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ABSTRACT
Massive Open Online Courses (MOOCs), which collect complete
records of all student interactions in an online learning environ-
ment, offer us an unprecedented opportunity to analyze students’
learning behavior at a very fine granularity than ever before.

Using dataset from xuetangX, one of the largest MOOCs from
China, we analyze key factors that influence students’ engagement
in MOOCs and study to what extent we could infer a student’s
learning effectiveness. We observe significant behavioral hetero-
geneity in students’ course selection as well as their learning pat-
terns. For example, students who exert higher effort and ask more
questions are not necessarily more likely to get certificates. Addi-
tionally, the probability that a student obtains the course certificate
increases dramatically (3× higher) when she has one or more “cer-
tificate friends”.

Moreover, we develop a unified model to predict students’ learn-
ing effectiveness, by incorporating user demographics, forum ac-
tivities, and learning behavior. We demonstrate that the proposed
model significantly outperforms (+2.03-9.03% by F1-score) several
alternative methods in predicting students’ performance on assign-
ments and course certificates. The model is flexible and can be
applied to various settings. For example, we are deploying a new
feature into xuetangX to help teachers dynamically optimize the
teaching process.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Sociology; H.2.8
[Database Applications]: Data Mining

Keywords
MOOCs, Predictive model, User behavior, Online engagement

1. INTRODUCTION
Massive open online courses (MOOCs) have become increas-

ingly popular and offered students around the world the opportu-
nity to take online courses from prestigious universities. Three
pioneer MOOC platforms—Coursera, edX, and Udacity—offer
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hundreds of courses and draw more than 100,000 registrants per
course [25]. 2012 was called “The Year of the MOOC” by New
York Times [23]. Following the three pioneers, many other plat-
forms have also been developed quickly around the world, such as
Khan Academy in North America, Miriada and Spanish MOOC in
Spain, Iversity in German, FutureLearn in England, Open2Study
in Australia, Fun in France, Veduca in Brazil, Schoo in Japan, and
xuetangX in China. MOOCs are without doubt leading a revolu-
tion of education, by gathering global education resources and re-
structuring the learning environment, e.g., providing online forums
to geographically-dispersed students. Furthermore, as all students’
learning behavior occurs online, it enables us to evaluate students’
performance in a more objective and quantitative way. For exam-
ple, KDD CUP 2015 used the MOOC data to offer a challenge of
predicting students’ dropout rate among a number of courses.1

MOOC platforms collect complete records of students’ online
activities, which enables us to take a closer look at students’ learn-
ing behavior than ever before. However, new challenges have
also emerged. For example, the low completion rates of MOOC
participants—preliminary statistics show that less than 5% of the
participants have completed a course—has been a central criti-
cism [16, 25]. Moreover, MOOC is not just a place for teach-
ing or learning. It also provides an interactive platform to support
group-level interactions among students, lecturers, and teaching as-
sistants. Students with various motivations to study MOOCs [2]
have very different learning behavioral patterns, and these online
learning behavior may also deviate from those in traditional learn-
ing environments. Therefore, there is a clear need to understand
user behavior in MOOCs, and more importantly, to design effective
mechanisms to motivate more participation in both courses learn-
ing and social interaction.

In this paper, we focus on studying how students engage in
MOOCs and to what extent we can predict their learning behav-
ior. Understanding the complex and subtle forces underlying the
learning process can significantly help design better courses and
improve the learning effectiveness. More specifically, how to re-
tain students in a course? How to estimate the completion rate of
a course? How to evaluate the learning performance of different
students? Despite several relevant studies, such as course com-
pletion analysis [16], learning behavior analysis [25], and student
classification and engagement analysis [2], there are few system-
atical studies on modeling students’ learning behavior for different
categories of courses.

Employing xuetangX,2 one of the largest MOOC platform from
China, as the basis of our study, we systematically investigate the
aforementioned problem. We first conduct an in-depth analysis to

1http://kddcup2015.com
2http://www.xuetangx.com
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Figure 1: Performance of Learning Behavior Prediction by Dif-
ferent Methods. (a) Assignment grade prediction, and (b) Cer-
tificate earner prediction. Please refer to § 4 for definitions of the
comparative methods.

understand the degree to which user demographics (gender, age,
and education background) influence students’ forum activities and
learning behavior including watching videos and working on as-
signments. Moreover, we estimate each of the three factors’ im-
portance on students’ learning performance, e.g., the likelihood of
getting certificates. We have several intriguing discoveries. First,
hard working and frequent questioning do not necessarily imply
high learning performance. Second, engaging in the course forum
is a significant indicator for students’ learning performance. Third,
homophily [18] — the idea that similarity and connection tend to
co-occur, or “birds of a feather flock together” [20] — plays an im-
portant role for predicting students’ learning behavior. The proba-
bility that a student obtains the course certificate increases dramat-
ically (3× higher) when she has one or more “certificate friends”.

We then propose a latent dynamic factor graph (LadFG) to model
and predict learning behavior in MOOCs. The model incorpo-
rates students’ demographics, forum activities, and learning be-
havior into a unified framework. It captures the dynamic informa-
tion and homophily correlations between students, and projects stu-
dents’ learning behavior into a latent continuous space. Although
the model is general enough to be applied to various settings, we
particularly consider two prediction tasks: assignment grade pre-
diction and certificate earner prediction. The former predicts stu-
dents’ performance on assignment, while the latter predicts which
students could get the certificates after a course ends. Figure 1
shows the performance of different comparison methods for the two
prediction tasks on both science courses and non-science courses.

Table 1: The Description of the Dataset.

Category Type Number
Course All 11

Science CS 3
EE 2

Non-Science
Economics 2
History 3
Sports 1

User
Total # 88,112
Max #students/course 31,120
Min #students/course 2,631

Forum # new posts 13,021
# replies 16,367

Activity Activity types 21
# Activity logs 56,800,000

Note: the data spans from Oct 10, 2013 to Jun 26, 2014.
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Figure 2: Regression Analysis for Course Selection by the Lin-
ear Probability Model.

Clearly, the proposed method improves the prediction accuracy by
up to 9.03% over the alternative methods. Based on the results of
the proposed model, we are deploying a new feature into the xue-
tangX system to help lecturers optimize their teaching process.

Data. Our data comes from xuetangX, a partner of edX. The
system was launched in October 2013 and up to November 2015,
it has offered 670 courses (including courses from Tsinghua Uni-
versity, Peking University, and edX courses from MIT, Stanford,
UC Berkeley, etc.) and attracted 1,700,000 registered users. The
dataset used in this paper consists of 11 completed courses in the
Fall 2013 and Spring 2014 semesters. We categorize the courses
into two types: science (Computer Science and Electronic Engi-
neering) vs. non-science (Economics, History, and Sports) courses.
The average number of registered users for the science courses is
lower than that of the non-science courses, though the difference
is not statistically significant (5,911 vs. 12,959, p = 0.247, two-
sided t-tests). Each course has a discussion forum for students to
post/reply questions and to interact with each other. The dataset
also consists of multiple types of students’ activities such as watch-
ing videos, working on assignments, downloading resources and
etc. In total, there are 56,800,000 time-stamped activity logs. Ta-
ble 1 reports summary statistics of the dataset.

We first conduct a regression analysis to examine correlation be-
tween student demographics and course selection. Regarding de-
mographics, we consider gender, education (graduate degree in-
cluding master and PhD, bachelor, and those with degree below
bachelor), and age. As age and education are significantly and
positively correlated (p = 0.000, chi-square test), we focus on
education here. Figure 2 shows regression results from a linear



probability model of course enrollment.3 The dependent variable
is whether user vi registers a course. The independent variables
are (1) female dummy and (2) education level dummies including
bachelor, graduate, and the omitted variable is bachelor below. Ad-
ditionally, we control for age and course characteristics by includ-
ing course category and estimated weekly hours in learning. From
the results, we observe that compared to male students, females are
significantly more likely to take non-science courses (p < 0.01),
and less likely to choose science courses (p < 0.01). Moreover,
compared to users with low education (<bachelor), bachelors are
significantly more likely to take non-science courses (p < 0.01),
and significantly less likely to choose science courses (p < 0.01).
In contrast, graduate students are significantly more likely to take
science courses (p < 0.05).

Organization. Section 2 presents pattern analysis for student ac-
tivities; Section 3 formulates the problem and presents the proposed
model; Section 4 presents the experimental results; Section 5 dis-
cusses related work and Section 6 concludes the work.

2. PATTERNS OF STUDENT ACTIVITY
In this section, we investigate students’ learning activities in-

cluding forum activities and time spent on videos and assignments.
Moreover, we examine how each of these factors affects a user’s
likelihood of getting certificates, i.e., a student’s final grade in a
course is at least 60 out of 100.

Several common features apply throughout our regression anal-
ysis. First, robust standard errors are reported in parentheses. Sec-
ond, two-sided p-values are reported and significant at: * 10%; **
5%; *** 1%. Third, age and course type dummies are controlled
in all regressions. Finally, in all regression analyses, we consider
ordinary least squares (OLS) models.

2.1 Learning Activity Patterns
We first study users’ participation pattern of forum activities in-

cluding posting new threads and replying to questions. Second, we
study their learning behavior for watching videos and doing assign-
ments.

Engagement patterns of forum activity. In course forums, stu-
dents can post new questions and answer existing questions. Over-
all, the level of forum activities is very low: 94% users in our sam-
ple never participate in posting or replying to questions. Addition-
ally, among active users, their forum activities decrease with time
(p < 0.05) for all but new post in science courses (p > 0.1), sug-
gesting that users’ participation enthusiasm in courses decays over
time. This observation is consistent with that in previous studies [2,
25].

We present ordinary least squares (OLS) estimates of the rela-
tionship between student characteristics and the number of forum
activities in Table 2. The dependent variable is the number of new
posts (Columns 1 and 3) or replies (Columns 2 and 4) per student,
and the independent variables include gender, education level, and
the required effort level for a course (specified by the teacher). It
is interesting that women are only more active in asking questions
in non-science courses, while they are much more quiet in science
courses. Within non-science courses (Columns 1 and 2), women
post significantly more questions than men (p < 0.01), though they
reply marginally significantly fewer questions (p < 0.1). In con-

3We present the linear probability model as it is easier for results
interpretation. All results are robust when probit or logit models
are used.

Table 2: Regression Analysis for Forum Activities.

Non-Science Science
New Post Reply New Post Reply
(1) (2) (3) (4)

Female 0.089*** -0.024* -0.026** -0.053
(0.013) (0.013) (0.011) (0.145)

Bachelor 0.029*** 0.007 0.015 0.074*
(0.011) (0.010) (0.010) (0.045)

Graduate 0.001 0.007 0.016 0.306*
(0.016) (0.030) (0.013) (0.156)

Effort 0.277*** -0.053***
(0.058) (0.017)

Constant -0.534*** 0.228*** 0.050** 0.092
(0.122) (0.054) (0.022) (0.059)

Obs. 74,480 74,480 19,269 19,269
R2 0.013 0.001 0.001 0.002
Note: Constant—the learned offset by the regression model;
Obs.—the number of observations in each category; and
R2 — the proportion of variance in the criterion that is ex-
plained by the estimated regression model.

Table 3: Regression Analysis for Effective Learning Time.

Non-Science Science
Video Assignment Video Assignment
(1) (2) (3) (4)

Female 8.588*** 3.985*** -7.890*** -4.793**
(1.181) (0.400) (2.281) (2.277)

Bachelor 1.019 1.123** 8.032*** 8.946***
(1.389) (0.454) (1.876) (1.898)

Graduate -5.618*** -1.918*** 6.945*** 4.817**
(1.774) (0.567) (2.585) (2.247)

Effort -29.489*** 1.895***
(1.345) (0.521)

Constant 101.258*** -4.246*** 26.746*** 22.566***
(4.970) (1.538) (4.241) (6.293)

Obs. 74,480 74,480 19,269 19,269
R2 0.035 0.021 0.002 0.002

trast, their amount of new post in science courses is significantly
less than male students (Column 3, p < 0.05).

Pertaining to forum activities between students with different ed-
ucation levels, we find that bachelors post significantly more ques-
tions in non-science courses (Column 1). In contrast, graduate stu-
dents do not ask many questions while their amount of replies in
science courses is marginally significantly higher than those with
degrees below bachelor (Column 4, p < 0.1). The effect size is also
higher than that for bachelors (0.306 vs. 0.074, p = 0.105), which
indicates that people with different education levels may play dif-
ferent roles in forums. In addition, within non-science courses,
users post more questions when a course requires more working
hours (Column 1, p < 0.01). However, the amount of replies is
significantly negatively correlated with course effort requirements
(Column 2, p < 0.01). One explanation is that more difficult
courses may induce more questions, while these questions may be
more challenging for users to answer.

Engagement patterns of videos and assignments. First, we de-
fine user vi’s effective learning time below.



Definition 1. Effective learning time. It represents the actual
(or valid) time that a student spends on watching videos and work-
ing on assignments.

In practice, it is difficult to accurately measure students’ study
time [8]. For example, after a student clicks a video, she may leave
and work on something else. Therefore, we design an algorithm
based on deterministic finite automaton to approximate effective
learning time. Specifically, we define three states: idle, video, and
assignment, in the state automaton. The automaton starts with idle,
and changes states when it receives certain activities triggered by
students. For example, when the student triggers a “play video” ac-
tivity, the state changes from idle to video. While a “pause” activity
changes the state back to idle. Altogether, the duration between two
activities will be counted as the effective learning time. In addition,
there is threshold-triggered transition from any states to idle. The
idea is that if a student stays in a state, e.g., video, for a long time
(longer than a threshold),4 the automaton moves back to idle.

Applying the algorithm described above, we estimate each user’s
effective learning time on a certain course. Similar to forum ac-
tivities, time spent on videos and assignments is extremely few.
Specifically, the median time for watching videos is 4.53 minutes
per course and 0 for working on assignments. In fact, 36% users
never watch videos, and 52% of them never do assignments, sug-
gesting that doing assignments requires more effort from users. In
addition, for users who have active learning records, the amount of
video and assignment related activities increases in time (p < 0.01)
for all but assignments in non-science courses (p > 0.1). We sus-
pect that students may only spend time on learning when the dead-
line approaches.

We report regression results of users’ effective learning time
in Table 3. First, compared to male students, female students
spend significantly more time on both videos and assignments
in non-science courses (Columns 1-2), while they spend signifi-
cantly less time on both activities in science courses (Columns 3-
4). Again, this echoes our prior findings on gender differences in
both course selection and forum activities. Second, for both sci-
ence and non-science courses, bachelors work hardest among all
education groups, and the effect size is significantly stronger for
science courses than non-science course (video: 8.032 vs. 1.019,
p = 0.003; assignment: 8.946 vs. 1.123, p = 0.000). Graduate
students spend least time on study in non-science courses (Columns
1-2). In science courses, though their effort is higher than those
with degrees below bachelors, it is still lower than that for bach-
elors (video: 6.945 vs. 8.032, p = 0.648; assignment: 4.817 vs.
8.946, p = 0.076). Additionally, when the course requires higher
effort, students spend significantly more time on assignments (Col-
umn 2). Surprisingly, they spend significantly less time on videos
(Column 1). One possibility is that the time spent on videos is also
correlated with unobserved course characteristics, e.g., the length
of videos.

2.2 Certificate Rate
Now, we examine whether the likelihood of getting the certifi-

cate is correlated with user demographics, forum activities and ef-
fective learning time. Overall, among 11 courses in our data, the
certification rate lies between 0.84% and 14.95%. The average cer-
tification rate for science courses is lower than that in non-science
courses, though the difference is not statistically significant (1.11%
vs. 4.68%, p = 0.178, two-sided t-tests).

4In our implementation, we set the threshold to 20 minutes based
on human feedback.

Table 4: Regression Analysis for Certificate Rate: All Users.

Model 1 Model 2
Non-Science Science Non-Science Science
(1) (2) (3) (4)

Female 0.014*** -0.003 0.002* 0.001
(0.002) (0.002) (0.001) (0.002)

New Post — — 0.004*** 0.038***
(0.001) (0.008)

Reply — — 0.004** 0.001*
(0.002) (0.001)

Video — — 0.000*** -0.000
(0.000) (0.000)

Assignment — — 0.003*** 0.000***
(0.000) (0.000)

Bachelor 0.014*** 0.003* 0.011*** -0.001
(0.002) (0.002) (0.001) (0.001)

Graduate 0.007*** 0.004 0.013*** 0.001
(0.002) (0.002) (0.002) (0.002)

Effort -0.072*** -0.072***
(0.003) (0.003)

Constant 0.286*** 0.018*** 0.280*** 0.006
(0.013) (0.006) (0.011) (0.004)

Obs. 74,480 19,269 74,480 19,269
R2 0.024 0.001 0.462 0.363

Table 4 summarizes results from linear probability models. In
the first model specification (Columns 1-2), we only include demo-
graphic information used in prior regressions, and we control for
forum activities and effective learning time in the second model
(Columns 3-4). First, we find that compared to male students,
females are significantly more likely to get the certificate in non-
science courses (Column 1 of Model 1); however, the size of the
gender difference decreases significantly after we control for forum
activities and effective learning time in Model 2 (0.014 vs. 0.002,
p = 0.000, chi-square test). This suggests that the superiority of
women’s performance in non-science courses is mainly driven by
their effort in forum and learning activities.

Second, compared to students with degrees below bachelors,
bachelors are significantly more likely to get the certificate in non-
science courses and the result is robust in both models (Columns 1
and 3, p < 0.01), while their high effort on science courses does
not transform to significantly higher certificate rate.5 Surprisingly,
graduate students are also significantly more likely to get the cer-
tificate in non-science courses (Column 1: 0.007, p < 0.01), al-
though their effective learning time is significantly lower than oth-
ers. Moreover, after controlling for effort, the size of the effect is
almost doubled (Column 3: 0.013, p < 0.01). This implies that
the certificate rate is not only related to effort, but also ability and
existing knowledge level. In particular, for graduate students who
may have higher learning ability, once they exert effort, they have
a higher chance to get certificates. Additionally, the required effort
level for a course is significantly and negatively correlated with the
likelihood of getting certificates (Columns 1 and 3).

Last but not least, we discuss effect of forum activities and effec-
tive learning time on certificate rate. Specifically, both forum ac-
tivities are good predictors for getting certificates. In non-science
courses, the size of the effect between posting and replying ques-
tions is about the same (0.004 vs. 0.004, p = 0.837, F-test). In

5The effect is positive and marginally significant in Model 1 and it
becomes negative and insignificant in Model 2.
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Figure 3: Forum Activity and Certificate Rate for Active Users.

contrast, in science courses, posting questions matters more than
answering them (0.038 vs. 0.001, p = 0.000, F-test), suggesting
that students who ask questions are more likely to get certificates
than those who answer questions. Moreover, in both two types of
courses, the amount of time spent on videos and assignments are
significantly positively correlated with certificate rates,6 although
the magnitude of the effect is very small.

As the distribution of forum activities is highly skewed, our find-
ings might be contaminated by the large number of inactive users.
As a robustness check, we focus on the active users, e.g., those
who have posted at least one thread in the forum. Overall, the rela-
tionship between forum activities and certificate rate is still positive
and significant, with a slight decline in magnitude. It implies that to
improve the likelihood of getting certificates, it is more important
to be present and participate, while the intensity of participation,
for instance posting another thread, matters less. This is supported
by Figure 3(a), in which we plot the percentage of students obtain-
ing a certificate by the number of forum threads they post. Clearly,
the certificate rate increases sharply with the first few posts, but the
benefit from further incremental activities becomes smaller. An-
other empirical finding is the spillover effect. We define a “certifi-
cate friends" dummy which is coded as 1 if a user interacts with
other students who finally get certificates, and it is significantly
positively correlated with users’ likelihood of getting certificates,
suggesting the importance of homophily correlation and positive
learning spillover from well-performed students.

Summary. In summary, we have the following observations:

• Female students are more likely to ask questions in non-
science course forums, though not necessarily reply more
questions. They also spend more time on watching videos
and working on assignments for non-science courses.

• Bachelors ask more questions, especially in non-science
courses. Interestingly, graduate students are not as active as
bachelors in terms of asking questions, but they are quite ac-
tive in answering questions, especially in science courses.

• Both forum activities and effective learning are significant
predictors for certificate rate, suggesting the importance of
encouraging students to participate in forum discussions.

3. MODEL FRAMEWORK
Now, we turn to discuss how to model the learning behavioral

data. We propose a latent dynamic factor graph (LadFG) model
to address the problem. The model incorporates observed learning
6The only insignificance is the effect of video time in science
courses.

activities, including forum activities, watching videos, and doing
assignments, into a unified framework. Different from previous
research on factor graph model [26], in LadFG, we use a latent
learning state to model students’ learning state. Based on the mod-
eling results, we will introduce how to apply the model to predict
students’ learning behavior.

3.1 Formulation
To present the model precisely, we introduce some necessary no-

tations. Let V denote a set of |V | = N students. We first define
students’ observed learning activities as follows:

Definition 2. Learning Activity: Let Y ∈ {0, 1}T×N×n be a
tensor, with each element Yt,i,j representing the jth activity by stu-
dent vi ∈ V at time t, where T is the number of time stamps and n
is the number of activities.

The activity space includes all activities (e.g., doing assign-
ments and getting certificates) that we are interested in. We use
a n−dimensional vector Y t(i) = [Yt,i,0,Yt,i,1, . . . ,Yt,i,n−1]T to
represent all activities performed by student vi at time t. Moreover,
we introduce the definition of latent learning state.

Definition 3. Latent Learning State: For each student vi at
time t, we define a m−dimensional vector of continuous latent
states Zt(i) = [Zt,i,0,Zt,i,1, . . . ,Zt,i,m−1]T, with Zt,i,j ∈ [0, 1].
Latent states of all students at all time stamps are recorded in a
tensor Z ∈ [0, 1]T×N×m.

To facilitate model description, we define Zt−1
t−p(i) =[

Zt−1(i)
T

,Zt−2(i)
T

, . . . ,Zt−p(i)
T
]T

∈ [0, 1]m×p as the vector
of latent states of student vi in the previous p time stamps. Finally,
for modeling student behavior, we define attributes (features) for
students in different time stamps as follows.

Definition 4. Time-varying Attribute Tensor: Let X ∈
RT×N×d be a tensor in which Xt,i,j represents the jth attribute
of student vi at time t, and d is the number of defined at-
tributes (features). We use a d-dimensional vector Xt(i) =
[Xt,i,0,Xt,i,1, . . . ,Xt,i,d−1]T to represent the attribute values of
student vi at time t.

The attribute tensor includes all possible attributes associated
to students at different time stamps, e.g., demographics and all
behavior except the defined learning activities.7 The attributes
may not change over time, e.g., gender. In this case, we have
X0(i) = X1(i) = · · · = X(T−1)(i).

Our goal for modeling learning behavior is to find a mapping
from students’ attribute tensor to the observed learning activities.
Instead of directly learning the mapping, we use latent learning
states as the bridge to connect the two sets of observation vari-
ables. Based on this idea, we propose a latent dynamic factor graph
(LadFG) model.

3.2 Latent Dynamic Factor Graph Model
Figure 4 shows the graphical representation of the LadFG model.

Each student is associated with a feature vector Xt(i) and a set
of activities Y t(i) for time t. We use latent states Zt(i) to
model students’ activities and features. In Figure 4, each group
of circles stands for a student’s latent learning states Zt(i) =
[Zt,i,0, · · · ,Zt,i,m−1] at time t, which is used to characterize the
7In different prediction applications, the defined learning activities
and attribute tensor may be different.
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time t, which is used to characterize the intention of the student to per-
form activities Y t(i); each group of latent states is associated with an
activity vector Y t(i), a vector of attributes Xt(i), and depends on the
student’s historic learning states Zt−1

t−p(i) in previous p time stamps;
f(WdS

t(i) + bd) and f(WoZt(i) + bo) denote two factors to capture
the latent learning states and dynamic dependency, respectively.

intention of the student to perform different activities. Each group
of latent states is associated with an activity vector Y t(i), a vec-
tor of attributes Xt(i), and it depends on the student’s historic
learning states Zt−1

t−p(i) in previous p time stamps. Furthermore,
f(WdS

t(i) + bd) denotes a factor function to capture the dy-
namic dependency. The method of modeling students’ activities
using latent states is similar to the assumption in Dynamic Fac-
tor Graph (DFG) [21], Markov Decision Process (MDP) [14], and
Deep Learning [13]. Activity correlations between students are
also modeled in the latent state space using function f(.). Dif-
ferent from traditional models, we also model a long-distance
dependency—a student’s latent state can depend on her states in
previous p time stamps.

In the LadFG model, we use function f(.) to capture correlations
between different (observed or latent) variables. For simplicity, we
use logistic regressions to model the dependency, although it can
be replaced by any other functions. Specifically, we define f as a
sigmoid function

f(z) =
1

1 + e−z
.

Moreover, for latent state Zt(i), LadFG models the observed
learning activities Y t(i) by:

Y t(i)∗ = f(WoZ
t(i) + bo) (1)

where Wo ∈ Rn×m, bo ∈ Rn are observation model parameters.
The dynamic model establishes a time-dependent correlation be-

tween a sequence of p past latent state Zt−1
t−p(i), attributes Xt(i)

and latent state Zt(i). For easy explanation, we define inputs of
dynamic model as:

St(i) =
[
Zt−1
t−p(i)

T
,Xt(i)

T
]T

(2)

Then the latent states can be obtained by :

Zt(i)∗ = f(WdS
t(i) + bd) (3)

Input: number of epochs L;
number of batches in each epoch in M Step B;
latent states dimension m;
E Step learning rate ηz and M Step learning rate ηΘ;
weight decay parameters λz and λw
Output: learned parameters Θ = {Wd,Wo, bd, bo}, latent states Z;

Initialize model parameters Θ;
Initialize latent states Z;
for l = 1 to L do

E Step:% fix Θ, update Z
Compute gradient∇Zt,i,j ;
Update Zt,i,j ← Zt,i,j + ηz∇Zt,i,j ;
M Step:% fix Z, update Θ
for b = 1 to B do

Generate random integer tα < tβ from [0,T )
Calculate the gradient of all parameters and update according
to X,Y ,Z in time span [tα, tβ ]:
Update Wo ←Wo + ηΘ∇Wo;
Update bo ← bo + ηΘ∇bo;
Update Wd ←Wd + ηΘ∇Wd;
Update bd ← bd + ηΘ∇bd;

end
end
return Θ and Z;

Algorithm 1: Learning and Inference by LadFG.

where Wd ∈ Rm×(mp+d) and bd ∈ Rm are model parameters.
Based on all parameters above, we define the objective function

of the LadFG model as follows.

O(Θ) =

N−1∑
i=0

T−1∑
t=0

∥∥∥Zt(i)− Zt(i)∗∥∥∥2
+

N−1∑
i=0

T−1∑
t=0

∥∥∥Y t(i)− Y t(i)∗∥∥∥2

+ λw
(
‖Wo‖2 + ‖Wd‖2

)
+ λz

N−1∑
i=0

T−2∑
t=0

‖Zt(i)− Zt+1(i)‖2

(4)

where λw is a parameter that controls the regularization value; and
λz controls the degree of smoothness between learning states of
consecutive time stamps. Here, we use square loss as the loss func-
tion and applyL-2 regularization on model parameters to overcome
overfitting problems.

Learning an LadFG model is to estimate a configuration of pa-
rameters Θ = {Wo, bo,Wd, bd} and latent states Z from a given
historic behavior log that minimizes the objective function Eq.(4).
As the objective function has a closed form solution, it can be
learned efficiently by the gradient descent method, e.g. stochastic
gradient descent (SGD).

3.3 Model Learning
We have two sets of learning variables: model parameters Θ and

latent statesZ. To learn these parameters, we use an EM-style algo-
rithm to achieve the minimization of the objective function (Eq. 4)
iteratively. The learning algorithm is summarized in Algorithm 1.
Specifically, there are two major steps:

1. E-step: fix all model parameters Θ and update Z, by using a
gradient descent method.

2. M-step: fix all latent states Z and update each model param-
eter in Θ.

Each parameter is updated by θi ← θi + η ∂O
∂θi

, where η is the
learning step. The gradient of each parameter w.r.t the objective
function can be derived in the following ways. We use Zt,i,j and



Wdu,v as the example to explain the gradient, and omitted others
due to space limitation.

∂O
∂Zt,i,j

= 2(Zt,i,j − Z∗t,i,j)

− 2

p∑
k=1

m−1∑
l=0

(Zt+k,i,l − Z∗t+k,i,l)Z
∗
t+k,i,l(1− Z

∗
t+k,i,l)Wdl,(k−1)m+j

− 2

n−1∑
l=0

(Yt,i,l − Y ∗t,i,l)Y
∗
t,i,l(1− Y

∗
t,i,l)Wol,j

+ 2λz(Zt,i,j − Zt+1,i,j)− 2λz(Zt−1,i,j − Zt,i,j)

∂O
∂Wdu,v

=− 2

N−1∑
i=0

T−1∑
t=0

(Zt,i,u − Z∗t,i,u)Z∗t,i,u(1− Z∗t,i,u)St,i,v

+ 2λwWdu,v

Finally, according to our definition, we have:

St,i,v =

{
Zt−b v

m
c−1,i,v mod m, if v < m× p

Xt,i,v−mp, if v ≥ m× p
(5)

Feature Definition and Implementations. Our implementation
of learning algorithm is based on the machine learning framework
Theano [3, 5]. To train the LadFG model, we mainly define three
categories of features.

• Demographics: These features are derived from students at-
tributes including: gender, age, education. We consider bi-
nary features for each discrete value of every attribute, and
in total we have eighteen demographics-based features.

• Forum: These features are derived from forum activities,
respectively representing the number of different forum ac-
tivities, the number of replies received from other students,
etc. We also consider some homophily correlation features
such as the number of replies received from well-performed
students. There are six forum activity-based features.

• Learning Behavior: These features include a list of sta-
tistical features such as the number of chapters a student
browses, the number of deadlines she completes and the total
time she spends on watching videos and doing assignments.
In total, there are ten features defined in this category.

4. EXPERIMENTAL RESULTS
The proposed method for modeling students’ learning behavior

is very general and can be applied to different settings in MOOCs.
Furthermore, using data from xuetangX, we present various exper-
iments in this section to evaluate the effectiveness and efficiency
of the proposed method. All datasets and codes will be publicly
available.

4.1 Experimental Setup
Evaluation Aspects. To quantitatively evaluate the proposed
model, we consider the following performance measurements:

• Assignment Grade Prediction. We apply our methods to
the MOOC data to predict students’ grades on assignments
and compare different methods. Specifically, each course
has multiple assignments and a student will get a grade after
completing an assignment. Our goal is to predict students’

grade for each assignment. We cast the prediction task as a
binary classification problem, e.g., for non-science courses,
“Yes”, if a student’s grade is ranked top 30% of all students.
Otherwise, it is “No”.8

• Certificate Earner Prediction. We use our methods to
model and predict whether a student will get the certificate
after completing a course.

• Parameter Sensitivity Analysis. We analyze the sensitivity
of different parameters in our methods: latent dimension m,
the parameter p, and model convergence.

Finally, we present results of error analysis for our method. In
all experiments, we remove the “register-only” students in our ex-
periments.9

Comparison Methods and Evaluation Metrics. We compare
our model with several alternative predictive models:

• Logistic Regression (LRC) [19]: It uses logistic regressions
to train a classification model and employs the classification
model to make the prediction.

• SVM [10]: It uses SVM to train the classification model and
employs it to make the prediction. For SVM, we employ
LIBLINEAR [10].

• Factorization Machines [1, 17]: Factorization models have
been proposed and successfully applied to recommendation
and prediction tasks. As the factorization model projects the
input feature space onto a latent space, it enables us to learn
more complex interactions between features.

Altogether, we try to use the same set of features in all com-
parison methods. Regarding tunable parameters m, p, ηΘ, ηz , λw
and λz in LadFG, we find the best configuration using cross val-
idation (i.e., m = 5, p = 2, ηz = 0.5, ηΘ = 0.1, λw = 0.01
and λz = 0.01). Moreover, we evaluate the performance of com-
parison methods in terms of Area Under Curve (AUC), Precision
(Prec.), Recall (Rec.), and F1-Measure (F1) [7]. Additionally, all
algorithms are implemented in Python, and all experiments are per-
formed on an x64 machine with 2.9GHz intel Core i7 CPU and
8GB RAM.

4.2 Assignment Grade Prediction
We conduct assignment grade prediction for the 11 courses in our

dataset. In each course, we use the first half (before the mid-term)
of the data for training and the second half (after the mid-term) for
testing the prediction performance. Table 5 presents the average
prediction performance of different methods and the largest perfor-
mance numbers under each index are bolded. Overall, the proposed
LadFG model clearly outperforms all alternative methods. In terms
of F1-score, LadFG achieves a 16.0-25.6% improvement compared
to SVM and LRC, neither of which considers the latent interactions
between variables. Although FM which also considers the inter-
actions between variables outperforms SVM and LRC, it cannot
effectively leverage the temporal information and correlations be-
tween students. Consequently, it still underperforms LadFG. We
perform two sided t-tests and all the p-values are < 0.01, which
8We use 30% as the cutoff for non-science courses because on aver-
age, 30% of students who completed at least one assignment even-
tually earned the course certificate. The cutoff for science courses
is 10%.
9It refers to students who only register a course, but never actually
engage in any course activities.



Table 5: Performance of Assignment Grade Prediction with
Different Methods (%).

Category Method AUC Precision Recall F1-score

Science

LRC 80.96 50.65 68.02 57.57

SVM 70.99 50.44 45.93 47.42

FM 90.39 61.48 70.35 64.67

LadFG 96.26 66.52 81.40 73.09

Non-Science

LRC 73.10 75.59 53.45 61.54

SVM 71.45 77.01 48.94 58.41

FM 85.73 67.36 81.69 72.95

LadFG 90.47 73.28 85.68 78.91

Non-Science Science
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Figure 5: Feature Contribution Analysis for Assignment Grade
Prediction.

indicates that the improvements of our proposed models over the
comparison methods are statistically significant.

Feature Contribution Analysis. We study how different cat-
egories of features (demographics, forum activities, and learning
behavior) help the prediction task. The learning behavior includes
all activities related to watching videos and doing assignments.
Specifically, each time, we respectively remove demographics, fo-
rum activities, and learning behavior when training our proposed
model, and compare performance of assignment grade prediction
based on the trained models. Figure 5 shows the AUC perfor-
mances for each type of courses. “All Features” stands for the
LadFG model considering all features defined in our method. “-
Demographic”, “-Forum”, and “-Behavior” indicate results from
removing demographics, forum activities, and learning behavior,
respectively. Apparently, the learning behavior features contribute
significantly to the results for both types of courses. It is also worth-
while to note that learning behavior seems to be more important
for modeling the non-science courses. Without learning behavior-
based features, the performance of assignment grade prediction in
non-science courses is worse than that in science courses.

Effect of the percentage of the training data. We investigate the
performance of assignment grade prediction by varying the per-
centage of the training data. Figure 6 shows the average prediction
performance. The x-axis (k = 20 − 90) indicates the percentage
of data we use for training. It is very interesting that non-science
courses seem to be more predictable. LadFG achieves a stable per-
formance for non-science courses using only 30% of data for train-
ing. For science courses, the prediction performances vary a lot and
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k
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Non-Science
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Figure 6: Average Prediction Performance by Varying the Per-
centage of Data for Training.

Table 6: Performance of Certificate Earner Prediction with Dif-
ferent Methods (%).

Category Method AUC Precision Recall F1-score

Science

LRC 92.13 83.33 46.51 59.70

SVM 92.67 52.17 83.72 64.29

FM 94.48 61.54 74.42 67.37

LadFG 95.73 73.91 79.07 76.40

Non-Science

LRC 94.16 76.93 89.20 82.57

SVM 93.94 76.96 88.60 82.37

FM 94.87 80.22 86.23 83.07

LadFG 95.54 79.76 89.01 84.10

they depend on the amount of data used for training. Additionally,
it seems difficult to predict grades of the last assignments in science
courses.

4.3 Certificate Earner Prediction
Moreover, we use certificate earner prediction to evaluate the ef-

fectiveness of the proposed model. Again, we use the first half of
the data (before the mid-term) for training each method, and ap-
ply the learned model to predict whether a student would get the
course certificate. Table 6 summarizes the performance of differ-
ent methods for predicting certificate earners. Consistently, LadFG
performs better than alternative methods. In addition, we conduct
a similar feature contribution analysis for certificate earner predic-
tion. Figure 7 shows the prediction performance of the proposed
model by considering different categories of features and we have
similar results as those for assignment grade prediction.

4.4 Parameter Sensitivity Analysis
We now discuss how different parameters influence the perfor-

mance of our methods, as well as presenting the efficiency perfor-
mance. In all the analyses, we use the assignment grade prediction

Table 7: Efficiency Performance of Different Methods.

Category LRC SVM FM LadFG
Science 0.07sec 2.35sec 2.7min 1.4min

Non-Science 1.46sec 9.8min 4.1min 8.6min
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Figure 7: Feature Contribution Analysis for Certificate Earner
Prediction.

as the example, and report the average performance on non-science
and science courses respectively.

Effect of Latent Dimension m. We evaluate how the latent di-
mensionm affects the quality of the models learned by LadFG. We
perform an analysis by varying the dimension of latent space in the
proposed LadFG method. Figure 8(a) shows its AUC performance
with different numbers of topics. We find that LadFG results in a
better performance when the latent dimension is smaller than 20.
In addition, increasing the dimension results in a performance drop
and this might be due to the data sparsity.

Effect of Parameter p. Pertaining to the parameter p, Figure 8(b)
shows the performance of LadFG with different p (other parameters
are fixed, e.g., m = 5). Although the performance changes when
we vary the value of p, the best performance is obtained when p =
2 (by considering latent states of two previous time stamps).

Convergence analysis. We further investigate the convergence of
the learning algorithm for LadFG. Figure 8(c) presents the conver-
gence analysis of the algorithm. The algorithm converges within
500 iterations. Furthermore, this rapid convergence enables us to
do efficient training of the model on large scale datasets.

Efficiency. We compare the efficiency of the different methods.
Table 7 lists the average running time of the comparison algorithms
for training the prediction models. Overall, all methods have good
efficiency performance, and the running time of different methods
ranges from seconds to minutes. LadFG results in a slightly lower
efficiency compared with FM.

4.5 Error Analysis
In the end, we conduct an error analysis on the results of our

approach and observe three major types of errors.

(1) Unpredictable negative cases. The proposed LadFG model
fails in the following scenario in which a substantial propor-
tion is credited to final exams in certain courses. Some active
learners, who engage in forums and lectures enthusiastically,
may not take tests due to personal reasons, e.g., scheduling
conflicts, and they would be misclassified into certificated
group.

(2) Unpredictable positive cases. In contrast, some inactive stu-
dents never participate in forums and have very few learn-
ing activities. However, they still complete assignments (or
pass the final exams) with extremely high scores, and they
are incorrectly grouped to be low grade in the assignment

grade prediction (or uncertificated in the certificate earner
prediction). We randomly choose several of those students
and conduct interviews with them. We find that a substantial
proportion of them are very skillful undergraduate or gradu-
ate students who have taken similar courses offline. There-
fore, they are capable of taking online tests without spending
much effort.

(3) Swing cases. LadFG would become ineffective for certificate
earner prediction on “swing” cases as well. Each course has
a minimum passing score, above which the student would
be certificated. Swing cases are those students whose scores
are hovering around the minimum score. Our model would
misclassify these swing cases and draw a wrong conclusion.

5. RELATED WORK
MOOCs boom swiftly in recent years and have attracted mil-

lions of users worldwide. Experiences in offline education which
predict dropouts and school failures do not fully satisfy the need in
MOOCs. Analyzing and mining the big data from online courses
becomes an important topic to understand students’ behavior. We
review related literature in three topics: attribute analysis, engage-
ment analysis and time-related feature analysis.
Attribute analysis: This line of researches mainly focuses on
studying the relationship between user demographic attributes and
their behavioral patterns in online courses. For example, Guo et
al.[11] investigated how navigation strategies vary by demograph-
ics. Based on demographic results, Wilkowski et al.[27] found no
correlation between prior skills and course completion rates. Fur-
thermore, their study showed that students who completed course
activities were more likely to earn certificates than those who did
not. Moreover, Seaton et al.[25] examined activities that help stu-
dents get certificates.
Engagement analysis: More and more researchers start to an-
alyze students’ engagement in courses. For online open courses,
Anderson et al.[2] developed a taxonomy of individual engagement
style, and there was a further discussion between student engage-
ment and their grades. Since student dropouts in MOOCs have
gathered widespread attention, Ramesh et al.[24] proposed a latent
representation model which could be applied to abstract student
engagement types and to predict dropouts. Additionally, for tradi-
tional courses, Bayer et al.[4] predicted dropouts and school fail-
ures when student data has been enriched with data derived from
students’ social behavior. Related studies can be also found in [12,
22]. However, most existing research on engagement shared simi-
larities with Champaign et al.’s work[8]. They estimated time spent
on different resources and examined correlations between time and
students’ performance.
Forum analysis: Several interesting work examines MOOC fo-
rums, which plays an important role in online learning. Chaturvedi
et al.[9] predicted instructor’s intervention in forums. Brinton et
al.[6] investigated factors correlated with the decline of forum ac-
tivities, and found strategies to classify and rank thread relevance.
Additionally, Huang[15] explored super-posters on forums and
studied their engagement patterns. They found that super-posters
display above-average engagement, enroll in more courses, and ob-
tain better grades than the average forum participants. However,
these studies might isolate and overstate the importance of forum
performance.

To the best of our knowledge, there was little work utilizing tem-
poral correlations between demographics, forum behaviors, and
learning activity patterns to model and predict assignment grade
performance and certificate earners.
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Figure 8: Parameter Analysis. (a) Performance of LadFG model by varying the latent dimension m; (b) Performance of LadFG
model by varying the parameter p; (c) Convergence analysis of LadFG.

6. CONCLUSION
In this paper, we study a novel problem of modeling and predict-

ing learning behavior in MOOCs. We conduct in-depth analysis for
student demographics, and learning activity patterns in course fo-
rums, videos and assignments. We propose a latent dynamic factor
graph (LadFG) to incorporates students’ demographics, forum ac-
tivities, and learning behavior into a unified framework. Our exper-
imental results on two prediction tasks: assignment performance
prediction and certificate earner prediction, validate the effective-
ness of the proposed model.

The general idea in this paper, to model and predict learning be-
havior in MOOCs, represents an interesting and new research di-
rection. There are many potential future directions for this work. A
straightforward task would be to incorporate human feedback into
the proposed model. Other courses and more information on users
would also be worth exploring. Looking further ahead, we believe
that different models and semi-supervised learning algorithms for
exploring social network structures should be beneficial. Finally,
building a theory of why and how students join and quit different
courses is an intriguing direction for future research.
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