared to traditional research on inferring social ties in
one network, e.g., [Wang et al. 2010; Crandall et al. 2010; Tang et al. 2011], this prob-
lem exhibits very different challenges:

First, no common features, as the two networks (source and target) might be very
different, without any overlap, it is challenging to directly apply an existing transfer
learning approach to this task. Figure 1 gives an example of link prediction across a
product reviewers’ network derived from Epinions.com and a mobile communication
network derived from a university. In the product reviewer network (called source net-
work), we have labeled (trust and distrust) relationships and our goal is to leverage
this information to help predict the social relationship (family, friend, colleague) be-
tween users in the mobile network (called target network). The two networks are com-
pletely different. Fortunately, from the structural perspective, both networks share
some general properties such as obedience of power-law degree distribution [Barabási

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Transfer Learning to Infer Social Ties across Heterogeneous Networks 39:3

From Home

08:40

From Office

11:35

Both in office

08:00 – 18:00

From Office

15:20

From Outside

21:30

From Office

17:55

Family

Colleague

Colleague

Colleague Friend

Friend

Labeled

structure

Unlabeled

structure

Adam

Bob

ChrisDanny

Product 1

review

review

Product 2

review review

Fig. 1. Example of transfer link prediction across two heterogeneous networks: a reviewer network and
a mobile communication network. In our problem setting, given a source network with sufficient labeled
relationships and a target network with only a few relationships with labels, our goal is to leverage the
labeled relationships/structures in the source network to help predict the type of relationships in the target
network.

and Albert 1999] and satisfactory of social balance theory [Easley and Kleinberg 2010].
The fundamental challenge is how to transfer the structural information from the la-
beled source network to help prediction of the unlabeled structure in the target net-
work.

Second, network unbalance, the scale of the input networks may be very unbal-
anced. For example, an online social network such as Facebook may consists of millions
of users, while an enterprise email network may have only hundreds of users. Regard-
ing both efficiency and effectiveness, it is impractical to simply train a model on one
network and then directly apply it to the other network.

Third, model generalization, most existing models for predicting social ties are
designed for specific networks. For example, [Wang et al. 2010] only considers the
coauthor network. How to design a generalized framework to formalize the problem
in a unified way?

In this work, we aim to conduct a systematic investigation for the problem of transfer
link prediction across heterogeneous networks. To sum up, contributions of this paper
are as follows:

— We precisely define the problem and propose a transfer-based factor graph (TranFG)
model. The model incorporates social theories into a semi-supervised learning frame-
work, which can be used to transfer supervised information from a source network to
help predict social ties in a target network.

— We present several active learning strategies to enhance the learning performance
of the proposed model. To scale up the model to large social networks, we develop a
distributed learning algorithm.
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(c) Coauthor-to-MobileD
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Fig. 2. Performance of active learning. MMI is our proposed method; Random, MU, and MR are three
comparison methods.

— We evaluate the proposed model on six different networks: Epinions, Slashdot, Mo-
bileU, MobileD, Coauthor, and Enron. We show that the proposed model can signifi-
cantly improve the performance (averagely +14% in terms of F1-Measure) for predict-
ing social ties across different networks comparing with several alternative methods.

— Our study also reveals several interesting phenomena for social science: (1) Social
balance is satisfied on friendship (or trust) networks; but not (< 20% with a large
variance) on user communication networks (e.g., mobile communication network).
(2) Users are more likely (up to +152% higher than chance) to have the same type of
relationship with a user who spans a structural hole1. (3) Two strong ties are more
likely to share the same type (15 times higher on Enron and Coauthor) than two
weak ties.

This paper is an extension of prior work [Tang et al. 2012]. Compared to the prior
work, we have the following new contributions: (1) proposal of a new problem of active
transfer link prediction and develop several effective strategies to address this prob-
lem; (2) development of a distributed learning algorithm for the proposed model frame-
work; (3) investigation of a new social theory—Strong/Weak hypothesis—in various
social networks; (4) empirical evaluation of effectiveness of the newly proposed algo-
rithm for active transfer link prediction, and scalability performance of the distributed
learning algorithm. Figure 2 shows performance comparison of four algorithms for ac-

1Structural hole is a concept from sociology [Burt 1992] and will be elaborated in the following sections.
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tive link prediction on four different data sets. Clearly, the proposed Maximum Model
Influence (MMI) performs much better than the other comparative algorithms. Fig-
ure 3 shows the scalability performance of the distributed learning algorithm for the
TranFG model. The distributed learning algorithm is very efficient, achieving ∼ 9×
speedup with 12 cores.

The rest of the paper is organized as follows. Section 2 introduces the data sets used
in this study; Section 3 formulates the problem; Section 5 presents our observations
over the different networks. Section 6 explains the proposed model and describes the
algorithm for learning the model; Section 7 presents the active learning algorithm to
enhance the proposed model; Section 8 presents the distributed learning algorithms
for the proposed model; Section 9 gives the experimental setup and results; finally,
Section 10 discusses related work and Section 11 concludes.

2. DATA DESCRIPTION
We study the problem of transfer link prediction on six different networks: Epinions,
Slashdot, MobileU, MobileD, Coauthor, and Enron.

Epinions is a network of product reviewers. The data set is from [Leskovec et al.
2010b]. Each user on the site can post a review for any product and other users would
rate the review with trust or distrust. In this data, we created a network of reviewers
connected with trust and distrust relationships. The data set consists of 131,828 users
and 841,372 relationships, of which about 85.0% are trust relationships. 80,668 users
received at least one trust or distrust relationships. Our goal on this data set is to
predict the trust relationships between users.

Slashdot is a network of friends. Slashdot is a site for sharing technology related
news. In 2002, Slashdot introduced the Slashdot Zoo which allows users to tag each
other as “friends” (like) or “foes” (dislike). The data set is comprised of 77,357 users
and 516,575 relationships of which 76.7% are “friend” relationships. Our goal on this
data set is to predict the “friend” relationships between users.

MobileU is a network of mobile users. The data set is from [Eagle et al. 2009]. It
consists of the logs of calls, blue-tooth scanning data and cell tower IDs of 107 users
during about ten months. If two users communicated (by making a call and sending a
text message) with each other or co-occurred in the same place, we create a relationship
between them. In total, the data contains 5,436 relationships. Our goal is to predict
whether two users have a friend relationship. For evaluation, all users are required to
complete an online survey, in which 157 pairs of users are labeled as friends.
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Table I. Statistics of six data sets. Numbers in round brackets indicate “positive” relationships,
respectively corresponding to trust, friend, friend, manager-subordinate, advisor-advisee, and
manager-subordinate relationships in the six data sets.

Relationship Dataset #Relationships #Positive-Relationships
Trust Epinions 841,372 715,166 (85.00%)

Friendship Slashdot 516,575 396,213 (76.70%)
Friendship MobileU 5,436 157 (2.89%)

Manager-subordinate MobileD 3,567 242 (6.78%)
Advisor-advisee Coauthor 6,096 514 (8.43%)

Manager-subordinate Enron 3,572 133 (3.72%)

MobileD is a relatively larger mobile communication network of an anonymous
enterprise, where nodes are employees in a company and relationships are formed
by mobile communications between each other during a few months. In this mobile
network, there are 3,567 communication relationships between the users, of which
242 are manager-subordinate relationships. The objective here is to predict manager-
subordinate relationships between users based on their mobile usage patterns.

Coauthor is a network of authors. The data set, crawled from ArnetMiner.org [Tang
et al. 2008], is comprised of 815,946 authors and 2,792,833 coauthor relationships. In
this data set, we attempt to predict advisor-advisee relationships between coauthors.
For evaluation, we created a smaller ground truth data using the following method: (1)
collecting the advisor-advisee information from the Mathematics Genealogy project2

and the AI Genealogy project3; (2) manually crawling the advisor-advisee information
from researchers’ homepages. Finally, we have created a data set with 1,310 authors
and 6,096 coauthor relationships, of which 514 are advisor-advisee relationships.

Enron is an email communication network [Diehl et al. 2007]. It consists of 136,329
emails sent among 151 Enron employees. Two types of relationships, i.e., manager-
subordinate and colleague, were annotated between these employees. Our goal on this
data set is to predict manager-subordinate relationships between users. There are in
total 3,572 relationships, of which 133 are manager-subordinate relationships.

Table I lists statistics of the six networks. All data sets and codes used in this work
are publicly available.4 Please note that there are two slightly different prediction
tasks: for the first three data sets (i.e., Epinions, Slashdot, and MobileU), our goal
is to predict undirected relationships (friendships or trustful relationships); while for
the other three data sets (i.e., Coauthor, Enron, and MobileD), our goal is to predict
directed relationships (the source end has a higher social status than the target end,
e.g., advisor-advisee relationships and manager-subordinate relationships). In princi-
ple, for each prediction task, any labeled network can be considered as source net-
work and any other network could be target network. More specifically, for predicting
undirected relationships, we tried all possible situations: Epinions (S) to Slashdot (T),
Slashdot (S) to Epinions (T), Epinions (S) to MobileU (T), Slashdot (S) to MobileU (T),
MobileU (S) to Slashdot (T), and MobileU (S) to Epinions (T). However as the size
of MobileU is much smaller than the other two networks, the performance was con-
siderably worse. In the experiment, thus, we only report results of first four pairs of
networks. (Cf. Table III for details.) For predicting undirected relationships, we tried
all possible transfer link prediction tasks and report results in Table IV.

2http://www.genealogy.math.ndsu.nodak.edu
3http://aigp.eecs.umich.edu
4http://arnetminer.org/socialtieacross/
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3. PROBLEM DEFINITION
In this section, we first give several necessary definitions and then present the prob-
lem formulation. To simplify the explanation, we frame the problem with two social
networks: a source network and a target network, although the generalization of this
framework to multiple-network setting is straightforward.

A social network can be represented as G = (V,E), where V denotes a set of users
and E ⊂ V × V denotes a set of relationships between users. In our problem, each
relationship has a label to indicate the type of the relationship. We may have the
label information for some relationships which is encoded as EL and for the other
relationships encoded as EU we do not have the label information, where E = EL∪EU .

Our general objective is to predict the type of relationships in EU based on the avail-
able information in the social network. More specifically, let X be an |E| × d attribute
matrix associated with relationships in E with each row corresponding to a relation-
ship, each column an attribute, and the element xij denoting the value of the jth at-
tribute of relationship ei. The label of relationship ei is denoted as yi ∈ Y, where Y is
the possible space of the labels (e.g., family, colleague, classmate). In principle, the la-
bel can be arbitrary discrete value, but in this work, for easy explanation, we will focus
on the binary case, e.g., friend vs. non-friend in the Mobile network, advisor-advisee
vs. colleague in the coauthor network, or trust vs. distrust in the Epinions network.
Given this, we could have the following definition of partially labeled network.

Definition 3.1. Partially Labeled Network: A partially labeled network is de-
scribed as a five tuple G = (V,EL, EU ,X, Y ), where V is a set of users, EL is a set
of labeled relationships, EU is a set of unlabeled relationships, X is an attribute ma-
trix associated with all relationships, and Y is a set of labels corresponding to the
relationships in E = EL ∪ EU with yi ∈ Y denoting the type of relationship ei.

When studying the link prediction problem in a single network, the input is a par-
tially labeled network G = (V,EL, EU ,X, Y ), and the goal is to predict the unknown
labels {y} in Y . In this work, we study the link prediction problem across multiple net-
works. When considering two networks, the input to our problem consists of two par-
tially labeled networks GS (source network) and GT (target network) with |ELS | � |ELT |
(with an extreme case of |ELT | = 0). Please note that the two networks may be totally
different (with different sets of vertexes, i.e., VS ∩ VT = ∅, and different attributes
defined on relationships) such as a product reviewer network and a mobile communi-
cation network.

In different social networks, the relationship could be undirected (e.g., friendships
in a mobile network) or directed (e.g., manager-subordinate relationships in an en-
terprise email network). To keep things consistent, if no ambiguity exists, we will
concentrate on the undirected network, though we will also talk about directed net-
works. In the undirected network, if we predict a directed relationship label (e.g., the
manager-subordinate relationship), then we consider each undirected relationship as
two directed relationships. In addition, the label of a relationship may be static (e.g.,
the family-member relationship) or change over time (e.g., the manager-subordinate
relationship). In this work, we focus on static relationships. Thus, formally, we can
define the following problem:

PROBLEM 1. Transfer Link Prediction across Social Networks: Given a
source network GS with abundantly labeled relationships and a target network GT
with a limited number of labeled relationships, the goal is to transfer learn a predictive

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.
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function

f : (GT |GS)→ YT

for predicting the type of relationships in the target network by leveraging the super-
vised information (labeled relationships) from the source network.

Without loss of generality, we assume that for each possible type yi of relationship ei,
the predictive function will output a probability p(yi|ei); thus our task can be viewed
as to obtain a triple (ei, yi, p(yi|ei)) for each relationship ei in the social network.

It is worth noting that though we say there is only a limited number of labeled
relationships in the target network, the labeled information is still very important.
Without them, it is not clear what the learning task is in the target network, as the
source and the target networks may have different prediction tasks. On the other hand,
our assumption is that obtaining labeled relationships in the target network is often
expensive. Hence, one more challenge is how to minimize the number of labeled rela-
tionships in the target network without hurting the prediction performance.

There are several key issues that make our problem formulation different from ex-
isting works on social relationship mining [Crandall et al. 2010; Diehl et al. 2007; Tang
et al. 2011; Wang et al. 2010]. First, the source network and the target network may
be very different, e.g., a coauthor network and an email network. What are the funda-
mentally common factors that form the structure of the networks? Second, the labels
of relationships in the target network and that of the source network could be differ-
ent. How reliably can we predict the labels of relationships in the target network by
using the information available in the source network? Third, as both the source and
the target networks are partially labeled, the learning framework should consider not
only the labeled information but also the unlabeled information.

4. BASIC PREDICTIVE MODELS
We first describe several basic predictive models for learning to predict social ties in
social networks.

4.1. Link Prediction in Single Network
When considering a single network, the problem can be cast as a classification prob-
lem. For the input network G = (V,EL, EU ,X, Y ), each relationship ei is associated
with an attribute vector xi and a label yi indicating the type of the relationship. Then
the task is to find a classification model to predict the label of relationships in EU . A
straightforward idea is to use existing algorithms such as Support Vector Machines
(SVMs) or Logistic Regression to train the classification model [Leskovec et al. 2010a].
If one further wants to consider the correlation among the predictive results {y}, then
a graphical model such as Conditional Random Fields (CRFs) or Factor Graph Model
(FGM) is preferable [Tang et al. 2011].

We use Support Vector Machines (SVMs) [Cortes and Vapnik 1995] as the exam-
ple to explain how to predict social ties in a single social network. Given the la-
beled relationships in the input network G, we can construct a training data set
(x1, y1), · · · , (xN , yN ), where xi is the attribute vector associated with relationship ei
and yi corresponds to its label. There are generally two stages in the classification
model, i.e., learning and prediction. In learning, one attempts to find an optimal sepa-
rating hyper-plane that maximally separates different categories of training examples.
The hyper-plane corresponds to a SVM classifier. It is theoretically guaranteed that the
linear classifier obtained in this way has small generalization errors. Linear SVM can
be further extended into non-linear SVMs by using kernel functions such as Gaussian
and polynomial kernels. In prediction, one can use the trained classification model
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to predict the unknown label of relationships in EU . The process of applying logistic
regression in the task is similar to that of Support Vector Machines.

The SVM-based method cannot model the correlation between the predictive results
{y} by assuming that they are independent of each other. While in real social net-
works, this may be not the case. For example, in an coauthor network, predicting one
coauthor relationship as an advisor-advisee relationship would correlate with the pre-
diction result of another coauthor relationship. We will explain how we consider such
correlation in § sec:approach.

4.2. Transfer Learning across Networks.
To transfer the knowledge from the source network into the target network, one could
consider a transfer learning model. We briefly introduce a baseline transfer learning
model, co-clustering based transfer learning (CoCC) [Dai et al. 2007a].

The basic idea of CoCC is to transfer the labeled information from a set Di of “in-
domain” documents to another set Do of “out-of-domain” documents. CoCC uses co-
clustering as a bridge to propagate the labeled information from the in-domain to out-
of-domain. Co-clustering on out-of-domain data aims to simultaneously cluster the out-
of-domain documents Do and wordsW into |C| document clusters and k word clusters,
respectively. Here C is the label space for the two domains.

Mathematically, CoCC tries to optimize the following loss function for co-clustering
based learning:

I(Do;W)− I(D̂o; Ŵ) + λ · (I(C;W)− I(C; Ŵ)) (1)

where I(Do;W) measures the mutual information between documents and words; D̂o

denotes the clustering of documents; Ŵ denotes the clustering of words; I(Do;W) −
I(D̂o; Ŵ) defines the loss in mutual information between documents and words before
and after clustering; analogously, I(C;W)−I(C; Ŵ) defines the loss in mutual informa-
tion between class labels C and words W before and after clustering. By minimizing
the above objective function and building a mapping between D̂o and C, CoCC is able to
assign classes to documents in Do according to the cluster membership, which enable
the co-clustering based transfer learning.

Limitations. To deal with our problem, CoCC has three disadvantages. First, it
makes an assumption that the labels of the in-domain and the out-of-domain data are
drawn from the same label set. Second, it assumes that features in the two domains
have a large overlap. Last, it is not easy to incorporate various correlation features
such as the social theory based features into the CoCC model.

5. SOCIAL PATTERNS
We now engage in some high-level investigations of how different factors influence
the formation of different social ties in different networks. Generally, if we consider
predicting particular social ties in a specific network (e.g., mining advisor-advisee re-
lationships from the Coauthor network [Wang et al. 2010]), we can define domain-
specific features and learn a predictive model based on the labeled training data. The
problem becomes very different when dealing with multiple heterogeneous networks,
as the defined features in different networks may be significantly different. To this
end, we connect our problem to several basic social theories and focus our analysis on
the network based correlations via the following statistics:
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three networks have a relatively similar probabilities.

(1) Social balance [Easley and Kleinberg 2010]. How is the social balance property
satisfied and correlated in different networks?

(2) Structural hole [Burt 1992; Lou and Tang 2013]. Would structural holes have a
similar pattern in different networks?

(3) Social status [Davis and Leinhardt 1972; Guha et al. 2004; Leskovec et al. 2010b].
How do different networks satisfy the properties of social status?

(4) “Two-step flow” [Lazarsfeld et al. 1944]. How do different networks follow the “two-
step flow” of information diffusion?

(5) Strong/Weak tie hypothesis [Granovetter 1973; Krackhardt 1992]. How are the
strong tie and weak tie hypothesis correlated in different networks?

Social Balance Social balance theory suggests that people in a social network tend to
form into a balanced network structure. Figure 4 shows such an example to illustrate
the structural balance theory over triads, which is the simplest group structure to
which balance theory applies. For a triad, the balance theory implies that either all
three of these users are friends or only one pair of them are friends. Figure 5 shows the
probabilities of balanced triads of the three undirected networks (Epinions, Slashdot,
and MobileU). The probability of balanced triads based on underlying (communication)
links is calculated by

P (vi, vj , vk have 1 or 3 underlying/communication links|eij , ejk, eki ∈ E) (2)

and the probability based on friendships (or trust relationships) is calculated by

P (vi, vj , vk have 1 or 3 friend/trust relationships|eij , ejk, eki ∈ E) (3)
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Fig. 6. Structural hole. SH-connected and SH-not connected respectively represents the probability that
two connected and two disconnected users (A and B) have the same type of relationship with user C, condi-
tioned on user C spans a structural hole. “Random” indicates the average probability that two users (A and
B) have the same type of relationship with user C no matter C spans a structural hole. It is clear that users
are more likely (averagely +70% higher than chance) to have the same type of relationship with C if C spans
a structural hole.

In each network, we compare the probability of balanced triads based on communi-
cation links and that based on friendships (or trust relationships). For example, in the
mobile network, the communication links include making a call or sending a message
between users. We find it interesting that different networks have very different bal-
ance probabilities based on the communication links, e.g., the balance probability in
the mobile network is nearly 7 times higher than that of the slashdot network, while
based on friendships (or trustful relationships) the three networks have relatively sim-
ilar balance probabilities (with a maximum of +28% difference).

Structural Hole Roughly speaking, a user is said to span a structural hole in a
social network if she is linked to people in parts of the network that are otherwise
not well connected to one another [Burt 1992]. Such user is also called structural hole
spanner [Lou and Tang 2013]. Arguments based on structural holes suggest that there
is an informational advantage to have friends in a network who do not know each
other. A sales manager with a diverse range of connections can be considered as a
structural hole spanner, with a number of potentially weak ties [Granovetter 1973]
to individuals in different communities. More generally, we can think about Web sites
such as eBay as spanning structural holes, in that they facilitate economic interactions
between people who would otherwise not be able to find each other.

Our idea here is to test if a structural hole spanner tends to have the same type
of relationship with the other users. We first employ a simple algorithm to identify
structural hole spanners in a network. Following the informal description of structural
holes [Burt 1992], for each node, we count the number of pairs of neighbors who are
not directly connected. All users are ranked based on the number of pairs and the top
1% structural hole spanners5 with the highest numbers are viewed as structural hole
spanners in the network. Figure 6 shows the probabilities that two users (A and B)
have the same type of relationship with another user (say C), conditioned on whether
user C spans a structural hole. “Random” indicates the average probability that two
users (A and B) have the same type of relationship with user C no matter C spans a
structural hole.

5This is based on the observation that less than 1% of the Twitter users produce 50% of its content [Wu
et al. 2011].
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Fig. 7. Illustration of status theory. (A) and (B) satisfy the status theory, while (C) and (D) do not satisfy
the status theory. Here positive “+” denotes the target node has a higher status than the source node; and
negative “-” denotes the target node has a lower status than the source node. In total there are 16 different
cases.
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Fig. 8. Distribution of five most frequent formations of triads with social status. Given a triad (A,B,C), let
us use 1 to denote the advisor-advisee relationship and 0 colleague relationship. The number 011 denotes A
and B are colleagues, B is C ’s advisor and A is C ’s advisor.

We have two interesting observations: (1) users are more likely to have the same
type of relationship with C if C spans a structural hole (for example, in Epinions, the
probability that two users have the same type of relationship with a structural hole
spanner is +20% higher than the random case); (2) disconnected users are more likely
than connected users to have the same type of relationship with a user classified as
spanning a structural hole. One exception is the mobile network, where most mobile
users in the data set are university students and thus friends frequently communicate
with each other.

Social Status Another social psychological theory is the theory of status [Davis and
Leinhardt 1972; Guha et al. 2004; Leskovec et al. 2010b]. This theory is based on the
directed relationship network. Suppose each directed relationship labeled by a pos-
itive sign “+” or a negative sign “-” (where sign “+”/“-” denotes the target node has
a higher/lower status than the source node). Then status theory posits that if, in a
triangle on three nodes (called triad), we take each negative relationship, reverse its
direction, and flip its sign to positive, then the resultant triangle (with all positive re-
lationship signs) should be acyclic. Figure 7 illustrates four examples. The first two
triangles satisfy the status ordering and the latter two do not satisfy it. We conducted
an analysis on the Coauthor and the Enron networks, where we aim to find directed
relationships (advisor-advisee and manager-subordinate). We found nearly 99% of tri-
ads in the two networks satisfy the social status theory, which was also validated in
[Leskovec et al. 2010b]. We investigate more by looking at the distribution of different
forms of triads in the two networks. Specifically, there are in total 16 different forms
of triads [Leskovec et al. 2010b]. We select five most frequent forms of triads in the
two networks. For easy understanding, given a triad (A,B,C), we use 1 to denote the
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Fig. 9. Opinion leader. OL - Opinion leader; OU - Ordinary user. Probability that two types of users have
a directed relationship (from higher social status to lower status, i.e., manager-subordinate relationship
in Enron and advisor-advisee relationship in Coauthor). Average indicates the average probability that two
random users have a relationship of high-status to lower-status user. It is clear that opinion leaders (detected
by PageRank) are more likely to have a higher social-status than ordinary users.

advisor-advisee relationship and 0 colleague relationship, and three consecutive num-
bers 011 to denote A and B are colleagues, B is C ’s advisor and A is C ’s advisor. It is
interesting to see that although the three networks (Coauthor, Enron and MobileD)
are totally different, the three types of triads with the highest probabilities are the
same, i.e., 000, 100, and 101 (“101” indicates that the statuses of the three users in the
triad are respectively high, low, and high). Figure 8 plots the five triads with the high-
est probabilities in the three networks. In practice, some patterns such as 111 seems to
be unreasonable. However, there still exist some cases in real network, due to various
reasons. In our problem, we are interested in understanding to which extent that this
case is unreasonable and how different networks correlate on this social pattern. The
pattern correlation will be used to transfer information from the source network to the
target network.

Opinion Leader The two-step flow theory was first introduced in [Lazarsfeld et al.
1944] and later elaborated in literature [Katz 1973; Katz and Lazarsfeld 1955]. The
theory suggests that ideas (innovations) usually flow first to opinion leaders, and then
from them to a wider population. In the enterprise email network, for example, man-
agers may act as opinion leaders to help spread information to subordinates.

Our basic idea here is to examine whether “opinion leaders” are more likely to have
a higher social status (manager or advisor) than ordinary users. To do this, we first
categorize users into two groups (opinion leaders and ordinary users) by PageRank6.
There is considerable research on opinion leader. For example Song et al. [Song et al.
2007] present a PageRank-like algorithm (referred to as InfluenceRank) to identify
opinion leaders and Hopcroft et al. [Wang et al. 2011] proposes an algorithm to find
kernel members (elite users) in a social network. However, designing new measures for
finding opinion leaders is beyond the focus of this paper, hence we adopt the simple in-
tuitive measure, PageRank to select opinion leaders. With PageRank, according to the
network structure, we select the top 1% users who have the highest PageRank scores
as opinion leaders and the rest as ordinary users. Then, we examine the probabilities
that two users (A and B) have a directed social relationship (from higher social-status
user to lower social-status user) such as advisor-advisee relationship. Figure 9 shows
some interesting discoveries. First, in all of the Enron, Coauthor and MobileD net-

6PageRank is an algorithm to estimate the importance of each node in a network [Page et al. 1999].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:14 J. Tang et al.

Enron Coauthor MobileD
0

0.2

0.4

0.6

0.8

 

 

Both weak ties
Both strong ties
Average

Fig. 10. Strong tie vs. Weak tie. Probabilities of two social ties share the same type, conditioned on whether
the two social ties are strong or weak. Average indicates the probability that two random social ties share
the same type. It is clear that on all the three data sets, two strong ties result in a higher likelihood to share
the same type than chance, while two weak ties are much more uncertain.

works, opinion leaders (detected by PageRank) are more likely (+71%-+156%) to have
a higher social status than ordinary users. Second and also more interestingly, in En-
ron, it is likely that ordinary users have a higher social status than opinion leaders. Its
average likelihood is much larger (30 times) than that in the Coauthor network. The
reason might be that in the enterprise email network, some managers may be inactive,
and most management-related communications were done by their assistants.

Strong tie vs. Weak tie Interpersonal ties generally come in three varieties: strong,
weak, or absent. Strong tie hypothesis implies that one’s close friends tend to move
in the same circles that she/he does. Acquaintances, by contrast, constitute a more
uncertain and dynamic social relationships. Thus, intuitively, a user may have the
similar types of relationships with friends of strong ties and more diverse relationships
with friends of weak ties. Thus, we examine how the types of social ties are correlated
with their strength.

We, for simplicity, quantify the strength of a social tie in the following ways7. In the
Coauthor network, for each relationship, we count the number of publications coau-
thored by the linked two authors. In the MobileD network, the strength of each social
tie is quantified by the number of calls/text messages made between the linked two
persons. In Enron, the strength is estimated by the number of emails sent between
two users.8 Then, we rank all social ties according to the strength and take the top
one-third as strong ties and the rest as weak ties.

Figure 10 shows the likelihood of two social ties sharing the same type, conditioned
on whether the two social ties are strong or weak. It clearly illustrates that in all the
data sets, two strong ties result in a higher likelihood to share the same type than
chance, while two weak ties are much more uncertain: the likelihood of two weak ties
sharing the same type is merely one-ninth of that of two random social ties on both
Enron and Coauthor.

Summary According to the statistics above, we have the following intuitions:

7For a more theoretical study of quantifying social strength (or social influence), please refer to [Tang et al.
2009].
8We could also estimate the strength of social ties on Epinions and Slashdot, e.g., by the number of interac-
tions (messages/replies sent) between the two users. However, due to the lack of the interaction information
in the two networks, we only test the strong tie and weak tie hypotheses on Enron, Coauthor, and MobileD.
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Fig. 11. Graphical representation of the triad factor graph (TriFG) model. Each ellipse indicates a relation-
ship, e.g., (v1, v2) represents a relationship between v1 and v2. Notation x1 indicates the attribute vector
associated with the relationship (v1, v2). For each relationship, we use a corresponding latent variable y de-
noted as a circle to represent its type. Each black square denotes a factor function which takes the associated
variables as input and output a real number.

(1) Probabilities of balanced triads based on communication links are very different in
different networks, while the balance probabilities based on friendships (or trustful
relationships) are similar with each other.

(2) Users are more likely (+25%-152% higher than chance) to have the same type of
relationship with a user who spans a structural hole.

(3) Most triads (99%) satisfy properties of the social status theory. For the 5 most
frequent formations of triads, the Coauthor, the Enron and the MobileD networks
share a similar distribution.

(4) Opinion leaders are more likely (+71%-156% higher than chance) to have a higher
social status than ordinary users.

(5) Two strong ties have a higher likelihood (+22%-52%) to share the same type than
chance, while two weak ties are much more uncertain (1/9 of the likelihood of two
random social ties to share the same type).

Based on the observations, we accordingly define features in the transfer learning
model introduced in § 4. The importance of different features will be determined by
the learning model. Roughly speaking, if a social theory based feature has a similar
pattern, e.g., social balance has a similar distribution over two networks, then the
feature would have a high weight in the learned model; otherwise, it will have a small
weight.

6. MODEL FRAMEWORK FOR TRANSFER LINK PREDICTION
We propose a transfer-based framework (TranFG). The basic idea in the framework is
to incorporate the social theories into a factor graph model for learning and predicting
the type of social relationships across different networks.

6.1. Probabilistic Factor Graph Model
Let us begin with a brief introduction of the graphical model. The major difference of
the graphical model from the classification-based model (such as SVM) lies in that the
graphical model can model the correlation between the prediction results by incorpo-
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rating “edge” features (also called correlation features). In general, there are two types
of graphical models: directed graphical model and undirected graphical model [Wain-
wright and Jordan 2008]. In this work, we consider the undirected graphical model.
In the undirected graphical model, the graph is formed by a collection of variables
Y = {yi}i=1,··· ,n and a collection of correlations between these variables.9 According to
the graphical structure, the probability distribution over the graph can be factorized
as a collection of functions defined on the cliques of the graph. A clique c is a fully con-
nected subset of the variables Yc in the graph. For example, if a clique c consists of two
vertices in the graph, then Yc indicates the set of the two corresponding variables (e.g.,
Yc = {yc1, yc2}). According to the theory of undirected graphical model [Hammersley
and Clifford 1971], we could associate a function with each clique, i.e., f(Yc). Given
this, the probability distribution of the graph is factorized as

P (Y ) =
1

Z

∏
c

f(Yc), Z =
∑
Yc

∏
c

f(Yc) (4)

where Z is a normalization factor, also viewed as a constant chosen to ensure that the
distribution is normalized so that the sum of the probabilities equals to 1.

Factor graph presents an alternative way to describe the (undirected) graphical
model, with more emphasis on the factorization of the distribution [Kschischang et al.
2001]. We will use the factor graph for the explanation in the following sections. Ba-
sically, the process of applying a graphical model to predict social ties also consists
of two stages: training and prediction. Usually in a graphical model, one attempts to
maximize the conditional probability of labels associated with the relationships given
attributes of the corresponding relationships in the training data, i.e., P (Y L|XL, G).
Thus in training, it attempts to find a parameter configuration that maximizes the
conditional probability on labeled relationships EL and in prediction it tries to find
a setting of labels Y U for the unlabeled relationships EU to maximize the conditional
probability P (Y U |XU , G). Directly maximize the conditional probability P (Y L|XL, G) is
often intractable when the graph structure contains cycles. Factor graph is a method to
factorize the “global” probability as a product of “local” factor functions, each of which
depends on a subset of the variables in the graph [Kschischang et al. 2001].

Eq. 4 can be explained in terms of the factor functions. Each f(Yc) represents a factor
defined over variables included in Yc. Such a representation also has a property in
terms of conditional independence among subsets of variables, which is also referred
to as the Markov property in the undirected graphical model. Here we give a brief
introduction of the concept of conditional independence. Interested reader please refer
to [Lauritzen 1996]. For undirected graphical models, if two variables are disconnected
in the graphical model, then we say the two variables are independent. Suppose yi, yj ,
and yk are an arbitrary triple of three variables. Let yi be connected to yj and yj be
connected to yk. We say that variables yi and yk are conditional independent given
yj if variables yi and yk are only connected via yj (i.e., disconnected without variable
yj). This property can be also generalized from multiple variables to multiple disjoint
subsets of variables.

Regarding the graphical structure of the probabilistic factor graph model in our
problem, we consider each relationship as an observation variable x in the graphi-
cal model. We associate each observation variable with a latent variable y and define a
local factor function between each observation variable and its associated latent vari-
able. We also define the correlation between the latent variables. Please note that the

9In existing literatures, e.g., [Wainwright and Jordan 2008], the variables are also denoted as vertices in the
graphical model and the correlations are denoted as edges between the vertices.
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correlation can be defined among multiple relationships, e.g., a triad function is de-
fined to capture the correlation of a social balance structure. The correlations between
(or among) relationships constitutes the graphical structure of the factor graph model.
More specifically, if we define a correlation function between two latent variables, then
an edge is created between the two variables and if we define a correlation function
of social balance, then a triadic function structure is constructed. Figure 11 shows the
graphical representation of the triad factor graph (TriFG) model [Lou et al. 2013]. Each
ellipse indicates a relationship, e.g., (v1, v2) represents a relationship between v1 and
v2. More accurately, in the model, it represents the attribute vector x associated with
the relationship. Each circle is a variable y indicating the type of the corresponding
relationship. Each black square denotes a factor function which takes the associated
variables as input and output a real number. The factor function f(x1, y1) is defined
on attributes associated with relationship (v1, v2) (or e1) and the factor h(y1, y2) is de-
fined to capture the correlation between y1 and y2. Specifically, if we only consider
pairwise correlation, i.e., correlation between pairwise relationships, then a pairwise
factor graph model can be constructed accordingly [Kschischang et al. 2001; Tang et al.
2011]. Its underlying principle is also similar to the conditional random field [Lafferty
et al. 2001], a conditional variation of the Markov random field. We consider both pair-
wise correlations and triads as cliques in our factor graph model, in that several social
theories (such as social balance and social status) we discussed in §5 are based on tri-
ads. In this case, the basic pairwise factor graph is extended as a triad factor graph
(TriFG). As the example in Figure 11, we could define six attribute factor functions,
i.e., f(x1, y1), f(x2, y2), f(x3, y3), f(x4, y4), f(x5, y5), and f(x6, y6), and four pairwise
correlation factor functions—i.e., h(y1, y2), h(y2, y3), h(y3, y4), h(y3, y5), and one triadic
correlation factor functions—i.e., h(y4, y5, y6). According to the factorization principle
in the factor graph [Kschischang et al. 2001], we could use the product of these factor
functions to represent the joint probability P (Y |X, G) as follows:

P (Y |X, G) = 1

Z

|E|∏
i=1

f(xi, yi)
∏
c∈G

f(Yc) (5)

where f(xi, yi) represents a factor function defined according to the attributes xi; c is
a clique on the graph (e.g., a triad (y4, y5, y6)) and Yc is a set of label variables included
in the clique c. f(Yc) represents a factor function defined to capture the correlation
between (among) all variables in Yc. Finally, Z is a normalization factor, which is the
summation of all possible values for Y . Formally, it can be written as:

Z =
∑
y

|E|∏
i=1

f(xi, yi)
∏
c∈G

f(Yc)

There are different ways to instantiate the two factor functions f(xi, yi) and f(Yc).
A widely used method is to define them as an exponential-linear function, i.e.,
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f(yi,xi) =
1

Z1
exp{

d∑
j=1

αjgj(xij , yi)} (6)

Z1 =
∑
yi

exp{
d∑
j=1

αjgj(xij , yi)} (7)

f(Yc) =
1

Z2
exp{

∑
c

∑
k

µkhk(Yc)} (8)

Z2 =
∑
Yc

exp{
∑
c

∑
k

µkhk(Yc)} (9)

where Z1 and Z2 are two normalization factors to ensure that the sum of the distribu-
tions equals to 1; Eq. 6 indicates that we define a feature function gj(xij , yi) for each
attribute xij associated with relationship ei and αj is the weight of the jth attribute.
It can be defined as either a binary function or a real-valued function. For example,
for predicting advisor-advisee relationships from the publication network [Wang et al.
2010], we can define a real-valued feature function as the difference of years when au-
thors vi and vj respectively published his first paper. Eq. 8 represents that we define a
set of correlation feature functions {hk(Yc)}k over each clique Yc in the network. Here
µk is the weight of the kth correlation feature function. The simplest clique represents
a pairwise correlation hk(yi, yj) between two relationships ei and ej .

By integrating Eqs. 6 and 8 into Eq. 5, we can obtain the following log-likelihood
objective function:

O(θ) = log p(Y |X, G) =
|E|∑
i

d∑
j=1

αjgj(xij , yi) +
∑
c

∑
k

µkhk(Yc)− logZ (10)

Here, we use θ to denote all unknown parameters, i.e., ({α}, {µ}); Z1 and Z2 are com-
bined into Z, which can be viewed as a constant to ensure the sum of the distributions
equals to 1.

If we are given a network G with labels Y , learning the predictive model is to esti-
mate a parameter configuration θ? = ({α}, {µ}) to maximize the log-likelihood objec-
tive function O(θ) = logPθ(Y |X, G), i.e.,

θ? = arg max O(θ) (11)

Note and Limitation. It is worth noting that in practice both training and prediction
will be conducted on the same network, which is different from the traditional learning
setting, where several graphs are fed for training and another graphs are used for pre-
diction. In this case, it is necessary to design a method that can perform training and
prediction simultaneously on the same input network. In the following subsection, we
will consider the factor graph as a partially labeled network and perform the learning
and prediction tasks together. Another limitation of the factor graph model is that it
assumes all examples in the training and the prediction have the same feature distri-
bution. This makes it difficult to directly apply the factor graph model to our problem
of predicting social ties across social networks, as in our problem the source network
and the target network could be very different without any common features in X.
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6.2. Transfer-based Factor Graph (TranFG) Model
Now we discuss how to design a factor graph model for learning to predict social ties
across different networks. The basic idea is to leverage the power of graphical model
which can model the correlation among the prediction results, and at the same time to
avoid the limitations in the existing transfer learning model. More specifically, we focus
on learning a predictive model with two heterogeneous networks (a source network GS
and a target network GT ). Straightforwardly, we can define two separate objective
functions for the two networks. The challenge is how to bridge the two networks, so
that we can transfer the labeled information from the source network to help predict
social ties in the target network. As the source and the target networks may be from
arbitrary domains, it is difficult to define correlations between them based on prior
knowledge.

To this end, we propose a transfer-based factor graph (TranFG) model. Our idea is
based on the fact that the social theories we discussed in §5 are general over all net-
works. Intuitively, we can leverage the correlation to the extent that different networks
satisfy each of the social theories to transfer. Then we could define features based on
the social theories and simultaneously optimize the objective function over the two
networks. By incorporating the social theories into our predictive model, we define the
following log-likelihood objective function over the source and the target networks:

O = OS(α, µ) +OT (β, µ)

=

|ES |∑
i=1

d∑
j=1

αjgj(x
S
ij , y

S
i ) +

|ET |∑
i=1

d′∑
j=1

βjg
′
j(x

T
ij , y

T
i )

+
∑
k

µk(
∑
c∈GS

hk(Y
S
c ) +

∑
c∈GT

hk(Y
T
c ))− logZ

(12)

where d and d′ are numbers of attributes in the source network and the target net-
work respectively. In this objective function, the first term and the second term define
the likelihood respectively over the source network and the target network; while the
third term defines the likelihood over common features defined in the two networks;
function hk(Yc) is a common feature defined according to the social theory and µk is
the weight (importance) of the corresponding feature. According to the definition, if a
common feature has a similar pattern, e.g., social balance has a similar distribution
over two networks, then the feature would have a high weight µ; otherwise, it will
have a small weight. Such a definition also implies that attributes of the two networks
can be entirely different as they are optimized with different parameters {α} and {β},
while the information transferred from the source network to the target network is the
importance of common features defined according to the social theories.

Another issue, as mentioned before, is the input network might be partially labeled,
thus it is necessary to perform training and prediction simultaneously on the same
input network. We will discuss this issue in § 6.4.

6.3. Factor Function Definition
We now turn to the definition of the factor function. There are mainly two types of
features. The first type of features are domain-specific features, which are different
in different networks. For example, in the mobile network, we could define a feature
for each relationship as the number of calls made between two users. Appendix gives
more details on how we define these features for each network.

The second type of features are common features defined according to the social
theories. This is one of the contributions in this work.
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ALGORITHM 1: Learning algorithm for TranFG.
Input: a source network GS , a target network GT , and the learning rate η
Output: estimated weights θ = ({α}, {β}, {µ}) respectively for different types of features
Initialize θ ← 0;
Perform statistics according to social theories;
Construct social theories based features hk(Yc), here Yc is a set of variables defined on clique c;
repeat

Step 1: Perform LBP to calculate marginal distribution of unknown variables in the source
network P (yi|xi, GS);
Step 2: Perform LBP to calculate marginal distribution of unknown variables in the target
network P (yi|xi, GT );
Step 3: Perform LBP to calculate the marginal distribution of clique c, i.e.,
P (yc|XS

c ,XT
c , GS , GT );

Step 4: Calculate the gradient of µk according to Eq. 13 (for αj and βj with a similar
formula);
Step 5: Update parameter µk (as well as αj and βj) with the learning rate η:

µk
new = µk

old + η · O(θ)
µk

until Convergence;

Social balance: Four (real-valued) features are defined to respectively represent
the proportions of the four types of (un)balanced triangles in a network.

Social status: According to the social status theory [Leskovec et al. 2010b], there
are 16 different triads in total. In our cases we have found that only seven of them
exist in our networks. We define seven (real-valued) features (011, 101, 110, 100, 000,
111 and −111) over triads to respectively represent the probabilities of the formations
of triads.

Structural hole: We define relationship correlation based features, i.e., correlation
between two relationships ei and ej . For example, if both B and C are connected with A
who is identified as a structural hole spanner, then two correlation features are defined
for the two relationships (A − B and A − C): one for B and C who are connected and
the other for B and C who are not connected.

Opinion leader: Four (binary) features are defined for each relationship (A − B).
Two of them represent when both A and B are opinion leaders or ordinary users, while
the other two features represent when one is opinion leader and the other is ordinary
user.

Strong/Weak ties: Three (real-valued) features are defined to represent when two
relationships are both strong ties, weak ties, or one is strong tie and the other is weak
tie.

Finally, we define four (real-valued) balance based features, seven (real-valued) sta-
tus based features, four (binary) features for opinion leader, six (real-valued) correla-
tion features for structural hole, and three (real-valued) features for strong/weak ties.

6.4. Model Learning and Prediction
The last issue is to learn the TranFG model and to predict the type of unknown rela-
tionships in the target network. Learning the TranFG model is to estimate a param-
eter configuration θ = ({α}, {β}, {µ}) to maximize the log-likelihood objective function
O(α, β, µ). The learning algorithm is summarized in Algorithm 1.

There are two challenges. First, as the network structure in the social network can
be arbitrary (may contain cycles), it is intractable to obtain exact solution of the ob-
jective function using existing methods such as Junction Tree [Wiegerinck 2000]. A
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number of approximate algorithms can be considered, such as Loopy Belief Propaga-
tion (LBP) [Murphy et al. 1999] and Mean field [Xing et al. 2003]. One can also de-
rive the dual form of the original optimization problem (Eq. 12) and use the projected
subgradient method [Komodakis et al. 2011] to solve the problem. We chose Loopy Be-
lief Propagation due to its ease of implementation and effectiveness. Specifically, we
approximate the marginal distribution Pθk(Yc|.) using LBP. With the marginal prob-
abilities, the gradient can be obtained by summing over all triads. Theoretically, the
algorithm does not guarantee a convergence and may result in local maximum, but
in practice its performance is good. We will empirically study the effectiveness and
efficiency of the algorithm in the experimental section.

The other challenge is that both input networks may be partially labeled. To deal
with this, we use the labeled relationships to infer the unknown labels. Here Y |Y L de-
notes a labeling configuration Y inferred from the known labels. Technically, we use an
extra LBP process to infer the marginal probability of unlabeled relationships. In Al-
gorithm 1, Step 1 is used to calculate marginal distributions of unknown relationships
in the source network and Step 2 is used to calculate marginal distributions of un-
known relationships in the target network, respectively. A similar learning algorithm
was first introduced in [Tang et al. 2011].

We use a gradient descent method (or a Newton-Raphson method) to solve the ob-
jective function. Specifically, we first write the gradient of each unknown parameter
(α, β, µ) with regard to the objective function (we use α as the example to derive its
gradient w.r.t. the objective function):

∂O(θ)
∂αj

=
∂
(∑|ES |

i=1

∑d
j=1 αjgj(x

S
ij , y

S
i )− logZ

)
∂α

=
∂
(∑|ES |

i=1

∑d
j=1 αjgj(x

S
ij , y

S
i )− log

∑
y

∑|ES |
i=1

∑d
j=1 αjgj(x

S
ij , y

S
i )
)

∂α

=

|ES |∑
i=1

αjgj(x
S
ij , y

S
i )−

∑
ySi

∑|ES |
i=1 αjgj(x

S
ij , y

S
i )∑

ySi

∑|ES |
i=1

∑d
j=1 αjgj(xSij , y

S
i )

= E[gj(xSij , ySi )]− EPαj (y
S
i |XS ,GS)[gj(x

S
ij , y

S
i )]

∂O(θ)
∂βj

= E[g′j(xTij , yTi )]− EPβj
(yTi |XT ,GT )[g

′
j(x

T
ij , y

T
i )]

∂O(θ)
∂µk

= E[hk(Y
S
c ) + hk(Y

T
c )]− EPµk (Yc|XS ,XT ,GS ,GT )[hk(Y

S
c ) + hk(Y

T
c )]

(13)

where we assume that xij and yi are uniformly distributed in the given data set, thus
have a uniform distribution for P (xij , yi); E[gj(xSij , ySi )] is the expectation of the lo-
cal factor function gj(x

S
ij , y

S
i ) given the data distribution in the source network and

E[g′j(xTij , yTi )] is the expectation of the local factor function g′j(x
T
ij , y

T
i ) given the data

distribution in the target network; E[hk(Y Sc ) + hk(Y
T
c )] is the expectation of factor

function hk(Y
S
c ) + hk(Y

T
c ) given the data distribution (i.e., the average value of the

factor function hk(Yc) over all triads in the source and the target networks); and the
second term in each equation, i.e., EPαj (ySi |XS ,GS)[gj(x

S
ij , y

S
i )], EPαj (yTi |XT ,GT )[g

′
j(x

T
ij , y

T
i )],

and EPµk (Yc|XS ,XT ,GS ,GT )[.] respectively represents the expectation under the distribu-
tion learned by the model, i.e., Pαj (ySi |XS , GS), Pαj (yTi |XT , GT ), Pµk(Yc|XS ,XT , GS , GT ).

As the graphical structure can be arbitrary and may contain cycles, we use loopy
belief propagation (LBP) [Murphy et al. 1999] to approximate the gradients. In order to
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leverage the unlabeled relationships, we need to perform the LBP process twice in each
iteration, one time for estimating the marginal distribution of unknown variables yi =?
and the other time for marginal distribution over all cliques. Finally with the gradient,
we update each parameter with a learning rate η. Regarding the learning rate η, we
set its value by adopting an empirical but efficient way—first we use a large η and
gradually decrease its value in the following learning iterations. Such a method has
been widely used in machine learning. We can also see that in the learning process, the
algorithm uses an additional loopy belief propagation to predict the label of unknown
relationships. After learning, all unknown relationships are assigned with labels that
maximize the marginal probabilities.
Notes. It is worth noting that the social patterns studied in § 5 capture the common
features between the two networks and the proposed TranFG model can be generalized
to different networks by incorporating the social patterns though, there is still one
more challenge, namely network unbalance. The scale of the input two networks may
be very unbalanced: one is extremely large and the other is much smaller. This makes
the performance (including efficiency and effectiveness) of transfer learning unstable
over different networks.

7. ACTIVE TRANSFER LEARNING
To deal with the network unbalance problem, we propose using the active learning
method to enhance the proposed TranFG model. With active learning, we aim to min-
imize the labeled relationships in the target network. As some social patterns have
been studied on the labeled relationships, it is necessary to have some sufficient la-
beled information. As demonstrated in § 9.2, the amount of labeled relationships in
the target network indeed has a strong influence on the prediction performance. With
active learning, our goal is to minimize the number of labeled relationships without
hurting the prediction performance. We consider several different strategies for active
learning and the experimental results demonstrate the effectiveness of the proposed
strategies.

There are a number of active learning methods such as maximum uncertainty and
information density [Settles and Craven 2008], while most methods do not consider the
network information. In this section, we first introduce two basic methods, i.e., Maxi-
mum Uncertainty (MU), Maximum Representativity (MR), which do not consider the
network information. Then we present a Maximum Model Influence (MMI) method
which actively selects unlabeled relationships to query by considering both the re-
lationship’s uncertainties and the network information. The MMI method was first
presented in [Zhuang et al. 2012].

Maximum Uncertainty (MU) The straightforward strategy for active learning is
to select the most uncertain instances (i.e., relationships in our case) in the target
network. The uncertainty of an unlabeled relationship yi is measured by its entropy
H(yi):

MU(yi) = H(yi) = −
∑
y∈Y

P (yi = y) logP (yi = y) (14)

where P (yy = y) can be obtained after learning the factor graph model. For each re-
lationship, we calculate its entropy and then rank all relationships according to the
obtained entropy scores. Finally, in the active learning, we select m relationships with
the highest entropy scores.
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Maximum Representativity (MR) The Maximum Uncertainty strategy tends to
choose outliers. One idea to avoid this is to use the strategy of Information Den-
sity [Settles and Craven 2008], with a goal of choosing the most representative (un-
labeled) relationships, which are supposed to be the most informative ones. In par-
ticular, we can measure the informativeness of a relationship by its cosine similarity
to all other unlabeled relationships in the sense of the attributes associated with the
relationship. The informativeness of a relationship can be defined as:

MR(yi) = H(yi)× [
1

|Y U |
∑
j∈Y U

sim(xi,xj)] (15)

where sim(xi,xj) =
xi·xj

‖xi‖×‖xj‖ . Again, in the active learning, we select m relationships
with the highest representative scores.

Maximum Model Influence (MMI) In the proposed TranFG model, relationships
are correlated with each other, awareness of some “influential” relationships may help
predict the type of the other relationships. However, the above two strategies do not
consider the correlation information. We present an influence propagation method
based on the idea from Linear Threshold Model (LTM) in [Kempe et al. 2003]. The
LTM model is an influence maximization model, aiming to find a subset of nodes (seed
nodes) in a network that could maximize the spread of influence. The LTM model sets
a threshold value εi for each node, and a weight bi,j for its edge between nodes i and j,
satisfying

∑
j∈NB(i) bi,j ≤ 1, where NB(i) denotes a set of neighbors of node i. In each

time stamp, if
∑
j∈NB(i)∧activated(j) bi,j ≥ εi, then the node i will be activated.

We develop a variation of the LTM by incorporating a score for each relationship
reflecting the strength of the influence spreading in our model. The basic idea of the
active learning method with Maximum Model Influence is that if we actively label a
set of unknown relationships and this can trigger many other relationships gaining a
score so that each of their scores is larger than its threshold, then we say this is a good
choice. To quantify this, we define the following propagation process: A) Initializa-
tion: the graph is the same as the TranFG model. We call a relationship as “activated”
when its label yi is given. The initial activated set of relationships is the set of labeled
relationships Y L. We assign a threshold εi =

∑
y∈Y |P (yi = y|G, Y L) − 1

|Y| | for each
relationship. In this sense, a relationship with higher uncertainty will be easier to be
activated. B) Influence: when a relationship ei is activated, it spreads its gained score
increment (gi − εi) to its neighbor relationships ej ∈ NB(i) in the factor graph with a
weight bi,j , i.e. gj ← gj + bi,j(gi − εi).10 C) Spread: if a relationship is labeled by the
user, we set it as activated and assign its gained score as 1. The gained score for other
relationships is set to 0 at the beginning. Once an inactivated relationship ek gains
a score which exceeds the threshold, i.e. gk > εk, it will become activated and spread
its gained score similarly. Finally, the Maximum Model Influence score MMI(yi) is
defined as the total number of activated relationships in the target network after the
propagation process when we have the relationship label yi for an unknown relation-
ship ei. In our experiments, to efficiently evaluate the influence of a relationship in
MMI, we employ a similar method as that developed in [Chen et al. 2009].

Algorithm and Analysis Finding a set of m relationships that maximizes the total
of the Maximum Model Influence scores is NP-hard as proved in [Kempe et al. 2003].

10The gained score increment reflects the improvement of confidence brought by active user labeling. We
empirically set the weight bi,j = 1/|NB(j)|.
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Thus, similarly, we use a greedy strategy to approximate the solution with a ratio
(1−1/e) of the optimal solution. Specifically, in the active learning process, we calculate
the MMI score for each unlabeled relationship and finally selected the relationship
with the highest representative score in each iteration. We give an analysis for the
approximation ratio of the greedy algorithm as follows.

To begin with, we first give the definition of the submodular set function.

Definition 7.1. (Submodular) A set function F defined on set S is called submod-
ular, if for all A ⊂ B ⊂ S and s /∈ B, it satisfies

F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B).

Function F is monotone increasing if for all sets S ⊆ T ⊆ V , there is

F (T ) ≥ F (S)

For a function F that is both monotonically increasing and submodular, we could
actively select k relationships one-by-one into a set T . Suppose the relationships are
y1, y2, . . . , yk, and we use Ti to denote the set of i-th step {y1, y2, . . . , yi} (1 ≤ i ≤ k).
We see that each time we add a relationship into T , there is an increment of F (T ). If
some of the previous relationships were not added, this increment becomes larger or
stays the same. At each step, we choose to add an relationship y ∈ E that maximizes
F (T ∪ {y}) − F (T ). In this way, we can use a greedy heuristic, that is each time we
choose the relationship that increases f(T ) the most, i.e.,

F (T2)− F (T1) ≥ F (T3)− F (T2) ≥ · · · ≥ F (Tk)− F (Tk−1)

Intuitively, the greedy algorithm can generate a good approximate solution for the
problem of sampling a k-relationship set T that maximizes F (T ). Suppose the gener-
ated set is T and the optimal set is T ∗. We consider the set T ∪T ∗, whose function value
is larger than (or worse case equal to) that of T ∗ according to the monotonic property
of F . We can construct T ∪ T ∗ as follows: we first use greedy heuristic and add k re-
lationships of T into it, then we add relationships in T ∗ − T one-by-one. We see that
for every relationship in T ∗ − T , the increment is not larger than the increment of any
relationship in T . Since l ≤ k there must be 2 · F (T ) ≥ F (T ∪ T ∗) ≥ F (T ∗). A tighter
bound is reported in [Nemhauser et al. 1978]. For every monotonically increasing, sub-
modular, non-negative function F on E, the set generated by the greedy heuristic is at
least (1− 1/e) of the optimal solution.

8. DISTRIBUTED LEARNING
As real social networks may contain millions of users and relationships, it is important
for the learning algorithm to scale up well with large networks. To address this, we
develop a distributed learning method based on MPI (Message Passing Interface). The
scalable performance of the proposed method will be presented in § 9.

Basically, the learning algorithm consists of two steps: 1) compute the gradient for
each parameter via loopy belief propagation; 2) optimize all parameters with the gradi-
ent descents. The most expensive part is the step of calculating the gradient. Therefore
we develop a distributed algorithm to speed up the process. We adopt a master-slave
architecture, i.e., one master machine is responsible for optimizing parameters, and
the other slave machines are responsible for calculating gradients. At the beginning
of the algorithm, the graphical model of TranFG is partitioned into M roughly equal
parts, where M is the number of slave processors. This process is accomplished by
graph partition software METIS [Karypis and Kumar 1998]. The subgraphs are then
distributed over slave nodes. Note that in our implementation, the correlation (factors)
between different subgraphs are eliminated, which results in an approximate solution.
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Table II. Data transferred in distributed learning algorithm.

Phase From To Data Description
Initialization Master Slave i i-th subgraph

Iteration Beginning Master Slave i Current parameters θ
Iteration Ending Slave i Master Gradient in i-th subgraph

METIS is a graph partitioning tool. It aims to minimize the cut of edges on a graph
such that after the cut all nodes on the graph can be grouped into M sub graphs. By
minimizing the cut, we could obtain a better approximation. In each iteration of the
distributed learning, the master machine sends the newest parameters θ to all slaves.
Slave machines then start to perform Loopy Belief Propagation on the corresponding
subgraph to calculate the “local” belief (the marginal probabilities). Specifically, each
slave processor calculates the “local” belief (the marginal probability) on the subgraph
Gl according to the following equations (again we use P (yi|G,A) as the example in the
explanation):

ml
ij(yi) = σ

∑
yi

ψlij(yi, yj)ψ
l
i(yi)

∏
k∈NB(i)\j

ml
ki(yi) (16)

bli(yi) = ψli(yi)
∏

k∈NB(i)

ml
ki(yi) (17)

P (yi|.) = σ

M∑
l=1

bli(yi) (18)

where σ denotes a normalization constant; ml
ij(yi) is the “belief” propagated from node

yj to node yi; NB(i)\j denotes all nodes neighboring node yi in the subgraph Gl, except
yj ; ψli(yi) denotes all defined factor functions related to yi in the subgraph Gl and
is calculated by ψli(yi) = exp(

∑d
j=1 αg(y

S
i , x

S
ij) +

∑d
j=1 βjg

′(yTi , x
T
ij)); ψli(yi) denotes all

correlation factor functions related to yi in the subgraph; and notation bli(yi) denotes
the unnormalized “local” belief collected from each subgraph.

After obtained the local belief, each slave computes the parameter gradient and send
it back to the master. Finally, the master machine collects and sums up all gradients
obtained from different subgraphs, and updates parameters by the gradient descent
method. The data transferred between the master and slave machines are summarized
in Table II.

There is one more thing worth noting. As many correlation factors are defined over
triads, if we simply eliminate those correlation factors which are defined across dif-
ferent subgraphs. We found that even with a small number of M , the eliminated
triad-based factors take a large portion of the totally defined triad-based factors, which
significantly hurts the performance of the proposed TranFG model. To alleviate this
problem, we present a virtual node based method. In particular, suppose three relation-
ships (y1, y2, y3) in the graphical model are associated with a triad factor h(y1, y2, y3). If
the partition assigns two relationships (e.g., y1 and y2) into one subgraph and the rest
one (i.e., y3) into another subgraph, then we create a virtual relationship in the first
subgraph so that the triad factor can be still calculated in the subgraph. (We do not
consider the local attribute factor associated with the virtual relationship to avoid re-
dundancy.) While if the three relationships are assigned to three different subgraphs,
we then randomly select a subgraph and create two virtual relationship to calculate
the triad based correlation factor function, and ignore its computation in the other two
subgraph.
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9. EXPERIMENTAL RESULTS
9.1. Experimental Setup
The proposed framework is very general and can be applied to many different net-
works. For experiments, we consider six different networks: Epinions, Slashdot, Mo-
bileU, MobileD, Coauthor, and Enron. On the first three networks (Epinions, Slashdot,
and MobileU), our goal is to predict undirected relationships (e.g., friendships), while
on the other three networks (MobileD, Coauthor and Enron), the goal is to predict
directed relationships (e.g., advisor-advisee relationships).

Comparison Methods We compare the following methods for predicting the type of
social relationships.

SVM: Similar to the logistic regression model used in [Leskovec et al. 2010a], SVM
uses attributes associated with each relationship as features to train a classification
model and then employs the classification model to predict relationships’ labels in the
test data set. For SVM, we employ SVM-light.

CRF: It trains a conditional random field [Lafferty et al. 2001] with attributes asso-
ciated with each relationship and correlations between relationships.

PFG: The method is also based on CRF, but it employs the unlabeled data to help
learn the predictive model. The method is proposed in [Tang et al. 2011].

COCC: It uses co-clustering to transfer the labeled information from one network to
another network [Dai et al. 2007a]. This is a transfer learning-based method.

TranFG: It is the proposed approach, which leverages the labeled information from
the source network to help predict the type of relationship in the target network.

We also compare with the method TPFG proposed in [Wang et al. 2010] for min-
ing advisor-advisee relationships in the publication network. This method is domain-
specific and thus we only compare with it on the Coauthor network.

In all experiments, we use the same feature definitions for all methods. On the Coau-
thor network, we do not consider some domain-specific correlation features11.

Evaluation Measures To quantitatively evaluate the proposed model, we consider
the following performance metrics:

— Prediction accuracy. We apply the learned model by different methods to predict
the type of links in the target networks, and evaluate its performance in terms of
Precision, Recall, and F1-Measure.

— How social theory can help. We analyze how social theories can help improve the
prediction performance.

— How active learning can help. We use different active learning algorithms to
select relationships to actively query their labels, and evaluate how active learning
can help improve the prediction performance.

— Efficiency and scalability performance. We evaluate the computational time as
the efficiency metric to evaluate the efficiency and scalability performance of the
proposed model.

9.2. Prediction Performance and Analysis

Prediction accuracy across heterogeneous networks. We compare the perfor-
mance of the four methods for predicting friendships (or trustful relationships) on four
pairs of networks: Epinions (S) to Slashdot (T), Slashdot (S) to Epinions (T), Epin-
ions (S) to MobileU (T), and Slashdot (S) to MobileU (T). In all experiments, we use
40% of the labeled data in the target network for training and the rest for test. For

11We conducted experiments, but found that those features will lead to overfitting.
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Table III. Performance comparison of different methods for predicting friend-
ships (or trustful relationships). (S) indicates the source network and (T) the
target network. For the target network, we use 40% of the labeled data in
training and the rest for test.

Data Set Method Prec. Rec. F1-score

Slashdot (T) (40%)
SVM 0.7157 0.9733 0.8249
CRF 0.8919 0.6710 0.7658
PFG 0.9300 0.6436 0.7607

Epinions to Slashdot COCC 0.8291 0.5511 0.6621
TranFG 0.9414 0.9446 0.9430

Epinions (T) (40%)
SVM 0.9132 0.9925 0.9512
CRF 0.8923 0.9911 0.9393
PFG 0.9954 0.9787 0.9870

Slashdot to Epinions COCC 0.9667 0.6732 0.7937
TranFG 0.9954 0.9787 0.9870

MobileU (T) (40%)
SVM 0.8983 0.5955 0.7162
CRF 0.9455 0.5417 0.6887
PFG 1.0000 0.5924 0.7440

Epinions to MobileU COCC 0.7952 0.6875 0.7374
TranFG 0.8239 0.8344 0.8291

MobileU (T) (40%)
SVM 0.8983 0.5955 0.7162
CRF 0.9455 0.5417 0.6887
PFG 1.0000 0.5924 0.7440

Slashdot to MobileU COCC 0.8615 0.6022 0.7089
TranFG 0.7258 0.8599 0.7872

transfer, we consider the labeled information in the source network. Table III lists the
performance of the different methods on the four test cases. Our approach shows bet-
ter performance than the three alternative methods. We conducted sign tests for each
result, which shows that all the improvements of our approach TranFG over the three
methods are statistically significant (p� 0.01).

Table IV shows the performance of the five methods (including TPFG for mining
advisor-advisee relationships on the Coauthor data set [Wang et al. 2010]) for predict-
ing directed relationships (the source end has a higher social status than the target
end) on six pairs of networks: Coauthor (or MobileD) (S) to Enron (T), Enron (or Mo-
bileD) (S) to Coauthor (T), and Coauthor (or Enron) (S) to MobileD (T). In each test
case, we again use 40% of the labeled data in the target network for training and the
rest for test, while for transfer we consider the labeled information from the source net-
work. We see that by leveraging the supervised information from the source network,
our method clearly improves the performance (about 15% by F1-score on Coauthor,
20% on MobileD, and 23% on Enron). Another phenomenon is that the prediction ac-
curacy is correlated with the size of the source network. For example, when predicting
the manager-subordinate relationship in the Enron network, we obtain a much higher
accuracy by using the Coauthor network (6,096 relationships) as the source network
than that of using the MobileD network (3,567 relationships) as the source network
(89.6% vs. 81.8%). From results, we can also see that the transferring performance
is different for different prediction tasks. For example, transferring from Epinions is
better than transferring from Slashdot for the MobileU network. In practice, the per-
formance of transfer link prediction depends on how the source network is correlated
with the target network. If the two networks are more similar with each other, then
more information can be transferred from the source network to help the target net-
work.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:28 J. Tang et al.

Table IV. Performance comparison of different methods for predicting directed
relationships (the source end has a higher social status than the target end).
(S) indicates the source network and (T) the target network. For the target
network, we use 40% of labeled data in training and the rest for test.

Data Set Method Prec. Rec. F1-score

Enron (T) (40%)
SVM 0.9524 0.5556 0.7018
CRF 0.7778 0.7673 0.7725
PFG 0.9130 0.7241 0.8077

MobileD to Enron COCC 0.7647 0.6190 0.6842
Coauthor to Enron COCC 0.7619 0.6957 0.7273
MobileD to Enron TranFG (M) 0.8438 0.7941 0.8182
Coauthor to Enron TranFG (C) 0.9091 0.8824 0.8955

Coauthor (T) (40%)

SVM 0.6910 0.3727 0.4842
CRF 0.8472 0.2937 0.4362
PFG 0.8189 0.3377 0.4782

TPFG 0.5936 0.7611 0.6669
MobileD to Coauthor COCC 0.6614 0.3834 0.4854
Enron to Coauthor COCC 0.6667 0.3901 0.4922

MobileD to Coauthor TranFG (M) 0.8235 0.3889 0.5283
Enron to Coauthor TranFG (E) 0.8193 0.6415 0.7196

MobileD (T) (40%)
SVM 0.5249 0.3725 0.4358
CRF 0.4454 0.5763 0.5025
PFG 0.8739 0.3731 0.5229

Enron to MobileD COCC 0.7152 0.2443 0.3642
Coauthor to MobileD COCC 0.6412 0.2422 0.3516

Enron to MobileD TranFG (E) 0.8013 0.4808 0.6010
Coauthor to MobileD TranFG (C) 0.8323 0.5154 0.6366

The method PFG can be viewed as a non-transferable counterpart of our method,
which does not consider the labeled information from the source network. From both
Table III and Table IV, we can see that with the transferred information, our method
clearly improves the relationship categorization performance. Another phenomenon
is that PFG has a better performance than the other two methods (SVM and CRF)
in most cases. PFG leverages the unlabeled information in the target network, thus
enhances the performance. The only exception is the case of Epinions (S) to Slash-
dot (T), where it seems that users in Slashdot have a relatively consistent pattern
and merely with some general features such as in-degree, out-degree, and number of
common neighbors, a classification based method (SVM) can achieve very high perfor-
mance.

Prediction accuracy across homogeneous networks. We study how well the al-
gorithm performs when the source network and the target network are homogeneous,
i.e., the same type of networks. In particular, we partition each of the six networks into
two sub networks and use one of them as the source network and the other as the tar-
get network. For the target network, again we consider 40% of the labeled information
and for the source network, we consider all the labeled information.

Table V shows the accuracy of predicting relationships by learning across homoge-
neous networks. The homogeneous transfer actually represents the upper bound for
heterogeneous transfer. We see that our model for heterogeneous transfer (TranFG-
Heter) performs close to the upper bound.

Bias analysis for transfer link prediction. From Table I, we see that for some net-
works, such as the Epinions and Slashdot, the number of positive relationships (trust
and friend relationships) is much greater than that of negative relationships, while in
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Table V. Prediction accuracy between homogeneous networks. TranFG-Heter is
the best performance obtained in the heterogeneous transfer (Cf. Table III and IV).

Data Set Method Prec. Rec. F1-score

Slashdot (S) to
Slashdot (T) (40%)

PFG 0.9300 0.6436 0.7607
TranFG 0.9948 0.9185 0.9551

TranFG-Heter 0.9414 0.9446 0.9430

Epinions (S) to
Epinions (T) (40%)

PFG 0.9954 0.9787 0.9870
TranFG 0.9954 1.0000 0.9977

TranFG-Heter 0.9954 0.9787 0.9870

MobileU (S) to
MobileU (T) (40%)

PFG 1.0000 0.5924 0.7440
TranFG 0.9259 0.7895 0.8523

TranFG-Heter 0.8239 0.8344 0.8291

Enron (S) to
Enron (T) (40%)

PFG 0.9130 0.7241 0.8077
TranFG 0.9394 0.9688 0.9538

TranFG-Heter 0.9091 0.8824 0.8955

Coauthor (S) to
Coauthor (T) (40%)

PFG 0.8189 0.3377 0.4782
TranFG 0.8321 0.7433 0.7852

TranFG-Heter 0.8193 0.6415 0.7196

MobileD (S) to
MobileD (T) (40%)

PFG 0.8739 0.3731 0.5229
TranFG 0.8843 0.6115 0.7230

TranFG-Heter 0.8323 0.5154 0.6366
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Fig. 12. Bias analysis for transfer link prediction by the proposed TranFG.

some other networks, such as Coauthor and Enron, the situation is completely differ-
ent. We conducted an experiment to study how the unbalanced positive/negative rela-
tionships influence the performance of transfer link prediction. Figure 12 shows the
results of transfer link prediction for directed relationships and undirected (friend and
trust) relationships by varying the ratio of positive/negative instances in the source
network. For example from Coauthor to Enron, #positive/#negative=2 indicates that
the number of positive relationships is twice of the number of negative relationships
in the Coauthor network. Specifically, we fixed the number of positive relationships in
Coauthor and randomly sampled half of the number of negative relationships. We see
that the prediction performance is not sensitive to the bias problem. This confirms the
effectiveness of the proposed TranFG model.

9.3. How Can Social Theories Help?
We now analyze how different social theories (social balance, social status, structural
hole, two-step flow (opinion leader), and strong/weak tie) can help predict social ties.
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Fig. 13. Factor contribution analysis. TranFG-SH denotes our TranFG model by ignoring the structural
hole based transfer. TranFG-SB stands for ignoring the structural balance based transfer. TranFG-OL
stands for ignoring the opinion leader based transfer and TranFG-SS stands for ignoring social status based
transfer.

From §5, we see that the social theory has a similar pattern on different networks,
which can be leveraged to bridge the different networks. At the same time, from Fig-
ures 5-10, we can also see there is still a difference between different networks. For
example, in Figure 6, the obtained probabilities on MobileU is different from that
obtained from the other two networks. In the transfer learning, the TranFG model
will determine the weight of different social theory based factors for different learn-
ing tasks. For example, in learning to predict social ties from Coauthor to MobileD,
the learned weights of the four social balance based factors are respectively 0.002248,
0.000121, -0.001544, and -0.000825, which indicates that the first two balanced struc-
ture based factors have a positive correlation between the two networks while the
other two unbalanced structure based factors have a negative correlation between the
two networks.

To predict friendships, we consider social balance (SB) and structural hole (SH)
based transfer and to predict directed friendships, we consider social status (SS), opin-
ion leader (OL), and strong/weak tie (SW) based transfer. Here we examine the contri-
bution of the different factors defined in our TranFG model. Figure 13 shows the aver-
age F1-Measure score over the different networks, obtained by the TranFG model for
predicting friendships and directed relationships. In particular, TranFG-SB represents
that we remove social balance based transfer features from our model; TranFG-SW-
OL represents that we remove both strong/weak tie and opinion leader based transfer
features; and TranFG-All denotes that we remove all the transfer features. It can be
clearly observed that the performance drops when ignoring each of the factors. We can
also see that, for predicting friendships, the social balance is a bit more useful than
structural hole, and for predicting directed relationships, the opinion leader factor is
more important than the factors of strong/weak tie and structural hole. The analysis
confirms that our method works well (further improvement is obtained) by combining
different social theories.

Social balance and structural hole based transfer. We present an in-depth anal-
ysis on how the social balance and structural hole based transfer can help by varying
the percent of labeled training data in the target network, as shown in Figure 14. We
see that in all cases except Slashdot-to-Epinions, clear improvements can be obtained
by using the social balance and structural hole based transfer, when the labeled data
in the target network is limited (≤ 50%). Indeed, in some cases such as Epinions-to-
Slashdot, with merely 10% of the labeled relationships in Slashdot, our method can

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Transfer Learning to Infer Social Ties across Heterogeneous Networks 39:31

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.4

0.5

0.6

0.7

0.8

0.9

1

percentage

F
1

−
M

e
a

s
u

re

 

 

SVM
COCC
CRF
PFG
TranFG−SB
TranFG−SH
TranFG

(a) Epinions-to-Slashdot

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.7

0.75

0.8

0.85

0.9

0.95

1

percentage

F
1
−

M
e
a
s
u
re

 

 

SVM
COCC
CRF
PFG
TranFG−SB
TranFG−SH
TranFG

(b) Slashdot-to-Epinions

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.4

0.5

0.6

0.7

0.8

0.9

percentage

F
1
−

M
e
a
s
u
re

 

 

SVM
COCC
CRF
PFG
TranFG−SB
TranFG−SH
TranFG

(c) Epinions-to-MobileU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.4

0.5

0.6

0.7

0.8

0.9

percentage

F
1

−
M

e
a

s
u

re

 

 

SVM
COCC
CRF
PFG
TranFG−SB
TranFG−SH
TranFG

(d) Slashdot-to-MobileU

Fig. 14. Performance of predicting friendships with and w/o the balance and structural hole based transfer
by varying the percent of labeled data in the target network.

obtain a good performance (88% by F1-score). Without transfer, the best performance
is only 70% (obtained by SVM). We also find that structural balance based transfer
is more helpful than structural hole based transfer for predicting friendships in most
cases with various percents of labeled relationships. This result is consistent with that
obtained in the factor contribution analysis.

A different phenomenon is found in the case of Slashdot-to-Epinions, where all meth-
ods can obtain a F1-score of 94% with only 10% of the labeled data. The knowledge
transfer seems not helpful. After a thorough investigation, we found that a high ac-
curacy (about 90%) could be achieved simply using those features (Cf. Appendix for
details) defined on the relationships. The structure information indeed helps, but the
gained improvement is limited.

Social status and opinion leader, and strong/weak tie based transfer. Figure
15 shows an analysis for predicting directed relationships on the six cases (Coauthor-
to-Enron, MobileD-to-Enron, Enron-to-Coauthor, MobileD-to-Coauthor, Coauthor-to-
MobileD, and Enron-to-MobileD). Here, we focus on testing how social status, opin-
ion leader, and strong tie based transfer can help predict the type of relationships by
varying the percent of labeled relationships in the target network. In almost all cases,
the TranFG model achieves consistent improvements. The only exception is the case
of MobileD-to-Coauthor in which, when the labeled data in the target network is more
than 80%, SVM works the best in all the methods. There may be two reasons: the first
is the MobileD network is small which limits the ability of transfer and the second
reason is the large proportion of the labeled data in the target network would provide
statistically sufficient data for SVM to learn a good classification model. While, in all
the other cases, the social theories based transfer indeed helps. For example, when
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Fig. 15. Performance of predicting directed relationship with and w/o the status, opinion leader, and
strong/weak tie based transfer by varying the percent of labeled data in the target network.

there are only 10% of labeled advisor-advisee relationships in the Coauthor network,
and the social theories (status, opinion leader, and strong/weak tie) based transfer is
not considered, the F1-score is only 30%. By leveraging the status and opinion leader
based transfer from the email network (Enron), the score is more than doubled (60+%).
With the transfer from the mobile network (MobileD), the prediction accuracy is also
significantly improved (+50%). Moreover, we find that the opinion leader based trans-
fer is more helpful than the social status based transfer with various percents of the
labeled data, while both opinion leader and social status based transfer are more use-
ful than strong/weak tie transfer.
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Table VI. Efficient performance when training TranFG on different networks
(minute).

Data Set None MobileD (T) Coauthor (T) Enron (T)
MobileD(S) 0.77 1.40 0.96 0.69

Coauthor(S) 0.25 1.05 0.40 0.13
Enron(S) 0.01 0.88 0.23 0.01
Data Set None MobileD (T) Coauthor (T) Enron (T)

Slashdot(S) 16.62 27.83 42.05 9.93
Epinions(S) 23.02 35.59 50.48 16.73
MobileU(S) 0.06 16.61 23.22 0.09

9.4. Active Learning Performance
For active learning, in each experiment, we use different active learning algorithms
to select a proportion τ of relationships in the target network to query their labels.
We range the proportion τ from 5% to 50% with an interval of 5%. After each round
of selection, we apply the proposed TranFG model to learn and predict the type of
relationships in the target network. We implement the experiment for 10 times on
each data set and report the average F1-score.

We compare the following active learning algorithms:

— Random: It randomly selects the relationships in the target network to query.
— Maximum Uncertainty (MU): It uses the maximum uncertainty method to select

the most uncertain relationships in the target network to query.
— Maximum Representativity (MR): It uses the maximum representativity

method to select the relationships in the target networks to query.
— Maximum Model Influence (MMI): It considers both attributes associated with

each relationship and the network information to actively select the relationships
in the target network to query.

Figure 2 shows the active learning performance by the different algorithms on four
tasks for predicting social ties across different networks. It can be clearly seen that
the active learning algorithms significantly improve the performance over the random
method. For example, for predicting social ties from Epinions to Slashdot, with the
active learning by the MMI strategy, the performance of using merely 15% of the la-
beled relationships in the target network (Slashdot) is already close the performance
of the random strategy using 30% of the labeled relationships in the target network.
From the results, we can also see that the network information indeed helps. The MMI
strategy incorporates both attributes associated with each relationship and the net-
work information. On average, it reaches a better performance (+2%) than the other
two strategies (MU and MR) which do not consider the network information.

9.5. Efficiency and Scalability Performance
We first evaluate the convergence of the learning algorithm for the proposed model,
and then test its efficiency and scalability.

Convergence Analysis. We conduct an experiment on the effect of the number of
iterations of the loopy belief propagation. Figure 16 shows the convergence analysis
results of the learning algorithm. We see on all the test cases, the learning algorithm
converges in less than 100 iterations. In some cases (such as Slashdot-to-MobileU and
Coauthor-to-Enron), the performance becomes stable after merely 20 iterations. This
suggests that learning algorithm is efficient and has a good convergence property.
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Fig. 16. Convergence analysis of learning algorithm on six different networks.

Efficiency. It took about 1-45 minutes to train the TranFG model over different data
sets (e.g., 42 minutes for learning over the Slashdot and the Epinions networks). The
efficiency of the proposed TranFG model is acceptable, as training the TranFG model
in most test cases can be completed within a few minutes. The most time-consuming
case is to train the transfer model over the Epinions network, which consists of 131,828
nodes and 841,372 relationships. The model learning can be still completed in less than
1 hour. Table VI lists the efficiency performance when training the TranFG model over
different networks. For incorporating social balance and social status into the TranFG
model, we need to count all triads in the source and the target networks. We design an
efficient algorithm which is linear in the number of relationships. The algorithm takes
1-12 minutes to enumerate all triads for the six networks. The algorithm is available
online3.
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Fig. 17. Prediction accuracy (F1-score) by the distributed learning. The red dash line is the accuracy per-
formance on a single machine.

Scalability. Figure 3 shows the scalability performance of the distributed learning
algorithm for the TranFG model. It gives the running time and speedup of the dis-
tributed algorithm with different number of computer nodes (2, 4, 6, 8, 10, 12, 14, 16
cores) used. The speedup curve is close to the perfect line at the beginning. Although
the speedup inevitably decreases when the number of cores increases due to the com-
munication cost, on average, it can achieve ∼ 9× speedup with 12 cores. Please also
note that the speedup performance depends on the structure of the source and the tar-
get networks. For example, the speedup performance of Slashdot-to-Epinions is better
than that of Coauthor-to-MobileD. This is because the speedup performance depends
on the graph partition, which is closely related to the network structure.

We further verify whether the distributed learning will hurt the prediction accu-
racy. Figure 17 shows how the distributed learning influences the prediction accuracy
performance (F1-score). We see that the performance of the TranFG model with dis-
tributed learning only decreases slightly compared with the performance (referred to
as “Perfect” in Figure 17) of model learning on a single machine. When distributed
learning the TranFG model on 16 cores, on average the accuracy only drops 0.8% in
terms of F1-score. We also evaluate the performance of distributed learning by random
partitioning the graph into M subgraphs. Comparing with our method which parti-
tions the graph by METIS (according to the theory of min cut), the random strategy
results into a drop (about 10% drop when learning on 16 cores) on the prediction accu-
racy. This confirms the effectiveness of the design of the distributed learning.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:36 J. Tang et al.

10. RELATED WORK

Inferring Social Ties Inferring social ties is an important problem in social network
analysis. Liben-Nowell et al. [2007] presented a unsupervised method for link predic-
tion. They studied different algorithms and found that the Katz algorithm can achieve
the best performance. Xiang et al. [2010] developed a latent variable model to esti-
mate relationship strength from interaction activity and user similarity. Backstrom
et al. [2011] proposed a supervised random walk algorithm to estimate the strength
of social relationships. Leskovec et al. [2010a] employed a logistic regression model
to predict positive and negative relationships in online social networks. Hopcroft et
al. [2011] studied the extent to which the formation of a reciprocal relationship can
be predicted in a dynamic network. However, most existing works focus on predicting
and recommending unknown relationships in social networks, but ignore the type of
relationships.

Recently, there are several works on inferring the meanings of social relationships.
Diehl et al. [2007] tried to identify the manager-subordinate relationships by learning
a ranking function. Wang et al. [2010] proposed an unsupervised probabilistic model
for mining the advisor-advisee relationships from the publication network. Crandall
et al. [2010] investigated the problem of inferring friendship between people from co-
occurrence in time and space. Eagle et al. [2009] presented several patterns discovered
in mobile phone data, and tried to use these patterns to infer the friendship network.
However, these algorithms mainly focus on specific domains, while our model is gen-
eral and can be applied to different domains. More importantly, our work takes the
first step to incorporate social theories for inferring social ties across heterogeneous
networks. Zhuang et al. [2012] presented a learning framework for inferring social
ties in a single network and also they propose an active learning method. Our pre-
sented active learning algorithm is similar to that in [Zhuang et al. 2012]. The major
difference is that we consider this problem in two different networks, while [Zhuang
et al. 2012] considered the active learning problem in a single network. In our previous
work [Tang et al. 2012], we studied the problem of inferring social ties across hetero-
geneous networks. In this work, we make the extension from the following aspects.
First, we further investigate how strong/weak ties hypotheses influence the formation
of different types of social ties. Second, we give a more detailed definition of the social
theory based transfer features. Third, we evaluate the proposed model on a new data
set MobileD, where we aim to infer manager-subordinate relationships between mobile
users. Last, we present and compare the accuracy performance of inferring social ties
across homogeneous networks and the efficiency performance of the proposed model.

Link Prediction Our work is related to link prediction, which is one of the core
tasks in social networks. Existing works on link prediction can be broadly grouped into
two categories based on the learning methods employed: unsupervised link prediction
and supervised link prediction. We review representative approaches of each category
and highlight the difference between existing works and our effort. Unsupervised link
predictions usually assign scores to potential links based on the intuition - the more
similar the pair of users are, the more likely they are linked. Various similarity mea-
sures of users are considered, such as the Adamic and Adar measure [Adamic and
Adar 2001], the preferential attachment [Newman 2001], and the Katz measure [Katz
1953]. A survey of unsupervised link prediction can be found in [Liben-Nowell and
Kleinberg 2007]. Most of these works study the link prediction task using some macro-
level features, but do not consider the social effects such as social balance effect. Re-
cently, [Lichtenwalter et al. 2010] designed a flow based method for link prediction.
There are also a few works which employ supervised approaches to predict links in
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social networks, such as [Backstrom and Leskovec 2011; Dong et al. 2012; Leskovec
et al. 2010a]. Zhang et al. [2013] studied the problem of link prediction for new users
across aligned heterogeneous social networks. Dong et al. [2015] studied the problem
of link prediction in coupled networks, where the structure information of one (source)
network and the interactions between this network and another (target) network is
available, and the goal is to predict the missing links in the target network.

The main difference between existing works on link prediction and our effort is that
existing works mainly focuses on single network, while our proposed model combines
social theories (such as structural balance, structural hole, and social status) into a
transfer learning framework and can be applied to different domains.

Social Behavior Analysis Another type of related work is social behavior analysis.
Tan et al. [2010] investigated how social actions evolve in a dynamic social network
and propose a time-varying factor graph model for modeling and predicting users’ so-
cial behaviors. Tang and Liu [2011] developed a framework for classifying the type of
social relationships by learning across heterogeneous networks. The type of social re-
lationships is specific and they do not consider learning a general model for inferring
social ties across any different networks. Yang et al. [2010] studied the retweeting be-
havior in the Twitter network. Retweet behaviors between users are very relevant to
social relationships. The strong social tie may result in a higher likelihood of retweet-
ing. Tan et al. [2011] investigated how different types of relationships between users
influence the change of users’ opinion. They found that by incorporating the social
relationships, the performance of user-level sentiment analysis can be significantly
improved. Zhang et al. [2015] proposed a method named COSNET to connect different
networks together and Yang et al. [2015] proposed a method to find matched entities
from different data sets. Dong et al. [2015] tried to infer users’ social status enter-
prise communication networks and study the phenomenon of rich “club”. However, all
these works do not consider inferring social ties across multiple different networks.
Another related research topic is relational learning [Getoor and Taskar 2007]. Re-
lational learning focuses on the classification problems when objects or entities are
presented in relations. A number of supervised methods for link prediction in rela-
tional data have also been developed [Taskar et al. 2003]. In this paper, we extended
the relational learning problem to the transfer learning context and study using social
theories to enhance relational learning.

Transfer Learning Our work is also related to transfer learning, which aims to
transfer knowledge from a source domain to a related target domain. Two main is-
sues in transfer learning are “what to transfer” and “when to transfer” [Pan and Yang
2010]. Many approaches have been proposed by selecting instances from the source do-
main for reuse in the target domain [Dai et al. 2007b; Gao et al. 2008; Liao et al. 2005;
Shi et al. 2008]. There are also many works conducted to transfer features between
different domains. For example, Argyriou and Evgeniou [2006] proposed a method to
learn a shared low-dimensional representation for multiple related tasks. Blitzer et
al. [2006] presented a structural correspondence learning (SCL) approach to induce
the correspondences among features across two domains. Some other works can re-
fer to [Cao et al. 2010; Jebara 2004; Lee et al. 2007; Ando and Zhang 2005]. Recent
years, there are few works about transferring knowledge across heterogeneous fea-
ture spaces [Ling et al. 2008]. For example, Dai et al. [2008] proposed the translated
learning which can transfer the labeled information across two entirely different do-
mains. Argyriou et al. [2008] proposed an algorithm for classification problem in the
heterogeneous environment. Comparing with existing works, this work is different in
the following aspects. First, most existing works only consider homogeneous networks

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:38 J. Tang et al.

(the source and the target network are of the same type), while the networks studied
in our problem are quite different and they could even do not have any overlapping
attribute features. Second, we combine social theory-based features into a transfer
learning framework, while existing methods are mainly concerned with how to find
shared attributes across different domains.

Discusssions Generally speaking, the problem addressed in this paper is different
from traditional research on inferring social ties and link prediction. The major dif-
ference lies in that we study the link prediction problem across different networks.
Another, also more important, contribution of our work to this field is that we sys-
tematically investigate various social theories (e.g., social balance, social status, struc-
tural hole, two-step flow, and strong/weak tie) and design a principled methodology to
combine those social theories into a probabilistic graphical model. From the method’s
perspective, the proposed solution is related to probabilistic graph model and transfer
learning. The proposed framework TranFG itself is developed based on factor graph
models [Kschischang et al. 2001] and the learning algorithm is based on the algorithm
for partially labeled factor graphs [Tang et al. 2011]. Our contribution is to extend
this model to deal with the problem of transfer link prediction. The fundamental chal-
lenge is that no common features can be used to transfer knowledge from the source
network to the target network, which makes it infeasible to directly apply existing
transfer learning methods to this task. TranFG provides an elegant way to bridge two
different networks, by leveraging the common properties (based on the studied social
theories) of different networks. The learning framework is to guarantee that how likely
a common property can be trusted to transfer the knowledge. To the best of our knowl-
edge, this is the first attempt to study the problem of transfer link prediction across
heterogeneous networks using social theories.

11. CONCLUSION AND FUTURE WORK
In this paper, we investigate the problem of inferring the type of social relationships
across heterogeneous networks. More accurately, we study how to accurately infer
social ties in a target network with only few labeled relationships by leveraging in-
formation from a source network. We formulate the problem and propose a transfer-
based factor graph model (TranFG). The model incorporates social theories into a semi-
supervised learning framework, which is used to transfer supervised information from
the source network to help infer social ties in the target network. To further improve
the proposed model, we present several active learning algorithms and a distributed
learning algorithm. We evaluate the proposed model on six different networks. We
show that the proposed model can significantly improve the performance for infer-
ring social ties across different networks comparing with several alternative methods.
With the active learning, we can further obtain a significant improvement on the ac-
curacy performance. The learning algorithm for model can be also easily distributed.
For example, with the distributed learning, we can obtain a 9× speedup with 12 cores.
Through the observation analysis on six different types of networks, our study also
reveals several interesting phenomena.

The proposed framework (TranFG) has many potential applications. For example,
recently, we have applied the framework to help two companies mine social relation-
ships from mobile data and bank-transaction data. From the mobile data, we are trying
to infer family and colleague relationships, which can help the mobile company to rec-
ommend personalized services. From the bank-transaction data, we are trying to infer
the type of relationship between two bank accounts. This would be very useful to help
the bank find new customers. So far, the obtained results are very promising.
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The general problem of inferring social ties represents an interesting research di-
rection in social network analysis. There are many potential future directions of this
work. First, some other social theories can be further explored and validated for ana-
lyzing the formation of different types of social relationships. Next, it is interesting to
further study how to incrementally learning the proposed model so that we can directly
involve online user interactions into the learning process. Another potential issue is to
leverage the results of inferring social ties to help deal with the information overload
problem. For example, in Facebook or Twitter, we may follow thousands of friends, but
frankly we cannot maintain all of them [Gladwell 2000]. Who are in our core circles?
Based on the results in this work, we can further study how to identify core circles
for each social user. It also has many real applications based on the results of social
tie analysis. For example, we can use the inferred social ties to help information rec-
ommendation in the social network. According to the social influence theory, a user’s
connections with different social ties would have very different influence on her/his
behaviors from different aspects.
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Table VII. Features defined on relationship eij (or (vi, vj)) in Epinions/Slashdot [Leskovec et al.
2010a].

Feature Description

in-degree din(vi), din(vj): two features represent the in-degree of node vi and
vj respectively.

out-degree dout(vi), dout(vj): two features represent the out-degree of node vi
and vj respectively.

total-degree din(vi) + dout(vi), din(vj) + dout(vj): two features represent the de-
gree of node vi and vj respectively.

common neighbors The feature represent the total number of common neighbors of vi and
vj in an undirected sense.

Table VIII. Features defined on relationship eij (or (vi, vj)) in MobileU [Tang et al. 2011; Eagle et al.
2009]. The data set records periodic Bluetooth scan information. If one mobile finds another
mobile in a discovery scan, then we say there is a proximity event.

Feature Description (Users vi and vj )

total proximity The feature represents the total number of proximity events between
vi and vj .

in-role The data set specifies some location as working places. The feature
represents the number of proximity events at working place in day
time from Monday to Friday.

extra-role The feature represents the number of proximity events at home or
elsewhere at night of weekends.

total communication The feature represents the number of communication logs between vi
and vj .

night call ratio The feature represents the ratio of communication logs occurred in
the night (20:00pm - 6:00am) between vi and vj .
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Appendix: Feature Definition
There are two categories of features. The first category includes local features defined
for each specific network, and the second includes transfer features defined based on
the social theories. Tables VII-XI give a summary of local feature definitions for the
six networks. For a more detailed description of the feature definitions, please refer to
literature [Diehl et al. 2007; Eagle et al. 2009; Leskovec et al. 2010a; Tang et al. 2011].

For the transfer features, in Epinions, Slashdot and Mobile, we define four (real-
valued) balance triad based features and six (real-valued) structural hole based fea-
tures. In the Coauthor and Enron, we define seven (real-valued) social status based
features (011, 101, 110, 100, 000, 111 and −111) and four (binary) opinion leader based
features.
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Table IX. Features defined on relationship eij (or (vi, vj)) in Coauthor. Pi denotes a set of papers
published by author vi [Tang et al. 2011].

Feature Description

paper count |Pi|, |Pj |: two features represent the number of papers published by
vi and vj respectively.

paper ratio |Pi|/|Pj |: the feature represents the ratio of the number of published
papers by vi to the number by vj .

coauthor ratio |Pi ∩ Pj |/|Pi|, |Pi ∩ Pj |/|Pj |: two features represent the ratio of the
number of common coauthors between vi and vj to the number of
coauthors for each of them respectively.

conference coverage The feature represents the ratio of the number of common publication
venues between vi and vj to the number of publication venues by vj .

first-pub-year diff The feature represents the difference in year of the first earliest pub-
lication of vi and vj .

Table X. Features defined on relationship eij (or (vi, vj)) and vk 6∈ {vi, vj} in Enron(Email
counts) [Diehl et al. 2007].

Feature Description

vi − vj , vj − vi Two features respectively represent the number of emails sent from
vi to vj (or received by vi from vj ).

vi − v¬j , vj − v¬i Two features respectively represent the number of emails sent from
vi (or vj ) to a user (e.g., vk) rather than vj (or vi).

v¬j − vi, v¬i − vj Two features respectively represent the number of emails that vi (or
vj ) received from a user (e.g., vk) rather than vj (or vi).

vk − vi,j The feature represents the number of emails that vi and vj received
from a common user vk together.

Table XI. Features defined on relationship eij (or (vi, vj)) in MobileD. The data set is a mobile
network of enterprise, in which we try to infer manager-subordinate relationships between
users.

Feature Description

total communication The feature represents the number of communication logs between vi
and vj .

call duration The feature represents the sum of the length of all calls between vi
and vj .

night call ratio The feature represents the ratio of the number of communication logs
in the night (20:00pm - 6:00am) between vi and vj to the total number
of calls made between them.

weekend call ratio The feature represents the ratio of the number of communication logs
between vi and vj made in the weekend to the total number of com-
munications.

common neighbors The feature represents the number of common neighbors of vi and vj
in the mobile network.
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