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Abstract 
This paper is concerned with the problem of 

expertise search in a time-varying social network. 
Previous research work on expertise search, aiming at 
finding the most important/authoritative objects, 
usually ignores an important factor - temporal 
information, which reveals a huge amount of 
information contained in large document collections. 
Many real-world applications, for example reviewers 
matching for academic papers and hot-topic finding 
from newsgroup posts need to consider the evolution 
of information over times. In this work, we propose a 
unified model by integrating the temporal information 
into a random walk model. Specifically, the time 
information is modelled in a forward-and-backward 
propagation process in the random walk. The 
proposed model has been applied to expertise search 
in an academic social network. Experimental results 
show that the proposed approach can significantly 
outperform the baseline methods of using the language 
model (2.0% in terms of MAP) and the traditional 
PageRank algorithm (17.2% in terms of MAP). 
1. Introduction 

Expertise search is aimed at finding not only 
relevant but also authoritative objects. It has become 
one of the most important tasks from the emergence of 
the Web. A variety of expertise search techniques have 
been proposed for addressing this problem. 

With the rapid development of the internet, 
characteristics of information on the Web (in particular 
Web 2.0) have been changing dramatically in several 
dimensions: from homogeneously to heterogeneously; 
from statically to dynamically; and from separately to 
intensively socially. An ideal solution to expertise 
search in the new setting should consider all the 
quickly changing characteristics. Unfortunately, most 
of existing approaches for expertise search (partly) 
ignore the change trends of different information. We 
here use an example of expertise search in academic 
research area to demonstrate the problem. 

In the field of academic research, several search 
engines have been developed such as Citeseer, Google 
Scholar, Libra, and Arnenminer.org. The most import- 

ant services in these search engines include finding 
experts, authoritative papers, and authoritative 
conferences. Figure 1 shows an example result of 
expert finding by one of the mentioned search engines. 
The user wants to find a reviewer for an academic 
paper. Thus the query is the title of the paper “The 
boosting approach to machine learning: An overview” 
and the first returned expert is “J. Ross Quinlan”. By 
carefully analyzing the research career of “J. Ross 
Quinlan”, we found that most of his research papers 
have been published before 2000 and after that he 
shifted his interest to business, which implies that “J. 
Ross Quinlan” may not be the most appropriate 
reviewer to the paper. 

Figure 1. Example of reviewer finding 
From this example, we can also see that it is highly 

ineffective to use traditional methods for expertise 
search in the fast changing social networks due to the 
natural disadvantages of the methods: (1) most of the 
existing methods view the different types of objects 
(e.g., papers, conferences, and authors) as a 
homogeneous object. The relationships between 
different types of objects are thus also viewed with the 
same weight, which would make the random walk 
style methods (e.g., PageRank [19]) result in 
unsatisfactory results; (2) most of the methods focus 
on finding the “general” expertise objects and ignore 
the temporal information and trends. In fact, the 
ranking list always changes over time, not only for a 
specific person or paper, but also at a more global level. 
The temporal information (even strongly) affects the 
results of expertise search (as shown in Figure 1).  

In this paper, we aim to conduct a thorough 
investigation on the problem. First, we formalize the 
heterogeneous social network within a random walk 



model. In the model, different types of objects and 
different types of relationships are modelled as 
different types of nodes and different types of links. 
Next, for modelling the time-varying information, we 
conduct a temporal forward-and-backward propagation 
in the random walk model. Experimental results 
indicate that our method significantly outperforms the 
baseline methods of using the language model (2.0% 
in terms of MAP) and the PageRank (17.2%).  

The rest of the paper is organized as follows. In Sec. 
2, we introduce notations and preliminary knowledge 
about graph model and random walk. In Sec. 3, we 
propose two methods to combine temporal information 
into the random walk model. In Sec. 4, we discuss the 
experimental results and in Sec. 5, we review related 
work. Finally, we conclude the paper. 
2. Preliminary 

We first briefly introduce the heterogeneous graph 
model and a basic random walk model. 
2.1. Graph model 

A heterogeneous network can consist of two 
components: time-intra social network and time-inter 
social network. For simplicity, we will use an 
academic social network as the example in the 
following explanation. We will describe the time-intra 
social network in this section and describe the time-
inter social network in the next section. 

In the academic network, the time-intra network is 
composed of three composite networks. At the centre 
is the directed graph of paper citations Gc = (Vc, Ec), 
where Vc is the set of all the papers and a directed edge 
(di, dj) ∈Ec suggests the paper di cites paper dj. To 
model the author-paper publication relationship, we 
have a bipartite graph Gac = (Va∪Vc, Eac), where Va is 
the set of authors, Vc is the set of papers, and the 
author-paper relationship is recorded in the edge-set 
Eac. The relationship between papers and publication 
locations is modelled by the bipartite graph Glc = 
(Vl∪Vc, Elc), where Vl is the set of publication 
locations, Vc is the set of papers, and the publication 
location-paper relationship is recorded in Elc. 
Essentially, if ai is the author of paper dj, then there is 
an edge {ai, dj }∈Eac, similarly for a paper dj 
published at a location ck we have an edge {ck, 
dj }∈Elc. 

We combine these different graphs to form a 
heterogeneous graph centred by the citation network: 
G = (Vc∪Va∪Vl, Ec∪Eac∪Elc). In addition, for the 
sake of random walk, we represent each undirected 
edge in the bipartite graph as two directed edges, i.e. 
{vi, vd} = (vi, vd) (∪ vd, vi). Further, we define a graph 
which describes the transition probabilities between 
different types of nodes (cf. Figure 2). Clearly, we 

need λcc + λca + λcl = 1. We also define λac = λlc = 1. 
This transition graph formalizes a random surfer’s 
behaviour as follows. A random surfer will have the λcc 
probability to stay in the paper citation network, and 
will have λca and λcl probabilities to find authors and 
conferences related to the paper. Since the paper 
citation network provides the objective measure for 
other information sources, our main focus is on this 
network. Thus, our model assumes that users will 
directly jump back to the paper citation network from 
the other two networks with probability λac = λlc = 1. 

 
Figure 2. Transition probability 

2.2. Random walk 
We conduct a random walk over the time-intra 

network. The random walk transforms the entire 
network to a stochastic matrix (M), defined as follows:  

Let di, dj ∈Vc: 
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where Out_Degree(di→Vc) is the number of 
directed edges from di to the nodes in Vc. 
Out_Degree(di→Va) and Out_Degree(am→Vc) are 
similarly defined. Further, we can define P(ck | di) and 
P(di | ck) similarly where ck ∈Vl. 

DEFINITION 1. The rank vector r is a stationary 
distribution of the matrix M: 

r = Ar, A = MT 
Similar to the page rank algorithm, we introduce a 

random jump parameter β, which allows a surfer to 
randomly jump to any node in the network: 

M´ = (1-β)M +βE, E = (1/n,…,1/n)T(1,…,1) 
where n is the number of nodes in the network G, that 
is n = |Vc|+ |Va|+ |Vl|. Given this, we can use an iterative 
method to find the rank vector r. The transition 
probability between two paper di and dj becomes: 
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Other probabilities can be similarly defined as: 
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Note that this random walk corresponds to the 
following authority ranking schema where the ranking 
of each node is determined by its neighbours, i.e. 
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3. Temporal academic search 
We propose two ranking methods for academic 

search for incorporating the temporal information into 
the random walk model.  
3.1. Aggregation method 

The basic idea of the first method is straightforward. 
We separate the heterogeneous social network G into 
several networks on different time slices {Gs}. The 
superscript s denotes the number of the time slice. 
Next we conduct a random walk on each time-window 
graph Gs and then combine the results of ranking 
scores obtained from different time-window graphs.  

In this method, we can easily adjust the weights of 
networks on different time-windows. For example if 
we are interested in the recent active objects, we can 
set a higher weight to objects occurring in the current 
time-window, while a lower weight to objects in 
previous time-windows. We use a decay factor to 
control the scores obtained from different windows. 
Thus, the score of paper dj can be defined as follows: 

1
( ) ( )
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j j
s
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=
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where t is the timestamps of the last time-window; α is 
the decay factor and αt-s is the factor to penalize score 
that is obtained from previous time-window s. We can 
similarly define the final ranking score for author ai 
and conference ck: 

1
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The disadvantage of the method is that the 
dependencies between different time-windows are 

modeled with the same weight, as the parameter α is 
the only factor used to control the dependency. 
3.2. Temporal random walk 

The second method is to integrate the time-varying 
dependencies directly into the random walk. Assuming 
that we have timestamps {1, 2,…, t}, we define Gs as 
the time-intra social network and G(s-1)s as the time-
inter network, where G(s-1)s is a bipartite graph between 
neighbouring time-intra networks G(s-1) and Gs. Again, 
we introduce two transition probabilities: forward-
transition probability λf and backward-transition 
probability λb, respectively representing that a surfer in 
G(s-1) has probability λf to random walk to objects in Gs 
and has probability λb to random walk back to objects 
in a previous time-intra network. Figure 3 shows the 
graphical representation of the temporal random walk. 

 
Figure 3. Temporal random walk 

We see that there is a bipartite temporal-edge 
between objects when it appears both in (s-1) and s 
time-windows. Note that an object in this model can 
appear in more than one time-window networks, e.g., a 
paper was published at time-window (s-1) and was 
cited in time-window s. Now for papers, we have λcc + 
λca + λcl +λf +λb = 1. For authors and conferences, we 
have λac +λf +λb = 1 and λlc +λf +λb = 1, respectively.  

Intuitively, we use (λf +λb) to control how important 
the temporal information will affect the final expertise 
score with the two parameters, λf and λb, controlling the 
bias of the temporal information. 

In the temporal random walk, the probabilities of a 
random surfer moving between authors, papers, and 
conferences are defined in the same way as those in 
equations (4)-(8). Here, the interpretation of the 
random jump parameter β is the probability that a 
surfer randomly jumps into any node in any time-
window graph. For the transition probabilities of a 
random surfer moving forward or backward between 
time-inter networks, the definitions are as follows: 
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where ui denotes an object in the time-varying network, 
for example, an author, a paper or a conference; n is 
the total number of the nodes in the network; 
Out_Degree(ui

s→Vs-1) is the number of directed edges 
from ui

s to nodes in the time-window (s-1). In our 
setting, temporal edges only exist between the same 
objects in the neighbouring time-windows. Thus, 
Out_Degree(ui

s→Vs-1)  equals to 1, or does not exit 
(the object ui has never appeared before time-window 
s). Similarly, we can define P(ui

s+1| ui
s) as follows: 

1
1
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s s
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Finally, the ranking score for a paper di in time-
window s is defined as follows: 
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For an author am and a conference ck we similarly 
have: 
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In the temporal random walk model, we introduce a 
virtual node. That is, if a node starts appearing in time-
window s and is not active in time-window (s+1), we 
then create a virtual node for it in time-window (s+1). 
This means that once a node appear in a time-window, 
it will continue existing in all of the following time-
windows. The virtual node idea has an intuitive 
explanation: if a person once published papers in 
several years and does not publish any paper after that, 
she/he will be not active any more in the recent time-
windows. By introducing the virtual node to represent 
the person in recent time-windows, we can obtain a 
positive expertise score for her/him in the recent time-
windows. But, the score will decrease with time if this 
person continues to be not active. This virtual node 
method can be also viewed as a smoothing technique. 
4. Experiment 
4.1. Preparation 

We evaluated the proposed methods in the context 
of Arnetminer (http://arnetminer.org) [21]. Arnetminer 
has been in operation online for two years. It gathered 
information of 448,365 researchers and 880,522 
publications from the Web databases, pages, and files.  

We evaluated our methods and the baseline 
methods on a subset of academic social network in 
Arnetminer. In total, the data set contains 15,169 
citation relationships, 29,293 bi-directional authorship, 
10,619 bi-directional paper-publish_at relationships 
and 26,368 bi-directional temporal relationships when 
setting time interval as 5 years. The timestamps of the 
papers span 33 years (from 1975 till present). 

We collected seven queries for evaluation purpose. 
Specifically, we selected the most frequent queries 
from the log of Arnetminer (by removing overlap 
specific or lengthy queries, e.g., “A Convergent 
Solution to Tensor Subspace Learning”). We also 
normalized similar queries (e.g., “Web Service” and 
“Web Services” to “Web Service”).  

It is difficult to find a standard data set with ground 
truth. We employed the method of pooled relevance 
judgement [5] together with human judgements.  

Specifically, for each query, we gathered the top 30 
results from several similar academic search engines: 
Libra author search, Rexa authors search, and 
Arnetminer. We merged all the results together by 
removing ambiguous names (e.g., person with name 
“L. Liu”) and names that do not exist in Arnetminer. 

Then five senior graduates and two faculties were 
asked to provide judgements. Four grade scores (top 
expertise, expertise, marginal expertise, and not 
expertise) were asked to assign to each author, paper, 
and conference respectively. A specification was 
provided to guide the annotation process. For example, 
for paper ranking, the relevance and importance of 
each paper was evaluated based on the content 
relevance, cited number, published year, and impact to 
the field. The final golden ground truth was obtained 
by using “majority voting” for the judgements. 

We evaluated performances of expertise search in 
each time-window (i.e., 1975-1979, 1980-1984, 1985-
1989, 1990-1994, 1995-1999, 2000-2004, 2005-now).  

In all experiments, we conducted evaluation in 
terms of P@5, P@10, P@20, R-pre, Recall and mean 
average precision (MAP). Readers are referred to [5, 
11] for details of the measures.  
4.2. Experimental setting 

We use language model (LM) [3] and PageRank 
[19] as baseline methods. When calculating the 
ranking results in different periods, language model 
only utilized the data available before that period. 
Specifically, to get the author results in 1990, language 
model only used the papers published before 1990. We 
calculated the relevance between a document d and a 
query q as follows [3]: 

( , ) ( , ) | |( | ) (1 ) ,
| | | | | |

i

i i
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d D d

λ λ λ
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where ti is the i-th term in the query q; |d| is the length 
of document d; tf(ti, d) is the term frequency of term ti 
in document d; |D| is total number of word tokens in 
the document collection D; tf(ti, D) is the term 
frequency of term ti in D; λ is a parameter ranging in [0, 
1] and is often set based on the length of document d; 
µ is another parameter and is commonly set as the 
average document length in D. 

For authors or conferences, we merge all documents 
of a candidate (i.e., an author candidate or a conference 
candidate) together and treat as a virtual document [26]. 
We can also use equation (20) to calculate the 
relevance between a candidate and a query. 

Another baseline method is PageRank, a popular 
method to calculate the importance of Web pages. The 
PagrRank r(ui) of an object ui is defined as [19]: 
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( ) (1 )

_ ( )
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where n is the total number of the objects; 
Out_Degree(uj) is the number of directed edges from uj  
to others; β  is a random jump parameter, which 
denotes the probability of a random surfer randomly 
jumps to another node in the network. In PageRank, 
we view the different types of objects as a unique 
homogeneous object and set the weights of different 
types of relationships equally. 
4.3. Experimental results 
4.3.1. Comparison with baseline methods. We 
performed experiments using the language model 
(LM), PageRank and the two proposed methods 
(shortly Aggregation and T-Random). For the 
parameter λcc , λca , and  λcl in the proposed methods, 
we set them based on analysis of the logs in the 
Arnetminer system from October, 2006 to July, 2007. 
Specifically, λcc represents how likely a user would 
click a cited paper when viewing the current paper; λca 
denotes how likely the user would click its authors of 
the current paper; and λcl denotes how likely the user 
would click the published venue of the current paper. 
Finally, we obtained the ratio of three parameter, that 
is, λcc:λca:λcl = 0.7:0.29:0.01. In addition, we set the 
random jump parameter β = 0.15. For the parameter λf 
and λb, we range the ratio of these two parameters from 
0 to 1 with 0.1 as interval. Finally, to analyse the effect 
of the weight of time-intra network and time-inter 
network, we similarly range the ratio of the two set of 
parameters ((λcc + λca + λcl ):(λf + λb) ) from 0 to 1 with 
0.1 as interval. 

Table 1 shows the experimental results by 
evaluating the ranking lists of the current period. The 
results of Aggregation and T-Random are the best 
results obtained by tuning parameters. We can see that 
both of the proposed methods perform better than the 

baseline methods of using language model and 
PageRank. For example, in terms of P@5, the 
improvements are respectively +4.3% and +9.1% 
compared to language model. The baseline methods 
treat information located at different time-windows 
with the same weight and thus cannot distinguish 
current authoritative objects from those only active in a 
specific period. 

Table 1. Performances of four approaches (%) 
Method Object P@5 P@10 P@20 R-pre MAP

LM 

Paper 28.6 30.0 32.9 13.0 34.6
Author 65.7 44.2 27.1 58.0 71.9

Conference 54.2 34.3 22.1 46.7 58.3
Average 43.3 36.2 27.4 39.2 54.9

Page-
Rank 

Paper 12.7 15.8 20.1 6.1 23.1
Author 40.0 32.9 22.9 82.6 47.1

Conference 48.6 31.4 22.9 89.1 48.8
Average 33.8 26.7 22.0 45.8 39.7

Aggreg-
ation 

Paper 25.7 24.3 36.4 14.5 36.5
Author 62.9 42.9 24.3 56.0 72.2

Conference 54.3 35.7 22.1 46.7 58.7
Average 47.6 34.3 27.6 39.0 55.8

T-
Random

Paper 37.1 32.9 29.3 14.6 32.8
Author 71.4 42.9 25.0 61.6 80.0

Conference 48.6 35.7 22.1 44.8 58.1
Average 52.4 37.1 25.5 40.3 56.9
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Figure 4. MAP for different types of objects  

4.3.2. Time sensitivity. We conducted sensitivity 
analysis to the time information of different objects 
ranking. Figure 4 shows MAP of authors, papers, and 
conferences with different ratio of λf and λb in the 
temporal random walk when setting λcc + λca + λcl = 0.8. 
We can see that author ranking is more sensitive than 
paper and conference. This is because: (1) one’s 
research interest may change a lot over time. For 
example, “Raymond J. Mooney” focused on machine 
learning before 1997. Afterwards, his research 
switched to machine learning applications such as 
Natural Language Processing and Data Mining; (2) 
one’s research work may be interrupted or terminated 
due to some accidents, e.g., switch to business; and (3) 
there are often rising ‘stars’ in a research field (a junior 
researcher quickly grows up). Compared with authors, 
conferences and papers seem to be more stable. They 
do change with time but the changes are smooth. 

Table 2 shows the expertise search performances by 
different methods in each time-window. We can see 
that T-Random outperforms baseline methods in terms 



of almost all evaluation measures. Figure 5 shows 
MAP measure of three methods in each time-window 
respectively. We see an interesting pattern: in the 
earlier period (say from 1984 to 1990’s), the language 
model and PageRank based methods obtain very 
unsatisfactory results as they only use the information 
occurred before that period. In contrast, T-Random 
takes into account the temporal information and thus 
results into better performances.  

Table 2. Performances in each time-window (%) 
Method Period P@5 P@10 P@20 Recall R-pre MAP

LM 

1980-1984 — — — 22.2 — 70.0
1985-1989 46.7 13.3 — 18.3 — 61.2
1990-1994 60.0 50.0 33.3 57.2 47.2 65.5
1995-1999 33.3 46.7 30.0 52.2 38.3 49.1
2000-2004 33.3 30.0 23.3 42.8 32.8 38.7
2005- now 40.0 23.3 1.7 24.0 18.9 48.1
Average 42.7 32.7 20.1 36.1 34.3 55.4

PageRank 

1980-1984 — — — 22.2 — 70.0
1985-1989 40.5 10.6 — 18.3 — 48.8
1990-1994 50.0 31.4 23.9 47.4 54.7 45.4
1995-1999 47.5 31.1 25.4 41.5 33.5 40.8
2000-2004 33.1 30.0 24.0 37.4 35.3 36.2
2005- now 35.0 27.4 22.6 25.8 45.8 38.8
Average 41.2 26.1 24.0 32.1 42.3 46.7

Aggregation 

1980-1984 53.3 30.0 15.0 100 63.5 75.1
1985-1989 66.7 50.0 33.3 55.9 42.1 63.7
1990-1994 66.7 53.3 45.0 67.2 48.9 64.7
1995-1999 33.3 43.3 30.0 52.2 38.3 49.1
2000-2004 33.3 30.0 21.7 42.8 31.1 38.6
2005- now 40.0 23.3 15.0 28.8 23.2 53.5
Average 48.8 38.3 26.7 57.8 41.2 57.4

T-Random 

1980-1984 53.3 30.0 10.0 74.6 63.5 94.4
1985-1989 73.3 60.0 45.0 79.7 51.7 65.4
1990-1994 66.7 53.3 45.0 67.2 48.9 64.7
1995-1999 33.3 43.3 30.0 52.2 38.3 49.1
2000-2004 33.3 30.0 23.3 42.8 32.8 39.1
2005- now 33.3 23.3 15.0 28.8 21.8 61.3
Average 48.9 40.0 28.1 57.3 42.8 62.3
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Figure 5. Baseline methods vs. T-Random (MAP) 
4.3.3. Example analysis. Table 3 shows an example of 
ranking lists for the query “Machine Learning” 
obtained by the temporal random walk in different 
periods and ranking lists in the last time-window 
obtained by language model and Pagerank. Each paper 
is labeled with the time when this paper was published. 
From the column of papers, we can see that the 
temporal random walk, with the current parameter 
setting, tends to retrieve the “fresh” papers which may 
not the most important papers in the whole history but 

has great impact (e.g., hot topics) in the current period. 
From the column of conferences, we found that at the 
beginning of machine learning, papers on Machine 
Learning were primarily published on the conferences 
related to Artificial Intelligence. With the development 
of machine learning, several journals and conferences 
focusing on the machine learning issues came up, such 
as Machine Learning, ICML. From the column of 
authors, the top five authors in each period just match 
the active period of there authors. 
4.3.4. Changes analysis. PageRank is used to evaluate 
the general importance of the objects whereas does not 
consider the dynamic changes of the links and objects 
themselves. Similarly, language model cannot 
distinguish the change trends either. We conducted 
analysis for the change trend of authors’ interests and 
conferences obtained by the temporal random walk. 
Here, we use two examples to present our observations.  

As a case study, we plot the ranking results of 
“Raymond Mooney” on three topics (“Natural Language 
Processing(NLP)”, “Theory Refinement(TR)” and “Text 
Mining(TM)”) obtained from the temporal random walk 
method by setting time-window size as one year. 
Figure 6 shows Raymond Mooney’s ranking score 
changes with time. We can find that “Raymond 
Mooney” was retrieved as an expert in the field of 
natural language processing by T-Random in the entire 
period, though the ranking score changes over time. 
For another two topics, “Raymond Mooney” was 
considered as an expert only in a specific period. After 
checking his publications and research activities from 
1985 to 2006, we found the evolution of his research 
interests match well his ranking changes over time. 
This confirms that the proposed model can effectively 
detect the trend of people’s research interests. 
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Figure 6. Ranking score evolution 
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Figure 7. The evolution of SIGKDD on “Web Mining” 
We also made an analysis on the changes of 

conference ranking. Similarly, in Figure 7(a), we show 



the evolution of SIGKDD’s ranking score on the topic 
of “Web Mining” from 2000 to 2007. Through the 
trend, we see that SIGKDD gradually placed more 
emphasis on web mining. Figure 7(b) displays the 
statistics obtained by counting the number of papers on 
web mining in SIGKDD 2000-2007. We see that the 
trend statistics is quite similar to our ranking evolution.   
5. Related work 

Random walk theory gained popularity in computer 
science with the emergence of the large number of 
Web-based networks. Considerable papers on link 
analysis have appeared. For example, HITS is a well-
known link analysis algorithm [14], which divides the 
notion of importance of Web pages into two related 
attributes: hub and authority, and calculates two scores 
respectively for each page via the linkage between 
pages. PageRank is another state-of-the-art algorithm 
proposed by Brin and Page for estimating the 
importance of a Web page [19]. The basic idea in 
PageRank is to calculate the importance of each Web 
page based on the scores of the pages pointing to the 
page and thus Web pages pointed by many high 
quality pages become more important.  

Based on PageRank, numerous extensions were 
proposed to special environments. For example, Xi et 
al [23] propose a unified link analysis frame work 
called link fusion to consider both inter- and intra- type 
link structure among multi-type data objects. Nie at al 
[17] propose an object-level link analysis model, called 
PopRank, to rank the objects within a specific domain. 
Liu et al [15] study a weighted, directed co-authorship 
network in digital libraries, and propose an 
AuthorRank algorithm to rank authors. A recent work 
also looks into random walk for learning on the 
subgraph its relation with the complement of it [13]. 
See also [7, 9, 10, 20, 25, 27]. 

Recently, Yu et al. [24] argue that the current 
famous search algorithms, such as PageRank and HITS, 
miss an important dimension of the Web, the temporal 
dimension. Berberich et al [6] indicated that temporal 
aspects should be taken into account in link analysis 
when computing the importance of a page and 
introduced T-Rank, a link analysis approach 
considering the freshness and activity of both pages 
and links. Amitay et al. [2] argue that if a page’s last 
modification date is available then search engines will 
be able to provide more timely results and better reflect 
current real-list trends. Alonso et al. [1] propose that 
current information retrieval systems and applications 
do not take advantage of all the time information. They 
show some of the areas that can benefit from 
exploiting such temporal information. Nunes [16] 
indicated that the web is very active, exhibiting both 

high decay rates and high creation rates, and 
summarized two kinds of sources of temporal 
information on the web, namely document-based 
evidence and web-based evidence. On the other hand, 
temporal analysis has aroused many attentions these 
years. Berberich et al. [4] proposed the BuzzRank 
method that quantifies trends in time series of 
importance scores. Nallapati et al. [18] proposed a 
Multiscale Topic Tomography Model (MTTM) to 
model the evolution of topics with the time. In [21], 
each topic is associated with a continuous distribution 
over word co-occurrences and document’s timestamp. 
Chi et al. [12] utilized the temporal and structural 
information to extract the communities. Backstrom et 
al. [8] studied the ways of communities in social 
networks growing over time at the level of individuals 
and their decisions to join communities.  
6. Conclusion 

In this paper, we have investigated the problem of 
expertise search in a heterogeneous social network. We 
have formalized the heterogeneous social network 
using a random walk model. For modelling the time-
varying information, we have proposed a temporal 
random walk model by integrate a time-forward and -
backward propagation in the random walk. 
Experimental results show that improvements can be 
obtained by comparison of the baseline methods. 
Another advantage of the proposed model is that it is 
easy to control the balance between information 
located at different time-windows. 
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Table 3. The top ranking results in different periods obtained by T-Random for “Machine Learning” 
Period Authors Conferences Papers 

1979 Tom M. Mitchell IJCAI A Model for Learning Systems (1977) 

1984 
Pat Langley(new) 

Tom M. Mitchell(1) 
Dana S. Nau(new) 

AI Magazine 
IJCAI 

COLING 

Learning from Solution Paths: An Approach to the Credit Assignment Problem (1982) 
A Model for Learning Systems (1977) 

1989 

Thomas G. Dietterich 
Nicholas S. Flann 
Tom M. Mitchell 
Richard M. Keller 

Machine Learning 
ML 

IJMMS 
Cognitive Science 

Learning at the Knowledge Level (1986) 
A Study of Explanation-Based Methods for Inductive Learning (1989) 

Explanation-Based Generalization: A Unifying View (1986) 
Limitations on Inductive Learning (1989) 

1994 

Pat Langley 
Ryszard S. Michalski  
Raymond J. Mooney  

Jude W. Shavlik  

Machine Learning 
AAAI 

JCAMD 
NIPS 

Elements of Machine Learning (1994) 
Inferential Theory of Learning as a Conceptual Basis for Multistrategy Learning (1993) 

Symbolic and Neural Learning Algorithms: An Experimental Comparison (1991) 
An Integrated Framework for Empirical Discovery (1993) 

1999 

Thomas G. Dietterich  
Vladimir Vapnik  

Pat Langley  
Raymond J. Mooney  

Machine Learning 
Commun. ACM 

AI Magazine 
ACM Comput. Surv. 

Encouraging Experimental Results on Learning CNF (1995) 
Support-Vector Networks (1995) 

Machine-Learning Research (1997) 
Machine Learning (1996) 

2004 

Olvi L. Mangasarian  
Ryszard S. Michalski  

Vladimir Vapnik 
Dayne Freitag  

Machine Learning 
JMLR 
ICML 

SSPR/SPR 

Machine Learning for Information Extraction in Informal Domains (2000) 
Selecting Examples for Partial Memory Learning (2000) 

Learnable Evolution Model: Evolutionary Processes Guided by Machine Learning (2000) 
Choosing Multiple Parameters for Support Vector Machines (2002) 

now 

Glenn Fung  
Olvi L. Mangasarian  
Nicholas Kushmerick 

Fabio Ciravegna 

Machine Learning 
ICML 
KDD 

JASIST 

Multicategory Proximal Support Vector Machine Classifiers (2005) 
Evaluating machine learning for information extraction (2005) 

Additive regularization trade-off: fusion of training and validation levels in kernel methods (06) 
Supervised clustering with support vector machines (2005) 

LM 
(Now) 

Thomas G. Dietterich 
Pat Langley 

Vladimir Vapnik 
Raymond J. Mooney 

Machine Learning 
JMLR 
ICML 

Commun. ACM 

Learning at the Knowledge Level (1986) 
Machine Learning for Information Extraction in Informal Domains (2000) 

Elements of Machine Learning (1994) 
Encouraging Experimental Results on Learning CNF (1995) 

PageRank 
(Now) 

Thomas G. Dietterich 
Raymond J. Mooney 

Daphne Koller 
Vladimir Vapnik 

ICML 
AAAI 

Machine Learning 
NIPS 

C4.5: Programs for Machine Learning (1993) 
Lessons Learned from Applying AI to the Web (2000) 

PRODIGY: An Integrated Architecture for Planning and Learning (1991) 
Comparative experiments on learning information extractors for proteins and their interactions (05)


