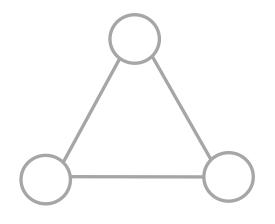


# Mining Triadic Closure Patterns in Social Networks



Hong Huang, University of Goettingen

Jie Tang, Tsinghua University Sen Wu, Stanford University Lu Liu, Northwestern University Xiaoming Fu, University of Goettingen

#### **Networked World**

facebook.

- 1.26 billion users
- 700 billion minutes/month

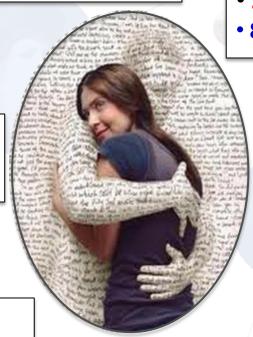


- 555 million users
- •.5 billion tweets/day



- 79 million users per month
- 9.65 billion items/year







• 80% or





- 560 million users
- influencing our daily life



- Alibaba Group
  「阿里巴里語」
- 500 million users
- 35 billion on 11/11

- 800 million users
- ~50% revenue from network life

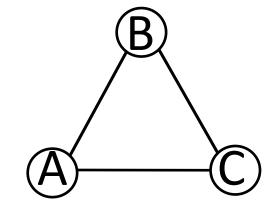
# A Trillion Dollar Opportunity

Social networks already become a bridge to connect our daily physical life and the virtual web space

On2Off [1]

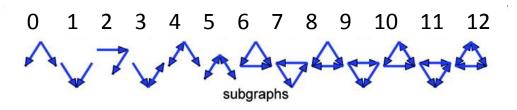
# "Triangle Laws"

- Real social networks have a lot of triangles
  - Friends of friends are friends
- Any patterns?
  - 2X the friends, 2X the triangles?

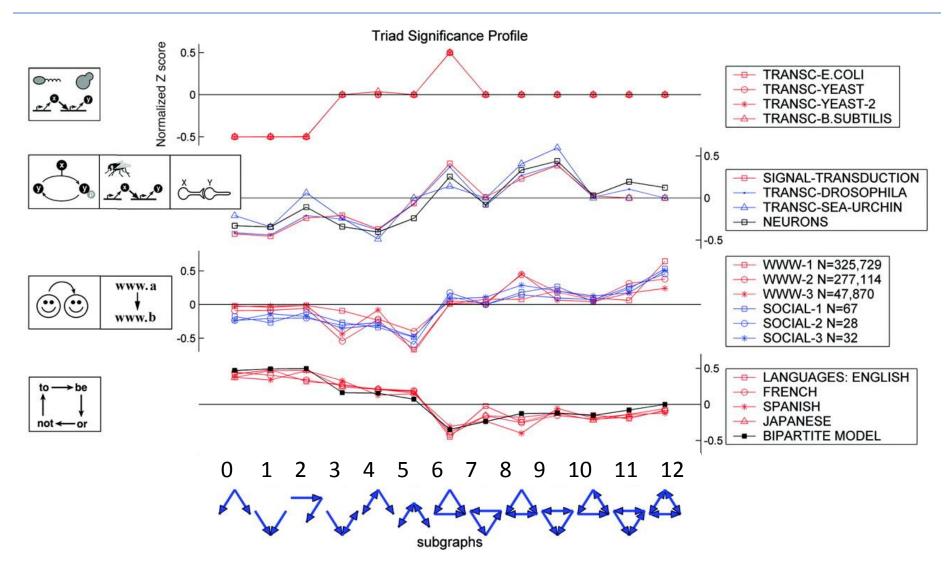


# How many different structured triads can we have?

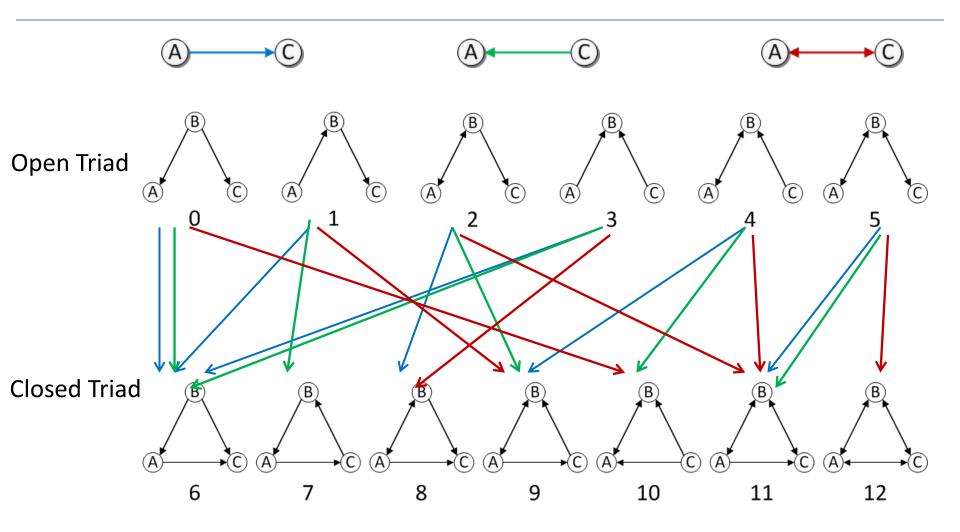
#### Triads in networks



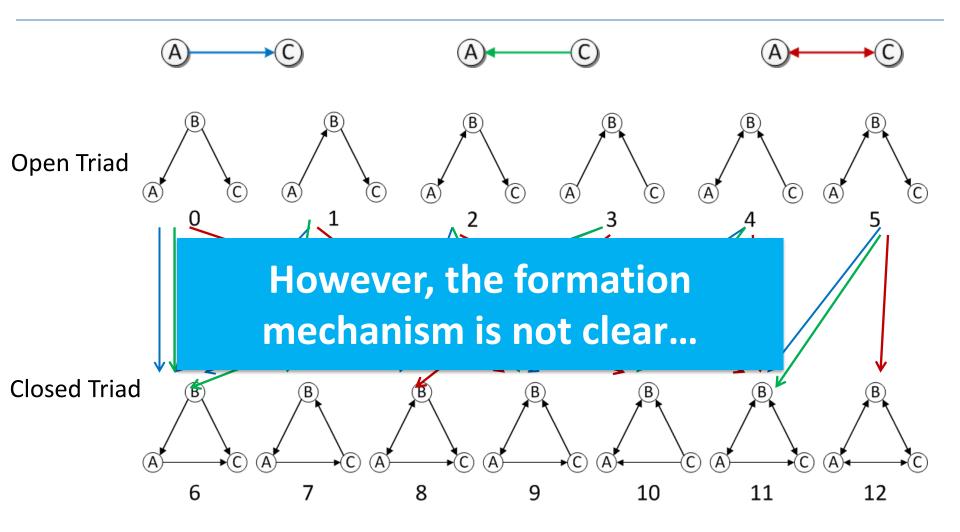
#### Triads in networks



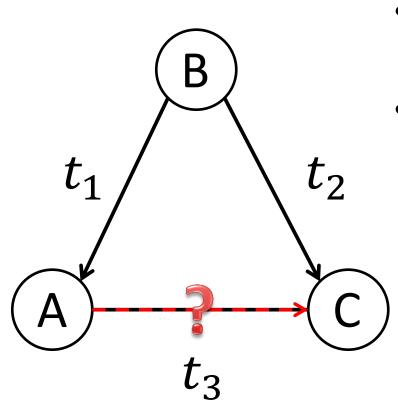
# Open Triad to Triadic Closure



# Open Triad to Triadic Closure



#### **Problem Formalization**



- Given network  $G^t = (V, E)$ ,  $Y^T$  are candidate open triad:
- Goal: Predict the formation of triadic closure

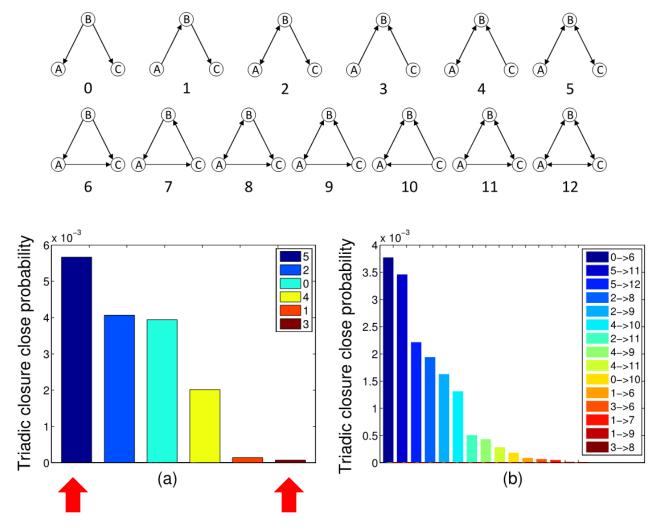
$$f: (\{G^t, Y^t, X^t\}_{t=1,\dots T}) \to Y^{T+1}$$

$$t_3 > t_2 > t_1$$

#### **Dataset**

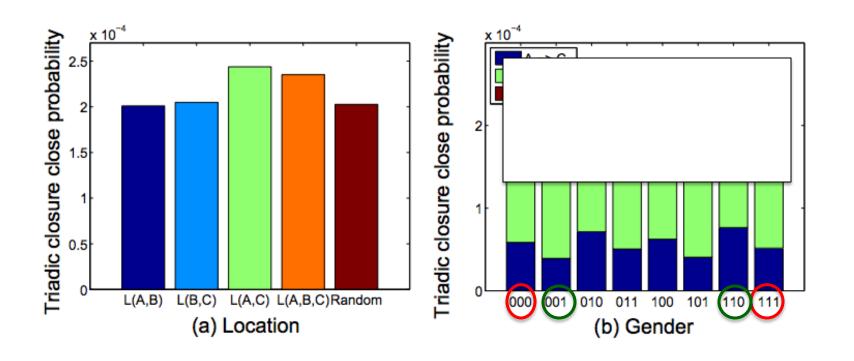


## **Observation - Network Topology**



Y-axis: probability that each open triad forms triadic closures

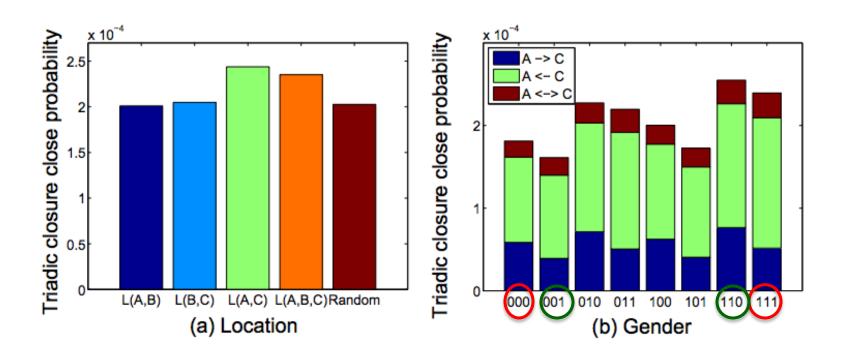
# Observation - Demography



L(A, B) means A and B are from the same city

0—female; 1—male e.g., 001 means A and B are female while C is male.

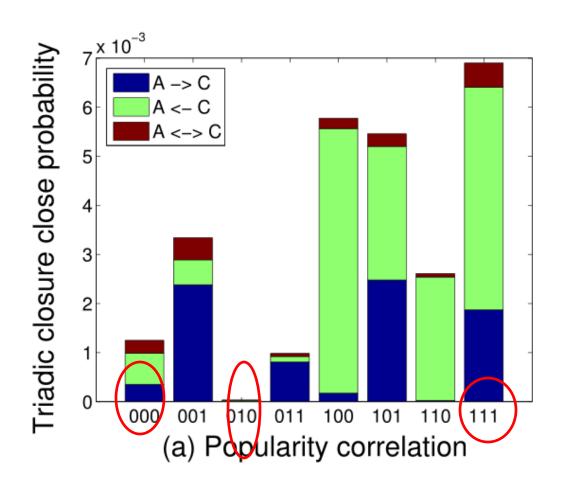
# Observation - Demography



L(A, B) means A and B are from the same city

0—female; 1—male e.g., 001 means A and B are female while C is male.

#### Observation - Social Role



0—ordinary user

1—opinion leader (top 1% PageRank)

e.g., 001 means A and B are ordinary user while C is opinion leader.

### Summary

#### • Intuitions:

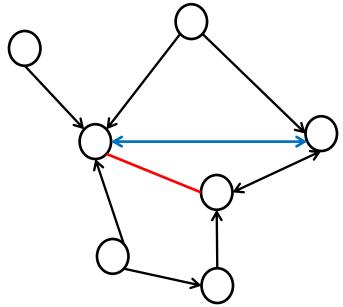
Men are more inclined to form triadic closure

Triads of opinion leaders themselves are more

likely to be closed.

**—** ...

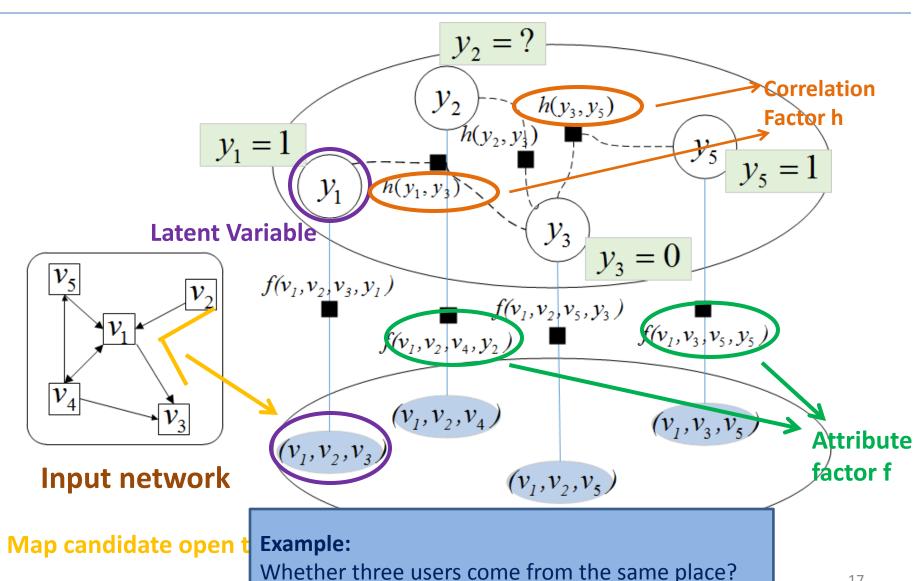
Correlation



Considered the intuitions and correlations...

# THE PROPOSED MODEL AND RESULTS

# Triad Factor Graph (TriadFG) Model



17

#### Solution

- Given a network  $G = \{V, E, X, Y\}$
- Objective function:  $\varphi_{\theta} = log P_{\theta}(Y|X,G)$
- $P(Y|X,G) \propto P(X|Y) \cdot P(Y|G)$  attribute factor f

$$= \frac{1}{Z_1} \exp\{\sum_{i=1}^{|T|} \sum_{j=1}^{a} \alpha_j f_j(x_{ij}, y_i)\}$$

$$\frac{1}{Z_2} \exp\{\sum_c \sum_k \mu_k h_k(Y_{Tr_c})\}$$

•  $\theta = (\{\alpha_j\}, \{\mu_k\})$ 

Correlation factor h

# Learning Algorithm

Input: network  $G^t$ , learning rate  $\eta$ Output: estimated parameters  $\theta$ 

Initialize  $\theta \leftarrow 0$ ;

#### repeat

Perform LBP to calculate marginal distribution of unknown variables  $P(y_i|x_i, G)$ ; Perform LBP to calculate the marginal distribution of triad c, i.e.,  $P(y_c|\mathbf{X}_c, G)$ ; Calculate the gradient of  $\mu_k$  according to Eq. 7 (for  $\alpha_j$  with a similar formula):

$$\frac{\mathcal{O}(\theta)}{\mu_k} = \mathbb{E}[h_k(Y_c)] - \mathbb{E}_{P_{\mu_k}(Y_c|\mathbf{X},G)}[h_k(Y_c)]$$

Update parameter  $\theta$  with the learning rate  $\eta$ :

$$\theta_{\text{new}} = \theta_{\text{old}} + \eta \cdot \frac{\mathcal{O}(\theta)}{\theta}$$

until Convergence;

Lou T, Tang J, Hopcroft J, et al. Learning to predict reciprocity and triadic closure in social networks[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2013, 7(2): 5.

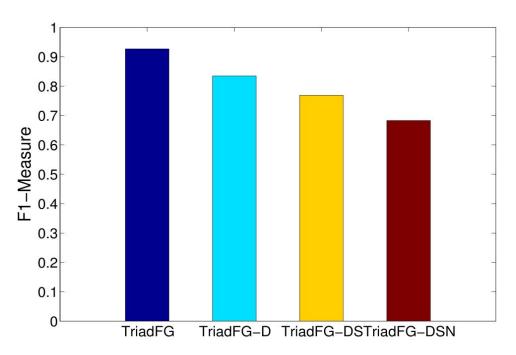
#### Results on the Weibo data

• Baselines: SVM, Logistic

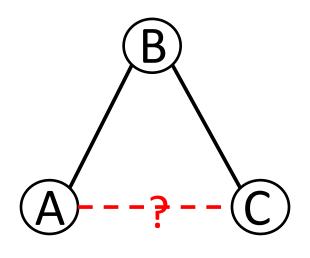
| Algorithm | Precision | Recall | F1    | Accuracy |
|-----------|-----------|--------|-------|----------|
| SVM       | 0.890     | 0.844  | 0.866 | 0.882    |
| Logistic  | 0.882     | 0.913  | 0.897 | 0.885    |
| TriadFG   | 0.901     | 0.953  | 0.926 | 0.931    |

# **Factor Contribution Analysis**

- Demography(D)
- Popularity(S)
- Network Topology(N)
- Structural hole (H)



#### Conclusion



 Problem: Triadic closure formation prediction

#### Observations

- Network Topology
- Demography
- Social Role
- Solution: TriadFG model
- Future work

# Thanks Jing Zhang in Tsinghua Uni. for sharing her Weibo data!

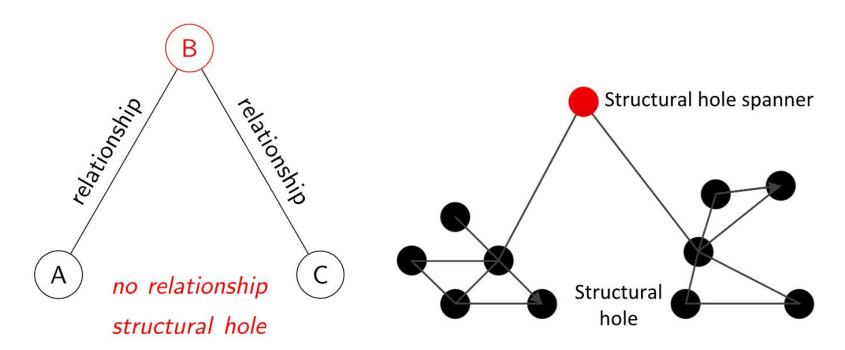
# THANK YOU!

### Attribute factor Definition

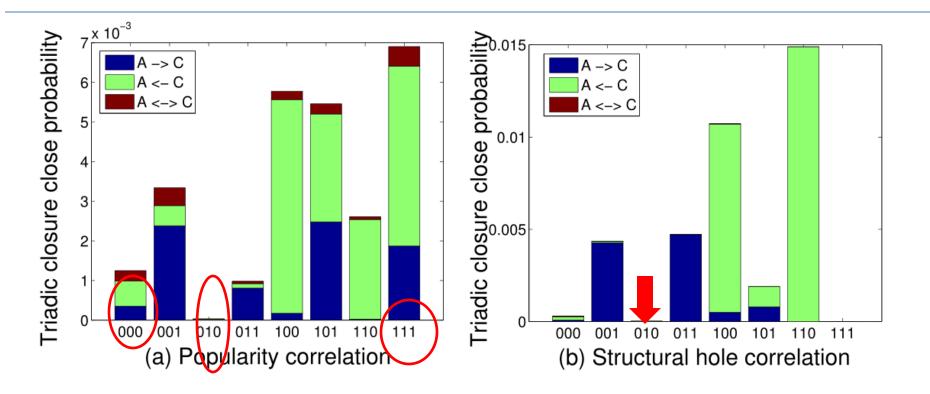
|                  | Feature                               | Function    |
|------------------|---------------------------------------|-------------|
| Network topology | Is open triad 5/2/0/4/1/3             | 1/1/1/1/0/0 |
| Demography       | A,B,C from the same place             | 1           |
|                  | A,C from the same place               | 1           |
|                  | C is female                           | 1           |
|                  | B is female                           | 1           |
| Social role      | A/B/C is popular user                 | 1/0/1       |
|                  | A,B,C are all popular user            | 1           |
|                  | Two users are popular                 | 1           |
|                  | One user is popular                   | 1           |
|                  | A/B/C is structural hole spanner      | 1/0/1       |
|                  | Two users are structural hole spanner | 1           |
|                  | One user is structural hole spanner   | 1           |

#### Structural hole

 When two separate clusters possess nonredundant information, there is said to be a structural hole between them



#### Observation - Social Role



0—ordinary user; 1—opinion leader

e.g., 001 means A and B are ordinary user while C is opinion leader.

0—ordinary user; 1—structural hole spanner

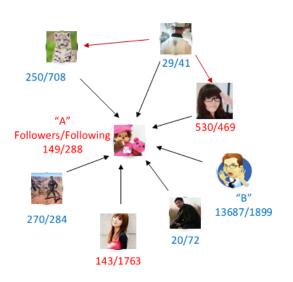
e.g., 001 means A and B are ordinary user while C is structural hole spanner.

Lou T, Tang J. Mining structural hole spanners through information diffusion in social networks, www2013

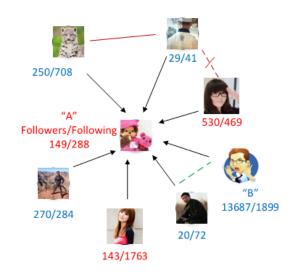
## Popular users in Weibo vs. Twitter

- The rich get richer (Both)
  - -P(1XX) > P(0XX), validates preferential attachment
- In twitter, popular users functions in triadic closure formation, while in Weibo reverse
  - In Twitter, P(X1X) > P(X0X)
  - In Weibo, ordinary users have more chances to connect other users.
- Popular users in China are more close

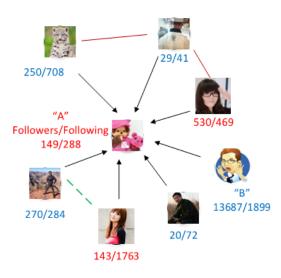
# Qualitative Case Study



(e) Ground Truth



(f) SVM



(g) Our approach