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ABSTRACT
It is well known that different types of social ties have essen-
tially different influence on people. However, users in online so-
cial networks rarely categorize their contacts into “family”, “col-
leagues”, or “classmates”. While a bulk of research has focused on
inferring particular types of relationships in a specific social net-
work, few publications systematically study the generalization of
the problem of inferring social ties over multiple heterogeneous
networks. In this work, we develop a framework for classifying
the type of social relationships by learning across heterogeneous
networks. The framework incorporates social theories into a fac-
tor graph model, which effectively improves the accuracy of in-
ferring the type of social relationships in a target network by bor-
rowing knowledge from a different source network. Our empirical
study on five different genres of networks validates the effective-
ness of the proposed framework. For example, by leveraging infor-
mation from a coauthor network with labeled advisor-advisee rela-
tionships, the proposed framework is able to obtain an F1-score of
90% (8-28% improvements over alternative methods) for inferring
manager-subordinate relationships in an enterprise email network.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Miscellaneous; H.2.8
[Database Management]: Data Mining; H.3.3 [Information
Search and Retrieval]: Text Mining

General Terms
Algorithms, Experimentation

Keywords
Inferring social ties, Social network, Predictive model, Social in-
fluence analysis

1. INTRODUCTION
Our social networks are complex and consist of many overlap-

ping parts. Nobody exists merely in one social network. People
are connected via different types of social ties in different net-
works. For example, in an enterprise email network, where people
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are connected by sending/receiving emails to/from others, relation-
ships between people can be categorized into manager-subordinate,
colleague, etc.; in a mobile communication network, the relation-
ship types could include family, colleagues, and friends. It is well
known that the different types of social ties have essentially differ-
ent influence on people. A graduate’s research topic may be mainly
influenced by his or her advisor, while other parts of his everyday
life will be more influenced by his close friends. Awareness of these
different types of social relationships can benefit many applica-
tions. For example, if we could have extracted friendships between
users from a mobile communication network, we can leverage the
friendships for a “word-of-mouth” promotion of a new product.

However, in most online networks (e.g., Facebook, Twitter,
LinkedIn, YouTube, and Slashdot), such information (relationship
type) is usually unavailable. Users may easily add links to others
by clicking “friend request”, “follow” or “agree”, but do not often
take the time to create labels and maintain their friend list. Indeed,
one survey of mobile phone users in Europe shows that only 16%
of users have created contact groups on their mobile phones [10,
26]; our preliminary statistics on the LinkedIn data also shows that
more than 70% of the connections have not been well labeled. In
addition, the availabilities of labeled relationships in different net-
works are very unbalanced. In some networks, such as Slashdot, it
might be easy to collect the labeled relationships (e.g., trust/distrust
relationships between users). However, in most other networks, it
may be infeasible to obtain the labeled information. A challeng-
ing question is: can we leverage the labeled relationships from one
network to infer the type of relationships in another totally different
network?

Motivating Examples To clearly illustrate the problem, Figure 1
gives an example of inferring social ties across a product-reviewer
network and a mobile communication network. In Figure 1, the
left sub-figure is the input to our problem: a reviewer network,
which consists of reviewers and relationships between reviewers;
and a mobile network, which consists of mobile users and their
communication relationships (via calling or texting message). The
right sub-figure shows the output of our problem: the inferred so-
cial ties in the two networks. In the reviewer network, we infer the
trust/distrust relationships and in the communication network, we
identify friendships, colleagues, and families. The middle of Figure
1 is the component of knowledge transfer for inferring social ties
in different networks. This is the key objective of this work. The
fundamental challenge is how to bridge the available knowledge
from different networks to help infer the different types of social
relationships.

The problem is non-trivial and poses a set of unique challenges.
First, what are the fundamental factors that form the structure of
different networks? Second, how to design a generalized frame-
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Figure 1: Example of inferring social ties across two hetero-
geneous networks: a product-reviewer network and a mobile
communication network.

work to formalize the problem in a unified way? Third, as real so-
cial networks are getting larger with hundreds of millions of nodes,
how to scale up the model learning algorithm to adapt to the growth
of large real networks?

Results In this work, we aim to conduct a systematic investiga-
tion of the problem of inferring social ties across heterogeneous
networks. We precisely define the problem and propose a transfer-
based factor graph (TranFG) model. The model incorporates social
theories into a semi-supervised learning framework, which can be
used to transfer supervised information from a source network to
help infer social ties in a target network.

We evaluate the proposed model on five different genres of net-
works: Epinions, Slashdot, Mobile, Coauthor, and Enron. We show
that the proposed model can significantly improve the performance
(averagely +15% in terms of F1-Measure) for inferring social ties
across different networks comparing with several alternative meth-
ods. Our study also reveals several interesting phenomena for so-
cial science:

• Social balance is satisfied well on friendship (or trust) net-
works; but not (< 20% with a large variance) on user com-
munication networks (e.g., mobile communication network).

• Users are more likely (up to +152% higher than chance) to
have the same type of relationship with a user who spans
a structural hole. Disconnected users have an even higher
likelihood.

• It was validated that social status is satisfied in many net-
works. We further discover that several frequent forms of
triads have a similar distribution in different networks (Coau-
thor and Enron).

• Opinion leaders are more likely (+71%-+84%) to have a
higher social status than ordinary users.

Organization Section 2 formulates the problem; Section 3 intro-
duces the data set and our observations over different networks.
Section 4 explains the proposed model and describes the algorithm
for learning the model; Section 5 gives the experimental setup and

Section 6 presents the results; finally, Section 7 discusses related
work and Section 8 concludes.

2. PROBLEM DEFINITION
In this section, we first give several necessary definitions and

then present the problem formulation. To simplify the explanation,
we frame the problem with two social networks: a source network
and a target network, although the generalization of this framework
to multiple-network setting is straightforward.

Let G = (V,EL, EU ,X) denote a partially labeled social net-
work, where EL is a set of labeled relationships and EU is a set
of unlabeled relationships with EL ∪ EU = E; X is an |E| × d
attribute matrix associated with edges in E with each row corre-
sponding to an edge, each column an attribute, and an element xij

denoting the value of the jth attribute of edge ei. The label of edge
ei is denoted as yi ∈ Y , where Y is the possible space of the labels
(e.g., family, colleague, classmate).

Input: The input to our problem consists of two partially la-
beled networks GS (source network) and GT (target network) with
|EL

S | � |EL
T | (with an extreme case of |EL

T | = 0). Please note
that the two networks might be totally different (with different sets
of vertexes, i.e., VS ∩ VT = ∅, and different attributes defined on
edges).

In real social networks, the relationship could be undirected
(e.g., friendships in a mobile network) or directed (e.g., manager-
subordinate relationships in an enterprise email network). To keep
things consistent, we will concentrate on the undirected network. In
addition, the label of a relationship may be static (e.g., the family-
member relationship) or change over time (e.g., the manager-
subordinate relationship). In this work, we focus on static rela-
tionships.

Learning Task: Given a source network GS with abundantly la-
beled relationships and a target network GT with a limited number
of labeled relationships, the goal is to learn a predictive function
f : (GT |GS) → YT for inferring the type of relationships in the
target network by leveraging the supervised information (labeled
relationships) from the source network.

Without loss of generality, we assume that for each possible type
yi of relationship ei, the predictive function will output a proba-
bility p(yi|ei); thus our task can be viewed as obtaining a triple
(ei, yi, p(yi|ei)) to characterize each link ei in the social network.
There are several key issues that make our problem formulation
different from existing works on social relationship mining [4, 6,
27, 29, 30]. First, the source network and the target network may
be very different, e.g., a coauthor network and an email network.
What are the fundamental factors that form the structure of the net-
works? Second, the label of relationships in the target network and
that of the source network could be different. How reliably can
we infer the labels of relationships in the target network by using
the information provided by the source network? Third, as both
the source and the target networks are partially labeled, the learn-
ing framework should consider not only the labeled information but
also the unlabeled information.

3. DATA AND OBSERVATIONS

3.1 Data Collection
We try to find a number of different types of networks to in-

vestigate the problem of inferring social ties across heterogenous
networks. In this study, we consider five different types of net-
works: Epinions, Slashdot, Mobile, Coauthor, and Enron. Table 1
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lists statistics of the five networks. All data sets and codes used in
this work are publicly available.1

Epinions is a network of product reviewers. Each user on the
site can post a review on any product and other users would rate
the review with trust or distrust. In this data, we created a network
of reviewers connected with trust and distrust relationships. The
data set consists of 131,828 nodes (users) and 841,372 edges, of
which about 85.0% are trust links. 80,668 users received at least
one trust or distrust edge. Our goal on this data set is to infer the
trust relationships between users.

Slashdot is a network of friends. Slashdot is a site for sharing
technology related news. In 2002, Slashdot introduced the Slash-
dot Zoo which allows users to tag each other as “friends” (like)
or “foes” (dislike). The data set is comprised of 77,357 users and
516,575 edges of which 76.7% are “friend” relationships. Our goal
on this data set is to infer the “friend” relationships between users.

Mobile is a network of mobile users. The data set is from [7]. It
consists of the logs of calls, blue-tooth scanning data and cell tower
IDs of 107 users during about ten months. If two users communi-
cated (by making a call and sending a text message) with each other
or co-occurred in the same place, we create an edge between them.
In total, the data contains 5,436 edges. Our goal is to infer whether
two users have a friend relationship. For evaluation, all users are
required to complete an online survey, in which 157 pairs of users
are labeled as friends.

Coauthor is a network of authors. The data set, crawled
from Arnetminer.org [28], is comprised of 815,946 authors and
2,792,833 coauthor relationships. In this data set, we attempt to
infer advisor-advisee relationships between coauthors. For evalua-
tion, we created a smaller ground truth data in the following ways:
(1) collecting the advisor-advisee information from the Mathemat-
ics Genealogy project2 and the AI Genealogy project3; (2) man-
ually crawling the advisor-advisee information from researchers’
homepages. Finally, we have created a data set with 1,534 coau-
thor relationships, of which 514 are advisor-advisee relationships.
The data set was used in [30].

Enron is an email communication network. It consists of
136,329 emails between 151 Enron employees. Two types of rela-
tionships, i.e., manager-subordinate and colleague, were annotated
between these employees. The data set was provided by [6]. Our
goal on this data set is to infer manager-subordinate relationships
between users. There are in total 3,572 edges, of which 133 are
manager-subordinate relationships.

Please note that for the first three data sets (i.e., Epinions, Slash-
dot, and Mobile), our goal is to infer undirected relationships
(friendships or trustful relationships); while for the other two data
sets (i.e., Coauthor and Enron), our goal is to infer directed rela-
tionships (the source end has a higher social status than the target
end, e.g., advisor-advisee relationships and manager-subordinate
relationships).

3.2 Observations
As a first step, we engage in some high-level investigation of

how different factors influence the formation of different social ties
in different networks. Generally, if we consider inferring particu-
lar social ties in a specific network (e.g., mining advisor-advisee
relationships from the Coauthor network), we can define domain-
specific features and learn a predictive model based on labeled
training data. The problem becomes very different, when handling

1http://arnetminer.org/socialtieacross/
2http://www.genealogy.math.ndsu.nodak.edu
3http://aigp.eecs.umich.edu

Table 1: Statistics of five data sets.
Relationship Dataset #Nodes #Edges

Trust Epinions 131,828 841,372
Friendship Slashdot 77,357 516,575
Friendship Mobile 107 5,436

Advisor-advisee Coauthor 815,946 2,792,833
Manager-

subordinate
Enron 151 3,572
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Figure 2: Illustration of structural balance theory. (A) and (B)
are balanced, while (C) and (D) are not balanced.

multiple heterogeneous networks, as the defined features in differ-
ent networks may be significantly different. To solve this problem,
we connect our problem to several basic social psychological the-
ories and focus our analysis on the network based correlations via
the following statistics:

1. Social balance [8]. How is the social balance property satis-
fied and correlated in different networks?

2. Structural hole [3]. Would structural holes have a similar
behavior pattern in different networks?

3. Social status [5, 11, 20]. How do different networks satisfy
the properties of social status?

4. “Two-step flow” [18]. How do different networks follow the
“two-step flow” of information propagation?

Social Balance Social balance theory suggests that people in a
social network tend to form into a balanced network structure. Fig-
ure 2 shows such an example to illustrate the structural balance
theory over triads, which is the simplest group structure to which
balance theory applies. For a triad, the balance theory implies that
either all three of these users are friends or only one pair of them
are friends. Figure 3 shows the probabilities of balanced triads of
the three undirected networks (Epinions, Slashdot, and Mobile). In
each network, we compare the probability of balanced triads based
on communication links and that based on friendships (or trust re-
lationships). For example, in the Mobile network, the communi-
cation links include making a call or sending a message between
users. We find it interesting that different networks have very dif-
ferent balance probabilities based on the communication links, e.g.,
the balance probability in the mobile network is nearly 7 times
higher than that of the slashdot network, while based on friendships
(or trustful relationships) the three networks have relatively similar
balance probabilities (with a maximum of +28% difference).

Structural Hole Roughly speaking, a person is said to span a
structural hole in a social network if he or she is linked to people
in parts of the network that are otherwise not well connected to one
another [3]. Arguments based on structural holes suggest that there
is an informational advantage to have friends in a network who do
not know each other. A sales manager with a diverse range of con-
nections can be considered as spanning a structural hole, with a
number of potentially weak ties [9] to individuals in different com-
munities. More generally, we can think about Web sites such as
eBay as spanning structural holes, in that they facilitate economic
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Figure 4: Structural hole. Probabilities that two connected (or dis-
connected) users (A and B) have the same type of relationship with
user C, conditioned on whether user C spans a structural hole or not.
It is clear that (1) users are more likely (averagely +70% higher than
chance) to have the same type of relationship with C if C spans a struc-
tural hole; and (2) disconnected users are more likely than connected
users to have the same type of relationship with a user who spans a
structural hole (except the mobile network).

interactions between people who would otherwise not be able to
find each other.

Our idea here is to test if a structural hole tends to have the same
type of relationship with the other users. We first employ a simple
algorithm to identify structural hole users in a network. Following
the informal description of structural holes [3], for each node, we
count the number of pairs of neighbors who are not directly con-
nected. All users are ranked based on the number of pairs and the
top 1% users4 with the highest numbers are viewed as structural
holes in the network. Figure 4 shows the probabilities that two
users (A and B) have the same type of relationship with another
user (say C), conditioned on whether user C spans a structural hole
or not. We have two interesting observations: (1) users are more
likely (on average +70% higher than chance) to have the same type
of relationship with C if C spans a structural hole; (2) disconnected
users are more likely than connected users to have the same type
of relationship with a user classified as spanning a structural hole.
One exception is the mobile network, where most mobile users in
the data set are university students and thus friends frequently com-
municate with each other.

Social Status Another social psychological theory is the theory
of status [5, 11, 20]. This theory is based on the directed relation-
ship network. Suppose each directed relationship labeled by a pos-

4This is based on the observation that less than 1% of the Twitter
users produce 50% of its content [31].
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Figure 6: Social status. Distribution of five most frequent forma-
tions of triads with social status. Given a triad (A,B,C), let us use
1 to denote the advisor-advisee relationship and 0 colleague relation-
ship. Thus the number 011 to denote A and B are colleagues, B is C’s
advisor and A is C’s advisor.

itive sign “+” or a negative sign “-” (where sign “+”/“-” denotes
the target node has a higher/lower status than the source node).
Then status theory posits that if, in a triangle on three nodes (also
called triad), we take each negative edge, reverse its direction, and
flip its sign to positive, then the resulting triangle (with all posi-
tive edge signs) should be acyclic. Figure 5 illustrates four exam-
ples. The first two triangles satisfy the status ordering and the latter
two do not satisfy it. We conducted an analysis on the Coauthor
and the Enron networks, where we aim to find directed relation-
ships (advisor-advisee and manager-subordinate). We found nearly
99% of triads in the two networks satisfy the social status theory,
which was also validated in [20]. We investigate more by looking
at the distribution of different forms of triads in the two networks.
Specifically, there are in total 16 different forms of triads [20]. We
select five most frequent forms of triads in the two networks. For
easy understanding, given a triad (A,B,C), we use 1 to denote
the advisor-advisee relationship and 0 colleague relationship, and
three consecutive numbers 011 to denote A and B are colleagues,
B is C’s advisor and A is C’s advisor. It is striking that although
the two networks (Coauthor and Enron) are totally different, they
share a similar distribution on the five frequent forms of triads (as
plotted in Figure 6).

Opinion Leader The two-step flow theory is first introduced in
[18] and further elaborated in literature [14, 15]. The theory sug-
gests that ideas (innovations) usually flow first to opinion leaders,
and then from them to a wider population. In the enterprise email
network, for example, managers may act as opinion leaders to help
spread information to subordinates.

Our basic idea here is to examine whether “opinion leaders” are
more likely to have a higher social status (manager or advisor)
than ordinary users. To do this, we first categorize users into two
groups (opinion leaders and ordinary users) by PageRank5. With
PageRank, according to the network structure, we select as opin-

5PageRank is an algorithm to estimate the importance of each node
in a network [25].
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Probability that two types of users have a directed relationship (from
higher social status to lower status, i.e., manager-subordinate relation-
ship in Enron and advisor-advisee relationship in Coauthor). It is clear
that opinion leaders (detected by PageRank) are more likely to have a
higher social-status than ordinary users.

ion leaders the top 1% users who have the highest PageRank scores
and the rest as ordinary users. Then, we examine the probabili-
ties that two users (A and B) have a directed social relationship
(from higher social-status user to lower social-status user) such as
advisor-advisee relationship or manager-subordinate relationship.
Figure 7 shows some interesting discoveries. First, in both of the
Enron and Coauthor networks, opinion leaders (detected by PageR-
ank) are more likely (+71%-+84%) to have a higher social status
than ordinary users. Second and also more interestingly, in En-
ron, it is likely that ordinary users have a higher social status than
opinion leaders. Its average likelihood is much larger (30 times)
than that in the Coauthor network. The reason might be in the en-
terprise email network (Enron), some managers may be inactive,
and most management-related communications were done by their
assistants.

Summary According to the statistics above, we have the following
intuitions:

1. Probabilities of balanced triads based on communication
links are very different in different networks, while the bal-
ance probabilities based on friendships (or trustful relation-
ships) are similar with each other.

2. Users are more likely (+25%-+152% higher than chance) to
have the same type of relationship with a user who spans a
structural hole.

3. Most triads (99%) satisfy properties of the social status the-
ory. For the 5 most frequent formations of triads, the Coau-
thor and the Enron networks share a similar distribution.

4. Opinion leaders are more likely (+71%-+84% higher than
chance) to have a higher social status than ordinary users.

4. MODEL FRAMEWORK
We propose a transfer-based factor graph (TranFG) model for

learning and predicting the type of social relationships across net-
works. We first describe the model in the context of a single net-
work, and then explain how to transfer the supervised information
provided by one network to another network.

4.1 The Predictive Model
Given a network G = (V,EL, EU ,X), each relationship (edge)

ei is associated with an attribute vector xi and a label yi indicates
the type of the relationship. Let X = {xi} and Y = {yi}. Then
we have the following formulation:

P (Y |X, G) =
P (X, G|Y )P (Y )

P (X, G)
(1)

Here, G denotes all forms of network information. This prob-
abilistic formulation indicates that labels of edges depend on not
only local attributes associated with each edge, but also the struc-
ture of the network. According to Bayes’ rule, we have

P (Y |X, G) =
P (X, G|Y )P (Y )

P (X, G)
∝ P (X|Y ) · P (Y |G) (2)

where P (Y |G) represents the probability of labels given the struc-
ture of the network and P (X|Y ) denotes the probability of gener-
ating attributes X associated to all edges given their labels Y . We
assume that the generative probability of attributes given the label
of each edge is conditionally independent, thus we have

P (Y |X, G) ∝ P (Y |G)
∏

i

P (xi|yi) (3)

where P (xi|yi) is the probability of generating attributes xi given
the label yi. Now, the problem is how to instantiate the probabil-
ity P (Y |G) and P (xi|yi). In principle, they can be instantiated
in different ways, for example by the Bayesian theory or Markov
random fields. In this work, we choose the latter. Based on Markov
random fields, for any node vi, the conditional property holds:
P (yi|G\vi) = P (yi|NB(i)), where NB(i) are neighborhood of
yi in the graph G. The Hammersley-Clifford theorem [12] tells
us that the probability of a Markov random field is equivalent to a
Gibbs distribution which is factorized into positive function defined
on cliques {Yc} that cover all the nodes and edges of G. Thus the
two probabilities in Eq. 3 can be rewritten as:

P (xi|yi) =
1

Z1
exp{

d∑

j=1

αjgj(xij , yi)} (4)

P (Y |G) =
1

Z2
exp{

∑

c

∑

k

μkhk(Yc)} (5)

where Z1 and Z2 are normalization factors. Eq. 4 indicates that
we define a feature function gj(xij , yi) for each attribute xij as-
sociated with edge ei and αj is the weight of the jth attribute. It
can be defined as either a binary function or a real-valued func-
tion. For example, for inferring advisor-advisee relationships from
the publication network, we can define a real-valued feature func-
tion as the difference of years when authors vi and vj respectively
published his first paper. In Eq. 5, we define a set of correlation
feature functions {hk(Yc)}k over each clique Yc in the network.
Here μk is the weight of the kth correlation feature function. The
simplest clique is an edge, thus a feature function hk(yi, yj) can
be defined as the correlation between two edges (ei, ej), if the two
edges share a common end node. We also consider triads as cliques
in the TranFG model, in that several social theories we discussed
in §3 are based on triads.

If we are given a single network G with labeled information Y ,
learning the predictive model is to estimate a parameter configu-
ration θ = ({α}, {μ}) to maximize the log-likelihood objective
function O(θ) = logPθ(Y |X, G), i.e.,

θ� = arg max O(θ) (6)
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4.2 Learning across Heterogeneous Networks
We now turn to discuss how to learn the predictive model with

two heterogeneous networks (a source network GS and a target net-
work GT ). Straightforwardly, we can define two separate objective
functions for the two networks. The challenge is then how to bridge
the two networks, so that we can transfer the labeled information
from the source network to the target network. As the source and
target networks may be from arbitrary domains, it is difficult to de-
fine correlations between them based on prior knowledge.

To this end, we propose a transfer-based factor graph (TranFG)
model. Our idea is based on the fact that the social theories we
discussed in §3 are general over all networks. Intuitively, we can
leverage the correlation in the extent to which different networks
satisfy each of the social theories to transfer the knowledge across
networks. In particular, for social balance, we define triad based
features to denote the proportion of different balanced triangles in
a network; for structural hole, we define edge correlation based
features, i.e., correlation between two relationships ei and ej ; for
social status, we define features over triads to respectively represent
the probabilities of the seven most frequent formations of triads; for
opinion leaders, we define features over each edge.

Finally, by incorporating the social theories into our predictive
model, we define the following log-likelihood objective function
over the source and the target networks:

O(α, β, μ) = OS(α, μ) +OT (β, μ)

=

|VS |∑

i=1

d∑

j=1

αjgj(x
S
ij , y

S
i ) +

|VT |∑

i=1

d′∑

j=1

βjg
′
j(x

T
ij , y

T
i )

+
∑

k

μk(
∑

c∈GS

hk(Y
S
c ) +

∑

c∈GT

hk(Y
T
c ))

− logZ

(7)

where d and d′ are numbers of attributes in the source network and
the target network respectively. In this objective function, the first
term and the second term respectively define the likelihood over
the source network and the target network; while the third term de-
fines the likelihood over common features defined in the two net-
works. The common feature functions are defined according to the
social theories. Such a definition implies that attributes of the two
networks can be entirely different as they are optimized with dif-
ferent parameters {α} and {β}, while the information transferred
from the source network to the target network is the importance of
common features that are defined according to the social theories.
Finally, we define four (real-valued) balance based features, seven
(real-valued) status based features, four (binary) features for opin-
ion leader and six (real-valued) correlation features for structural
hole. More details about feature function are given in Appendix.

Model Learning and Inferring The last issue is to learn the
TranFG model and to infer the type of unknown relationships in
the target network. Learning the TranFG model is to estimate a pa-
rameter configuration θ = ({α}, {β}, {μ}) to maximize the log-
likelihood objective function O(α, β, μ). We use a gradient decent
method (or a Newton-Raphson method) to solve the objective func-
tion. We use μ as the example to explain how we learn the parame-
ters. Specifically, we first write the gradient of each μk with regard
to the objective function:

O(θ)

μk
= E[hk(Y

S
c ) + hk(Y

T
c )]

− EPµk
(Yc|XS ,XT ,GS ,GT )[hk(Y

S
c ) + hk(Y

T
c )]

(8)

Input: a source network GS , a target network GT , and the learning
rate η

Output: estimated parameters θ = ({α}, {β}, {μ})
Initialize θ ← 0;
Perform statistics according to social theories;
Construct social theories based features hk(Yc);
repeat

Step 1: Perform LBP to calculate marginal distribution of
unknown variables in the source network P (yi|xi, GS);
Step 2: Perform LBP to calculate marginal distribution of
unknown variables in the target network P (yi|xi, GT );
Step 3: Perform LBP to calculate the marginal distribution of
clique c, i.e., P (yc|XS

c ,XT
c , GS , GT );

Step 4: Calculate the gradient of μk according to Eq. 8 (for αj

and βj with a similar formula);
Step 5: Update parameter θ with the learning rate η:

θnew = θold + η · O(θ)
θ

until Convergence;

Algorithm 1: Learning algorithm for TranFG.

where E[hk(Y
S
c ) + hk(Y

T
c )] is the expectation of factor function

hk(Y
S
c ) + hk(Y

T
c ) given the data distribution (i.e., the average

value of the factor function hk(Yc) over all triads in the source and
the target networks); and the second term EPµk

(Yc|XS ,XT ,GS ,GT )[.]

is the expectation under the distribution Pμk (Yc|XS ,XT , GS , GT )
given by the estimated model. Similar gradients can be derived for
parameter αj and βj .

As the graphical structure can be arbitrary and may contain cy-
cles, we use loopy belief propagation (LBP) [23] to approximate
the gradients. It is worth noting that in order to leverage the unla-
beled relationships, we need to perform the LBP process twice in
each iteration, one time for estimating the marginal distribution of
unknown variables yi =? and the other time for marginal distri-
bution over all cliques. Finally with the gradient, we update each
parameter with a learning rate η. The learning algorithm is sum-
marized in Algorithm 1. We see that in the learning process, the
algorithm uses an additional loopy belief propagation to infer the
label of unknown relationships. After learning, all unknown rela-
tionships are assigned with labels that maximize the marginal prob-
abilities.

5. EXPERIMENTAL SETUP
The proposed framework is very general and can be applied to

many different networks. For experiments, we consider five differ-
ent types of networks: Epinions, Slashdot, Mobile, Coauthor, and
Enron. On the first three networks (Epinions, Slashdot, and Mo-
bile), our goal is to infer undirected relationships (e.g., friendships),
while on the other two networks (Coauthor and Enron), the goal is
to infer directed relationships (e.g., advisor-advisee relationships).

Comparison Methods We compare the following methods for in-
ferring the type of social relationships.

SVM: similar to the logistic regression model used in [19], SVM
uses attributes associated with each edge as features to train a clas-
sification model and then employs the classification model to pre-
dict edges’ labels in the test data set. For SVM, we employ SVM-
light.

CRF: it trains a conditional random field [17] with attributes
associated with each edge and correlations between edges.

PFG: the method is also based on CRF, but it employs the unla-
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Table 2: Performance comparison of different methods for in-
ferring friendships (or trustful relationships). (S) indicates the
source network and (T) the target network. For the target network, we
use 40% of the labeled data in training and the rest for test.

Data Set Method Prec. Rec. F1-score

Epinions (S) to
Slashdot (T)

(40%)

SVM 0.7157 0.9733 0.8249
CRF 0.8919 0.6710 0.7658
PFG 0.9300 0.6436 0.7607

TranFG 0.9414 0.9446 0.9430

Slashdot (S) to
Epinions (T)

(40%)

SVM 0.9132 0.9925 0.9512
CRF 0.8923 0.9911 0.9393
PFG 0.9954 0.9787 0.9870

TranFG 0.9954 0.9787 0.9870

Epinions (S) to
Mobile (T)

(40%)

SVM 0.8983 0.5955 0.7162
CRF 0.9455 0.5417 0.6887
PFG 1.0000 0.5924 0.7440

TranFG 0.8239 0.8344 0.8291

Slashdot (S) to
Mobile (T)

(40%)

SVM 0.8983 0.5955 0.7162
CRF 0.9455 0.5417 0.6887
PFG 1.0000 0.5924 0.7440

TranFG 0.7258 0.8599 0.7872

beled data to help learn the predictive model. The method is pro-
posed in [29].

TranFG: the proposed approach, which leverages the label in-
formation from the source network to help infer the type of rela-
tionship in the target network.

We also compare with the method TPFG proposed in [30] for
mining advisor-advisee relationships in the publication network.
This method is domain-specific and thus we only compare with
it on the Coauthor network.

In all experiments, we use the same feature definitions for all
methods. On the Coauthor network, we do not consider some
domain-specific correlation features6.

Evaluation Measures To quantitatively evaluate the performance
of inferring the type of social relationships, we conducted experi-
ments with different pairs of (source and target) networks, and eval-
uated the approaches in terms of Precision, Recall and F1-Measure.

All codes were implemented in C++, and all experiments were
performed on a PC running Windows 7 with Intel (R) Core (TM) 2
CPU 6600 (2.4GHz) and 4GB memory. It took about 1-30 minutes
to train the TranFG model over different data sets (e.g., 30 minutes
for learning over the Epinions and the Slashdot networks). For in-
corporating social balance and social status into the TranFG model,
we need count all triads in the source and the target networks. We
design an efficient linear algorithm1, which takes 1-5 minutes to
enumerate all triads for the five networks.

6. RESULTS AND ANALYSIS
We first evaluate the inferring accuracy of the proposed approach

and then analyze how social theories help improve the inferring
performance. Finally, we give a qualitative case study to further
demonstrate the effectiveness of the proposed approach.

6.1 Inferring Accuracy Analysis
We compare the performance of the four methods for inferring

friendships (or trustful relationships) on four pairs of networks:

6We conducted experiments, but found that those features will lead
to overfitting.

Table 3: Performance comparison of different methods for in-
ferring directed relationships (the source end has a higher so-
cial status than the target end). (S) indicates the source network
and (T) the target network. For the target network, we use 40% of
labeled data in training and the rest for test.

Data Set Method Prec. Rec. F1-score

Coauthor (S) to
Enron (T)

(40%)

SVM 0.9524 0.5556 0.7018
CRF 0.9565 0.5366 0.6875
PFG 0.9730 0.6545 0.7826

TranFG 0.9556 0.7818 0.8600

Enron (S) to
Coauthor (T)

(40%)

SVM 0.6910 0.3727 0.4842
CRF 1.0000 0.3043 0.4666
PFG 0.9916 0.4591 0.6277

TPFG 0.5936 0.7611 0.6669
TranFG 0.9793 0.5525 0.7065

Epinions (S) to Slashdot (T), Slashdot (S) to Epinions (T), Epin-
ions (S) to Mobile (T), and Slashdot (S) to Mobile (T).7 In all ex-
periments, we use 40% of the labeled data in the target network
for training and the rest for test. For transfer, we consider the la-
beled information in the source network. Table 2 lists the perfor-
mance of the different methods on the four test cases. Our approach
shows better performance than the three alternative methods. We
conducted sign tests for each result, which shows that all the im-
provements of our approach TranFG over the three methods are
statistically significant (p � 0.01).

Table 3 shows the performance of the four methods for inferring
directed relationships (the source end has a higher social status than
the target end) on two pairs of networks: Coauthor (S) to Enron (T)
and Enron (S) to Coauthor (T). We use the same experimental set-
ting as that for inferring friendships on the four pairs of networks,
i.e., taking 40% of the labeled data in the target network for train-
ing and the rest for test, while for transfer, analogously, we consider
the labeled information from the source network. We see that by
leveraging the supervised information from the source network, our
method clearly improves the performance (about 15% by F1-score
on Enron and 10% on Coauthor).

The method PFG can be viewed as a non-transferable counter-
part of our method, which does not consider the labeled information
from the source network. From both Table 2 and Table 3, we can
see that with the transferred information, our method can clearly
improve the relationship categorization performance. Another phe-
nomenon is that PFG has a better performance than the other two
methods (SVM and CRF) in most cases. PFG could leverage the
unlabeled information in the target network, thus enhances the in-
ferring performance. The only exception is the case of Epinions (S)
to Slashdot (T), where it seems that users in Slashdot have a rela-
tively consistent pattern, thus a classification based method (SVM)
with only general features (e.g., in-degree, out-degree, and number
of common neighbors) can achieve very high performance.

Factor contribution analysis We now analyze how different so-
cial theories (social balance, social status, structural hole, and two-
step flow (opinion leader)) can help infer social ties. For infer-
ring friendships, we consider social balance (SB) and structural
hole (SH) based transfer and for inferring directed friendships, we
consider social status (SS) and opinion leader (OL) based transfer.

7We did try to use Mobile as the source network and Slash-
dot/Epinions as the target network. However as the size of Mobile
is much smaller than the other two networks, the performance was
considerably worse.
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(c) Epinions-to-Mobile
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(d) Slashdot-to-Mobile

Figure 9: Performance of inferring friendships with and w/o the balance based transfer by varying the percent of labeled data in the
target network.
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Figure 8: Factor contribution analysis. TranFG-SH denotes our
TranFG model by ignoring the structural hole based transfer. TranFG-
SB stands for ignoring the structural balance based transfer. TranFG-
OL stands for ignoring the opinion leader based transfer and TranFG-
SS stands for ignoring social status based transfer.
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Figure 10: Performance of inferring directed relationship with
and w/o the status based transfer by varying the percent of la-
beled data in the target network.

Here we examine the contribution of the different factors defined
in our TranFG model. Figure 8 shows the average F1-Measure
score over the different networks, obtained by the TranFG model
for inferring friendships and directed relationships. In particular,
TranFG-SB represents TranFG without social balance based fea-
tures and TranFG-All denotes that we remove all the transfer fea-
tures. It can be clearly observed that the performance drops when
ignoring each of the factors. We can also see that for inferring
friendships the social balance is a bit more useful than structural
hole, and for inferring directed relationships the social status factor
is more important than the factor of opinion leader. The analysis
also confirms that our method works well (further improvement is
obtained) when combining different social theories.

Social balance and structural hole based transfer. We present
an in-depth analysis on how the social balance and structural hole
based transfer can help by varying the percent of labeled training
data in the target network. We see that in all cases except Slashdot-
to-Epinions, clear improvements can be obtained by using the so-
cial balance and structural hole based transfer, when the labeled
data in the target network is limited (≤ 50%). Indeed, in some case

such as Epinions-to-Slashdot, with merely 10% of the labeled rela-
tionships in Slashdot, our method can obtain a good performance
(88% by F1-score). Without transfer, the best performance is only
70% (obtained by SVM). We also find that structural balance based
transfer is more helpful than structural hole based transfer for in-
ferring friendships in most cases with various percents of labeled
relationships. This result is consistent with what we obtained in the
factor contribution analysis.

A different phenomenon is found in the case of Slashdot-to-
Epinions, where all methods can obtain a F1-score of 94% with
only 10% of the labeled data. The knowledge transfer seems not
helpful. By a careful investigation, we found simply with those
features (Cf. Appendix for details) defined on the edges, we could
achieve a high performance (about 90%). The structure informa-
tion indeed helps, but the gained improvement is limited.

Social status and opinion leader based transfer. Figure 10
shows an analysis for inferring directed relationships on the two
cases (Enron-to-Coauthor and Coauthor-to-Enron). Here, we focus
on testing how social status and opinion leader based transfer can
help infer the type of relationships by varying the percent of la-
beled relationships in the target network. In both cases (Coauthor-
to-Enron and Enron-to-Coauthor), the TranFG model achieves con-
sistent improvements. For example, when there is only 10% of la-
beled advisor-advisee relationships in the Coauthor network, with-
out considering the status and opinion leader based transfer, the
F1-score is only 24%. By leveraging the status and opinion leader
based transfer from the email network (Enron), the score is dou-
bled (47%). Moreover, we find that the social status based transfer
is more helpful than the opinion leader based transfer with various
percents of the labeled data.

6.2 Case Study
Now we present a case study to demonstrate the effectiveness of

the proposed model. Figure 11 shows an example generated from
our experiments. It represents a portion of the Coauthor network.
Black edges and arrows respectively denote labeled colleague re-
lationships and advisor-advisee relationships in the training data.
Colored arrows and edges indicate advisor-advisee and colleagues
relationships detected by three methods: SVM, PFG and TranFG,
with red color indicating mistake ones. The numbers associated
with each author respectively denote the number of papers and the
score of h-index.

We investigate more by looking at a specific example. SVM mis-
takenly classifies three advisor-advisee relationships and two col-
league relationships. SVM trains a local classification model with-
out considering the network information. PFG considers the net-
work information as well as the unlabeled data, thus obtains a better
result. Our proposed TranFG model further corrects two mistakes
(“Fait-Leonardi” and “Ausiello-Laura”) by leveraging properties of

750



(a) SVM (b) PFG (c) Our approach (TranFG)

Figure 11: Case study. Illustration of inferring advisor-advisee relationships on the Coauthor network. Directed edges indicate advisor relation-
ships, and undirected ones indicate coauthor relationships. Black edges indicate labeled data. Red colored edges indicates wrong predictions.

social status and opinion leader. For example, the results obtained
by PFG among “Azar”, “Amos” and “Leonardi” form a triad of
(“011”). Although it satisfies the property of social status, the prob-
ability of such triad is much lower (0.4% vs. 24.6%) than the form
(“100”). However, the limitation of the training data leads PFG to
result in a bias mistake (5.8% vs. 12.6%). TranFG smoothes the
results by transferring knowledge from the source (Enron) network.

7. RELATED WORK
Inferring social ties is an important topic in social network anal-

ysis. Liben-Nowell et al. [21] present an unsupervised method for
link prediction. Tang et al. [27] propose a topical affinity propa-
gation to quantify the social influence between users. Backstrom
et al. [2] propose a supervised random walk algorithm to estimate
the strength of social links. Leskovec et al. [19] employ a logis-
tic regression model to predict positive and negative links in online
social networks. Hopcroft et al. [13] study the extent to which
the formation of a reciprocal relationship can be predicted in a dy-
namic network. However, most existing works focus on predicting
and recommending unknown links in social networks, but ignore
the type of relationships.

Recently, there are several works on inferring the meanings of
social relationships. Diehl et al. [6] try to identify the manager-
subordinate relationships by learning a ranking function. Wang
et al. [30] propose an unsupervised probabilistic model for min-
ing the advisor-advisee relationships from the publication network.
Crandall et al. [4] investigate the problem of inferring friendship
between people from co-occurrence in time and space. Eagle et
al. [7] present several patterns discovered in mobile phone data,
and try to use these patterns to infer the friendship network. How-
ever, these algorithms mainly focus on specific domains, while our
model is general and can be applied to different domains. More im-
portantly, our work takes the first step to incorporate social theories
for inferring social ties across heterogeneous networks.

Our work is related to link prediction, which is one of the core
tasks in social networks. Existing work on link prediction can be
broadly grouped into two categories based on the learning methods
employed: unsupervised link prediction and supervised link predic-
tion. Unsupervised link predictions usually assign scores to poten-
tial links based on the intuition - the more similar the pair of users

are, the more likely they are linked. Various similarity measures
of users are considered, such as the Adamic and Adar measure [1],
the preferential attachment [24], and the Katz measure [16]. A sur-
vey of unsupervised link prediction can be found in [21]. Recently,
[22] designs a flow based method for link prediction. There are also
a few works which employ supervised approaches to predict links
in social networks, such as [2, 19]. The main difference between
existing work on link prediction and our effort lies in that existing
work mainly focuses on one single network, while our proposed
model combines social theories (such as structural balance, struc-
tural hole, and social status) into a transfer learning framework and
can be applied to different domains.

8. CONCLUSION
In this paper, we study the novel problem of inferring social ties

across heterogeneous networks. We precisely define the problem
and propose a transfer-based factor graph (TranFG) model. The
model incorporates social theories into a semi-supervised learning
framework, which is used to transfer supervised information from
the source network to help infer social ties in the target network.
We evaluate the proposed model on five different genres of net-
works. We show that the proposed model can significantly improve
the performance for inferring social ties across different networks
comparing with several alternative methods. Our study also reveals
several interesting phenomena.

The general problem of inferring social ties represents a new and
interesting research direction in social network analysis. There are
many potential future directions of this work. First, some other
social theories can be further explored and validated for analyzing
the formation of different types of social relationships. Next, it is
interesting to study how to further correct the inferring mistakes by
involving users into the learning process (e.g., via active learning).
Another potential issue is to validate the proposed model on some
other social networks.
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Appendix
There are two categories of features. The first category includes
local features defined for each specific network, and the second in-
cludes transfer features defined based on the social theories. Tables
4-7 give a summary of local feature definitions for the five net-
works. For a more detailed description of the feature definitions,
please refer to literature [6, 7, 19, 29].

For the transfer features, in Epinions, Slashdot and Mobile, we
define four (real-valued) balance triad based features and six (real-
valued) structural hole based features. In the Coauthor and Enron,
we define seven (real-valued) social status based features and four
(binary) opinion leader based features.

Table 4: Features defined for edge (vi, vj) in Epinions/Slashdot.
Feature Description

in-degree din(vi), din(vj)
out-degree dout(vi), dout(vj)
total-degree din(vi) + dout(vi), din(vj) +

dout(vj)
common neighbors the total number of common neighbors

of vi and vj in an undirected sense.

Table 5: Features defined for edge (vi, vj) in Mobile.
Feature Description

Total Proximity Number of proximity events between a and b
In-Role Number of proximity events at working place in

day time from Monday to Friday
Extra-Role Number of proximity events at home or else-

where at night of weekends
Total

Communication Number of communication logs between a and b

Night Call
Ratio The ratio of communication logs at night

Table 6: Features defined for edge (vi, vj) in Coauthor. Pi de-
notes a set of papers published by author vi.

Feature Description

paper count |Pi|, |Pj |
paper ratio |Pi|/|Pj |

coauthor ratio |Pi ∩ Pj |/|Pi|, |Pi ∩ Pj |/|Pj |
conference
coverage The proportion of the conferences which both vi

and vj attended among conferences vj attended.
first-pub-year diff The difference in year of the first earliest publi-

cation of vi and vj .

Table 7: Features defined for edge (vi, vj) in Enron.
From Sent-To + CC From Sent-To + CC

vi vj vj vi
vi vk and not vj vj vk and not vi
vk vi and not vj vk vj and not vi
vk vi and vj
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