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ABSTRACT

Entity alignment, aiming to identify equivalent entities across dif-
ferent knowledge graphs (KGs), is a fundamental problem for con-
structing Web-scale KGs. Over the course of its development, the
label supervision has been considered necessary for accurate align-
ments. Inspired by the recent progress of self-supervised learning,
we explore the extent to which we can get rid of supervision for
entity alignment. Commonly, the label information (positive entity
pairs) is used to supervise the process of pulling the aligned enti-
ties in each positive pair closer. However, our theoretical analysis
suggests that the learning of entity alignment can actually benefit
more from pushing unlabeled negative pairs far away from each
other than pulling labeled positive pairs close. By leveraging this
discovery, we develop the self-supervised learning objective for
entity alignment. We present SelfKG with efficient strategies to
optimize this objective for aligning entities without label supervi-
sion. Extensive experiments on benchmark datasets demonstrate
that SelfKG without supervision can match or achieve comparable
results with state-of-the-art supervised baselines. The performance
of SelfKG suggests that self-supervised learning offers great poten-
tial for entity alignment in KGs. The code and data are available at
https://github.com/THUDM/SelfKG.
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« Computing methodologies — Neural networks; « Informa-
tion systems — Information integration.
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Figure 1: Hit@1 on DWY100K and DBP15K for SelfKG (0% of
training labels) and SOTA supervised (100% of training labels)
entity alignment. Without using any labels, the self-supervised
SelfKG outperforms most of supervised models.
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1 INTRODUCTION

Knowledge graphs (KGs) have found widespread adoption in
various Web applications, such as search [8, 24], recommenda-
tion [12, 19], and question answering [17, 46]. Constructing large-
scale KGs has been a very challenging task. While we can extract
new facts from scratch, aligning existing (incomplete) KGs together
is practically necessary for real-world application scenarios. Over
the past years, the problem of entity alignment [35, 39], or namely
ontology mapping [20] and schema matching [21], has been a fun-
damental problem for the Web research community.

Recently, the representation learning-based alignment meth-
ods [4, 35, 39, 40, 49] have emerged as the mainstream solutions
for entity alignment due to their superior flexibility and accuracy.
However, their success relies heavily on the supervision provided
by human labeling, which can be biased and arduously expensive
to obtain for Web-scale KGs. In light of this fundamental challenge,
we aim to explore the potential to align entities across KGs without
label supervision (i.e., self-supervised entity alignment).

To achieve this, we revisit the common process of the established
supervised entity alignment approaches. Conceptually, for each
paired entities from two KGs, the goal of the existing learning
objectives is to make them more similar to each other if they are
actually the same entity (i.e., a positive pair), otherwise dissimilar
if they are different entities (i.e., a negative pair). In the embedding
space, this goal is pursued by pulling aligned entities closer and
pushing different entities farther away.

We identify the parts where supervision is required in this pro-
cess. At first place, the supervision serves to pull aligned entities
closer. Secondly, another issue arises is the procedure of generating
label-aware negative pairs. For every entity in a KG, in the training
its negative pairs are formed by randomly sampling entities from
the other KG while excluding the groundtruth. If without supervi-
sion, it is likely that the implicitly aligned entities are sampled as
negative pairs, thus spoiling the training (i.e., collision).


https://github.com/THUDM/SelfKG
https://doi.org/10.1145/3485447.3511945
https://doi.org/10.1145/3485447.3511945

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France.

Contributions. We introduce the problem of self-supervised [23]
entity alignment in KGs. To address it, we present the SelfKG frame-
work, which does not rely on labeled entity pairs to align entities. It
consists of three technical components: 1) relative similarity metric,
2) self-negative sampling, and 3) multiple negative queues.

To get rid of label supervision, we theoretically develop the
concept of relative similarity metric (RSM), which enables the self-
supervised learning objective. The core idea of RSM is that instead
of directly pulling the aligned entities closer in the embedding space,
it attempts to push not-aligned negatives far away, thus avoiding
the usage of the supervision of positive pairs. In a relative sense,
the (implicitly) aligned entities can be considered to be dragged
together when optimizing for RSM.

By design, to address the dilemma between supervision with
label-aware negative sampling and collision of false-negative sam-
ples without it, SelfKG further propose the self-negative sampling
strategy, that is, for every entity in a KG, we form its negative pairs
by directly sampling entities from the same KG. In other words,
SelfKG solely relies on negative entity pairs that are randomly sam-
pled from the input KGs . We theoretically show that this strategy
remains effective for aligning entities across KGs.

Finally, our theoretical analysis also shows that the self-
supervised loss’ error term decays faster as the number of negative
samples increases, i.e., a large number of negative samples can ben-
efit SelfKG. However, encoding massive negative samples on the fly
is computationally very expensive. We address this by extending
the MoCo technique [16] to support two negative queues, each
of which corresponds to the two KGs for alignments, ensuring an
efficient increase of negative samples.

Empirically, we conduct extensive experiments to demonstrate
the premise of self-supervised entity alignment in KGs. We com-
pare the proposed SelfKG method against 24 supervised and one
unsupervised baselines on two widely-used entity alignment bench-
marks datasets—DWY100K and DBP15K. The results suggest that
SelfKG without using any labels can match or achieve comparable
performance with the state-of-the-art supervised baselines (Cf. Fig-
ure 1). This demonstrates the power of self-supervised learning for
entity alignment as well as our design choices of SelfKG.

2 PROBLEM DEFINITION

We introduce the problem of entity alignment in KGs. Conceptually,
a KG can be represented as a set of triples T, each of which denotes
the relation r;; € R between two entities x; € E and x; € E. In this
work, we denote a KG as G = {E,R, T} where E, R, and T are its
entity set, relation set, and triple set, respectively.

Given two KGs, Gx = {Ex, Ry, Ty} and Gy = {Ey,Ry, Ty}, the
set of the existing aligned entity pairs is defined as S = {(x,y)|x €
Ex,y € Ey,x © y}, where & represents equivalence. The goal of
entity alignment between Gy and Gy is to find the equivalent entity
from Ey for each entity in Ey, if existed.

Recently, a significant line of work has been focusing on
embedding-based techniques for aligning entities in the vector
space, e.g., training a neural encoder f to project each entity x € E
into a latent space. Among these attempts, most of them focus on
the (semi-) supervised setting in the sense that part of S is used for
training the alignment models [4, 35, 39, 40, 49]. Due to the limited
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alignment labels across KGs in the real world, we instead propose
to study to what extent the entity alignment task can be solved in
an unsupervised or self-supervised setting, under which none of
the existing alignments in S is available.

3 SELF-SUPERVISED ENTITY ALIGNMENT

In this section, we discuss the role that the supervision plays in en-
tity alignment and then present the strategies that can help align en-
tities without label supervision. To this end, we present the SelfKG
framework for self-supervised entity alignment across KGs.

3.1 The SelfKG Framework

To enable learning without label information, the main goal of
SelfKG is to design a self-supervised objective that can guide its
learning process. To achieve this, we propose the concept of relative
similarity metric (Cf. Section 3.2) between entities across two KGs.
To further improve the self-supervised optimization of SelfKG, we
introduce the techniques of self-negative sampling (Cf. Section 3.3)
and multiple negative queues (Cf. Section 3.4).

Next, we introduce the initialization of entity embeddings in
SelfKG, which is largely built upon existing techniques, including
the uni-space learning and GNN based neighborhood aggregator.

Uni-space learning. The idea of uni-space learning has been
adopted by recent (semi-) supervised entity alignment techniques [4,
35, 39, 40, 49]. Herein, we present how we leverage it for supporting
SelfKG’s self-supervised learning setting.

Straightforwardly, embedding entities from different KGs into a
uni-space can greatly benefit the alignment task. With labeled entity
pairs, it is natural to leverage supervision to align different spaces
into one, e.g., merging aligned entities for training [15], or learning
projection matrices with abundant training labels to project entities
from different embedding spaces into a uni-space [4, 30].

In terms of multi-lingual datasets (e.g., DBP15K), the issue is
more challenging. Thanks to the pre-trained language models [14],
high-quality multi-lingual initial embeddings are now available. For
example, the multi-lingual BERT has been used in recent work [35,
52]. In SelfKG, we adopt LaBSE [9]—a state-of-the-art multi-lingual
pre-trained language model trained on 109 different languages—for
embedding different knowledge graphs into a uni-space.

Neighborhood aggregator. To further improve the entity embed-
dings, the neighborhood aggregation is used to aggregate neighbor
entities’ information to the center entity [39, 42]. In this work, we
directly use a single-head graph attention network [37] with one
layer to aggregate pre-trained embeddings of one-hop neighbors.

Note that leveraging multi-hop graph structures has been re-
cently explored for the problem of entity alignment. Though some
studies [10, 39, 40] claim that they benefit from multi-hop neigh-
bors, other works [42, 51] argue that one-hop neighbors provides
enough information for most situations. In our ablation study (Cf.
Section 4.2), we find that the multi-hop information actually harms
the performance of SelfKG, which is probably resulted from the dis-
tant neighbor noises that may be unignorable in a self-supervised
setting. Therefore, to demonstrate the minimum requirement of
self-supervision for entity alignment, we only involve one-hop
neighbor entities during the aggregation.
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Figure 2: A conceptual comparison of SelfKG and supervised
approaches. SelfKG employs the relative similarity metric (RSM)
and self-negative sampling to avoid the use of supervision.

3.2 Relative Similarity Metric

We present the self-supervised loss for entity alignment across
KGs. First, we analyze the supervised NCE loss for entity align-
ment. Then, we introduce the relative similarity metric for avoiding
labeled pairs. We finally derive the self-supervised NCE for SelfKG.

In representation learning, the margin loss [1, 35] and cross-
entropy loss [50] have been widely adopted as the similarity metric.
Without loss of generality, they can be expressed in the form of
Noise Contrastive Estimation (NCE) [13].

In the context of entity alignment, the NCE loss can be formalized
as follows. Let py, Py be the distributions of two KGs Gx, Gy, and
Ppos denote the representation distribution of the positive entity
pairs (x,y) € R™ x R™. Given a pair of aligned entities (x,y) ~
Ppos, negative samples {y; }?;I 1 iid Py, the temperature 7, and the
encoder f satisfies || f(+)|| = 1, we have the supervised NCE loss as

ST f(y)/r
g -
ST 45, ST
= —%f(x)Tﬂy) +log(ef ) FW/T, 3 f I WDIT) @
i

—_—

Lnce 2 -1o

alignment . .
uniformity

where the “alignment” term is to draw the positive pair close and
the “uniformity” term is to push the negative pairs away.

We illustrate how this NCE loss can be further adjusted for a self-
supervised setting. An example of “pulling” and “pushing” entity
pairs in KGs can be found in Figure 2 (left). Previous studies have
shown that the NCE loss has the following asymptotic properties:

Theorem 1. (Absolute similarity metric (ASM) [38]) For a fixed
7 > 0, as the number of negative samples M — oo, the (normalized)
contrastive loss £LncE (i.e., Lasm) converges to its limit with an
absolute deviation decaying in O(M™2/3) . Ifa perfectly-uniform
encoder f exists, it forms the exact minimizer of the uniformity
term.

Proof.  Please refer to [38]. O

Theorem 1 makes the NCE loss an absolute similarity metric that
requires supervision. However, note that despite potential ambigu-
ity and heterogeneity for entities in KGs, the aligned pairs should
share similar semantic meanings, if not exactly the name. Further-
more, the pre-trained word embeddings are known to capture this
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semantic similarity by projecting similar entities close in the em-
bedding space, which can thus ensure a relatively large f(x)7 f(y)
in Eq. 1, i.e., the “alignhment” term.

Therefore, to optimize the NCE loss, the main task is then to
optimize the “uniformity” term in Eq. 1 rather than the “alignment”
term. Considering the boundedness property of f, we can instantly
draw an unsupervised upper bound of Lagp by as follows.

Proposition 1. Relative similarity metric (RSM). For a fixed 7 >
0 and encoder f satisfies || f(-)|| = 1, we always have the following
relative similarity metric plus an absolute deviation controlled by a
constant as an upper bound for Laspm:

Lrsw=——+ E llog(e”’ + Z ef(X)Tf(yi_)/T)}
(1, i )
1 . T
< Lpsm < Lrsm+ = [1—  min (f(x) f(y)) .
T (x,y)~ppos
Proof.  Please refer to Appendix A.1. O

By optimizing Lrsy, the aligned entities are relatively drawn
close by pushing non-aligned ones farther away. In other words, if
we cannot draw the aligned entities close (e.g., no positive labels),
we can instead push those not-aligned ones far away enough.

By analyzing the commonly-used NCE loss for entity alignment,
we find that the training can benefit more from pushing those
randomly-sampled (negative) pairs far away than pulling aligned
(positive) ones close. Thus, in SelfKG, we focus only on attempting
to pushing the negatives far away such that we can get rid of the
usage of positive data (i.e., labels).

3.3 Self-Negative Sampling

In the analysis above, we demonstrate that to align entities without
supervision, the focus of SelfKG is on sampling negative entity
pairs—one from KG Gy and the other from KG G. During negative
sampling, without supervision for label-aware negative sampling,
it is likely that the underlyingly aligned entity pair is sampled
as a negative one, i.e., collision happens. Normally, this collision
probability can be ignored if a few negatives are sampled; but we
discover that a large number of negative samples can be crucial
to the success of SelfKG (Cf. Figure 4), under which the collision
probability is non-negligible (Cf. Table 4), causing a performance
drop by up to 7.7% relatively. To mitigate the issue, we propose
to sample negatives x; from Gy for entity x € Gy, given that
we are learning from the uni-space of Gy and Gy. By doing so,
we would avoid the conflict by simply excluding x, namely self-
negative sampling.

However, there may be two other issues aroused consequently.
First, due to the real-world noisy data quality, there may often exist
several duplicated x in Gy, which could be possibly sampled as
negatives. Note that this is also a challenge faced by the supervised
setting, where a few duplicated y may also exist in G. By following
the outline of proof in [38], we show that a certain amount of noise
will not influence the convergence of the NCE loss.

Theorem 2. (Noisy ASM) Let the average duplication factors
A € Nt 7 € R be constants. The noisy ASM is denoted as follows
and it still converges to the same limit of ASM with the absolute
deviation decaying in O(M —2/3),
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. irMopo) . ST F(y/r
S 3T M, py) = ~log —
ASMIAx Y (x,y)~gpos Aef(x)Tf(y)/T +3; ef(X)Tf(yi )/t (3)
(w7 1, gy
Proof.  Please refer to Appendix A.2. |

The second issue is that by changing the negative samples from
y; € Gytox; € Gy, we need to confirm whether the Lgrsy would
still be effective for entity alignment. Empirically, for a selected
negative sample y; € Gy, we can expect there to be some partially
similar x; € Gy. Since the encoder f is shared for Gy and Gy, the
optimization of f(x;) will also contribute to the optimization of
f (yJT). To justify this, we provide the following theorem.

Theorem 3. (Noisy RSM with self-negative sampling) Let Qy,
M

=1
{y;7 1 Qy — R"}?ﬁ , be iid random variables with distribution py,

Qy be the spaces of KG triples, respectively, {x; : Qx — R"}

Py, respectively, and 891 denote the uni-sphere in R”. If there
exists a random variable f : R" — S971 st f(x7) and f(y;)
satisfy the same distribution on Sd_l, 1 <i < M., we then have:

Jim | Lrsmiax (3 7. M, px) = Lrsmjax (f: 7. M, py) | = 0. 4
Proof.  Please refer to Appendix A.3. d

Wang et al. [38] suggests that under the condition of px = py, the
encoder f can be attained approximately as the minimizer of the
uniform loss. Specifically, f follows the uniform distribution on the
hypersphere. In SelfKG, the uni-space learning condition ensures
the ultimate unified representation for both KGs. The initial px
and py are similar but not identical, which indicates that the self-
negative sampling is essential. However, as the training continues,
the encoder will be improved as Theorem 2 guarantees to make
two KGs more aligned. In other words, the entity embeddings of Gx
and Gy could be viewed as the samples from one single distribution
in a larger space, i.e., px = py. This in turn allows the existence of
f to be more realizable.

In practice, we jointly optimize the loss on both G and G as
follows, which is also illustrated in Figures 2 (right) and 3.

L= Lrsmiax (37 M, px) + Lrsmay (57 M, py). )
In addition, as the error term of L, (f;7, M, px) decays in

O(M™2/3) (Cf. Theorem 2), we use a comparatively large number
of negative samples to boost the performance.

3.4 Multiple Negative Queues

Enlarging the number of negative samples can naturally result
in additional computational cost, as encoding massive negative
samples on the fly is quite expensive. To address this issue, we
propose to extend the MoCo technique [16] for SelfKG. In Moco,
a negative queue is maintained to store the previously-encoded
batches as the encoded negative samples, which host thousands of
encoded negative samples at limited cost.

To adapt to the self-negative sampling strategy in SelfKG, we
practically maintain two negative queues, associating with the two
input KGs, respectively. An illustrative example is shown in Figure
3. In the beginning, we would not implement the gradient update
until one of the queues reaches the predefined length 1+ K where ‘1’
is for the current batch and K is for the number of previous batches
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Figure 3: The training process of SelfKG. It leverages a negative
queue for each KG to provide massive negative samples (up to 4k
at a time) for calculating the self-supervised contrastive loss.

used as negative samples. Given |E| as the number of entities in a
KG, K, and the batch size N are constraint by

(1+K) X N < min(|Ex|, |Ey]), (6)

it is guaranteed that we would not sample out entities in the current
batch. As a result, the real number of negative samples used for the
current batch is (1+ K) X N — 1.

Momentum update [16]. The main challenge brought by nega-
tive queues is the obsolete encoded samples, especially for those
encoded at the early stage of training, during which the model pa-
rameters vary drastically. Thus, the end-to-end training, which only
uses one frequently-updated encoder, may actually harm the train-
ing. To mitigate this, we adopt the momentum training strategy,
which maintains two encoders—the online encoder and the target
encoder. While the online encoder’s parameter 0, jine is instantly
updated with the backpropagation, the target encoder ftarget for
encoding the current batch and then pushing into the negative
queue is asynchronously updated with momentum by:

Otarget «— m - Brarget + (1 —m) - Oopline; m € [0,1) (7)

A proper momentum is not only important for steady training
but may also influence the final performance by avoiding repre-
sentation collapse (Cf. Figure 4). We present a series of related
hyper-parameter studies in Section 4.

Summary. We present SelfKG for self-supervised entity alignment.
Figure 2 illustrates that: 1. relative similarity metric (RSM) pushes
the non-aligned entities (y;, y; and y;) of x far enough, instead
of directly pulling underlyingly-aligned y close to x (labeled pairs),
enabling learning without label supervision; 2. self-negative sam-
pling samples negative entities for x from Gy to avoid sampling the
true y as its negative. Figure 3 illustrates the training of SelfKG. It
leverages existing techniques—embeddings from pre-trained lan-
guage models and neighborhood aggregator—to initialize entity
embeddings into a uni-space. The technical contributions of SelfKG
lie in:

(1) the design of the self-supervised loss in Eq. 2 enabled by our

relative similarity metric (RSM) in KGs;
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Table 1: Statistics of DWY100K and DBP15K. About the defi-
nition of neighbor similarity, please refer to Section 4. “4Link" is
the number of aligned entity pairs. “#Test Link" is the number of
aligned pairs for test.
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Table 2: Results on DWY100K. Bold results are our best result;
underline results are best baseline results.

Model | DWY100Kghp wa | DWY100Kgpp yg | macro
| Hitel Hit@10 | Hit@l Hi@lo | 1@
Model | DWY100K | DBP15K Supervised
| dbp_wd dbp_yg | zhen jaen fren MTransE [4] | 0.281 0520 | 0252 0493 | 0267
#Link | 99990 100000 | 15000 15000 15000 JAPE [30] | 0318 0589 | 0.236 0484 | 0277
#Test Link | 69993 70000 | 10500 10500 10500 IPTransE [54] | 0349 0.638 | 0.297 0.558 | 0.322
neighbor similarity | 0.633 0777 | 0418 0.188 0.182 GCN-Align [39] | 0477 - | o0.01 - | 0539
MuGNN [2] | 0.616 0897 | 0.741 0937 | 0.679
. . . RSN [11 0.656 - 0.711 - 0.684
(2) the strategy of self-negative sampling that furthers Eq. 2 into g | | |
. . BootEA [31] | 0.748 0898 | 0761 0.894 | 0755
Eq. 5 to avoid false-negative samples;
(3) the extension of MoCo [16] to two negative queues to sup- NAEA[55] | 0767 0918 | 0779 0913 | 0773
port an efficient usage of massive negative samples. TransEdge [32] | 0.788 0938 | 0792 0936 | 079
RDGCN [40] | 0.902 - | 0.864 - | 0883
4 EXPERIMENT COTSAE [44] | 0927 0979 | 0.944 0.987 | 0.936
We evaluate SelfKG on two widely-acknowledged public bench- BERT-INT[35] | 0992 . | o099 - | 099
marks: DWY100K and DBP15K. DWY100K is a monolingual dataset CEAFF[49] | 1000 - | Lo - | oo
and DBP15K is a multi-lingual dataset. Unsupervised & Self-supervised
L . MultiKE [52 0.915 - 0.880 - 0.898
DWY100K. The DWY100K dataset used here is originally built 52| | |
SelfKG | 0.983 0.998 | 1.000 1.000 | 0.992

by [31]. DWY100K consists of two large datasets: DWY100Kgpp_wd
(DBpedia to Wikidata) and DWY100Kgp, ye (DBpedia to YAGO3).
Each dataset contains 100,000 pairs of aligned entities. However,
the entity in the "wd" (Wikidata) part of DWY100K by, wd are rep-
resented by indices (e.g., Q123) instead of URLs containing entity
names, and we search their entity names via the Wikidata! API for
python.

DBP15K. The DBP15K dataset is originally built by [30]% and trans-
lated into English by [42]. The DBP15K consists of three cross-
lingual datasets: DBP15K,}, ¢ (Chinese to English), DBP15Kjj, e
(Japanese to English) and DBP15K¢ e (French to English). All
three datasets are created from multi-lingual DBpedia, and each
contains 15,000 pairs of aligned entities. We report results on both
original and translated version.

The statistics of DWY100K and DBP15K we use in our work
are shown in Table 1. Beyond basic information, we also present
a study on datasets’ average (1-hop) neighbor similarity, which
is the ratio of aligned neighbors of a pair of aligned entities, in-
dicating how noisy the neighborhood information is. We observe
that DWY100K’s neighborhood information is quite useful, while
DBP15K’s neighborhood information can be very noisy.

Experiment Setup. We follow the original split of DWY100K [31]
and DBP15K [30] which are shown in Table 1. For SelfKG, we
randomly take out 5% from the original training set as a dev set for
early stopping. We use Hit@k (k = 1, 10) to evaluate our model’s
performance as most works do. The similarity score is calculated
using the ¢, distance of two entity embeddings. The batch size is
set to 64, momentum m is set to 0.9999, temperature 7 is set to 0.08,
and queue size is set to 64. We use a learning rate of 107° with
Adam on a Ubuntu server with NVIDIA V100 GPUs (32G).

Uhttps://pypi.org/project/Wikidata/
Zhttps://github.com/nju-websoft/JAPE

4.1 Results

In this part, we report the results of SelfKG and baselines on
DWY100K and DBP15K. For all the baselines, we take the reported
scores from the corresponding papers, or directly from the tables in
BERT-INT [35], CEAFF [49] or NAEA [55]. According to the used
proportion of the training labels, we categorize all the models into
two types:
e Supervised: 100% of the aligned entity links in the training
set is leveraged
e Unsupervised & Self-supervised: 0% of the training set is
leveraged.

Overall performance on DWY100K. From Table 2, we observe
that SelfKG outperforms all the supervised and unsupervised mod-
els except for supervised CEAFF [49] and BERT-INT [35]. However,
without any supervision, SelfKG only falls behind supervised state-
of-the-art CEAFF on DWY100Kgpp, wq by @ minimal margin of 1.2%.
The reason why DWY100Kgp, yg enables SelfKG to achieve such
high accuracy is that the names of its aligned entity pairs are of
great similarity respectively, which makes this dataset more easier.
The inspiring result implies that at least for monolingual datasets
like DWY100K, supervision is not quite necessary for entity align-
ment.

Overall performance on DBP15K. For the DBP15K dataset, we
find that different baselines use different versions of DBP15K in
implementation. For example, BERT-INT [35] uses the original
multi-lingual version built by [30], while some other methods in-
cluding RDGCN [40] and DGMC [10] uses machine translation
(Google translation) to translate non-English datasets (i.e., zh, ja,
fr) of DBP15K into English. If DBP15K is translated, it should not
be considered as a multi-lingual setting to some extend. For fair
comparison, we report SelfKG’s results on both settings.


https://pypi.org/project/Wikidata/
https://github.com/nju-websoft/JAPE
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Table 3: Results on DBP15K. Methods marked with “*” use a
translated version of DBP15K [42].Bold results are our best result;
underline results are best baseline results.

‘ DBP15Kyp en | DBPISKJ}LH1 ‘ DBP15K; en ‘macro
| Hit@1 Hit@10 |Hit@! Hit@10 |Hit@! Hit@1o0 | Hit@1

Model

Supervised
MTransE [4] | 0308  0.614 | 0.279
JAPE [30] | 0.412  0.745 | 0.363
IPTransE [54] | 0406  0.735 | 0.367
GCN-Align [39] | 0413 0.744 | 0.399
SEA [25] | 0424 0796 | 0385
KECG [18] | 0478  0.835 | 0.490
MuGNN [2] | 0494  0.844 | 0.501
RSNs [11] | 0508  0.745 | 0.507
AliNet [33] | 0.539 0826 | 0.549
BootEA [31] | 0.629  0.848 | 0.622
NAEA [55] | 0.650  0.867 | 0.641
MRPEA [29] | 0.681  0.867 | 0.655
JarKA [3] | 0706  0.878 | 0.646
TransEdge [32] | 0.735 0919 | 0.719  0.932 | 0710  0.941 | 0.721
GM-Align [42] | 0.679 0785 | 0.740  0.872 | 0.894 0.952 | 0.771
JAPE [30]* | 0.731  0.904 | 0.828 0947 | - - | 0780
RDGCN [40] * | 0.708  0.846 | 0.767  0.895 | 0.886  0.957 | 0.787
HGCN [41] * | 0.720  0.857 | 0.766 ~ 0.897 | 0.892  0.961 | 0.793
DGMC [10] * | 0.801  0.875 | 0.848  0.897 | 0.933  0.960 | 0.861
RNM [56]* | 0.840 0919 | 0.872  0.944 | 0.938 0.954 | 0.883
CEAFF [49] | 0.795 - | 0860 - | 0.964 - | 0873
HMAN [43] | 0.871  0.987 | 0935 0.994 | 0.973  0.998 | 0.926
BERT-INT [35] | 0.968  0.990 | 0.964 0991 | 0.992  0.998 | 0.975

0575 | 0.244 0556 | 0.277
0.685 | 0324  0.667 | 0.366
0.693 | 0333  0.685 | 0.369
0745 | 0373  0.745 | 0.395
0783 | 0.400  0.797 | 0.403
0.844 | 0486  0.851 | 0.485
0.857 | 0.495  0.870 | 0.497
0737 | 0516  0.768 | 0.510
0831 | 0552 0852 | 0.547
0.854 | 0.653  0.874 | 0.635
0873 | 0.673  0.894 | 0.655
0.859 | 0677  0.890 | 0.671
0855 | 0.704  0.888 | 0.685

Unsupervised & Self-supervised
MultiKE [52] | 0.509  0.576 | 0393  0.489 | 0.639 0712 | 0.514
SelfKG | 0.745 0.866 | 0.816 0.913 | 0.957 0.992 | 0.840
SelfKG* | 0.829 0919 | 0.890  0.953 | 0.959  0.992 | 0.892

We observe that SelfKG beats all previous supervised ones except
for HMAN [43], CEAFF [49] and BERT-INT [35]. There is a gap
between supervised state-of-the-arts and SelfKG, which indicates
that multi-lingual alignment is surely more complicated than the
monolingual setting. We also observe a clear gap between different
language datasets. DBP15K,, ¢y, is the one with the lowest Hit@1,
DBP15Kj,_en is the middle, and DBP15Ky; ¢ has the highest score.
However, if we recall the neighbor similarity scores presented in
Table 1, it is the DBP15K,}, ¢y, that has the highest neighbor similar-
ity. This discovery indicates that the difference in performance can
be mostly attributed to challenges brought by multi-lingual setting
instead of structural similarities.

4.2 Ablation Study

We conduct extensive ablation studies respectively on DWY100K
and DBP15K for SelfKG. We ablate components regarding the dif-
ferent types of information it brings in. In addition, we conduct
studies over some important hyper-parameters using DBP15K,p,_en
dataset as an example.

X. Liu, H. Hong, X. Wang, Z. Chen, E. Kharlamoyv, Y. Dong, J. Tang

In Table 4, we present the ablation study for SelfKG on both
DWY100K and DBP15K, including ablation of neighborhood ag-
gregator and ablation of the self-supervised contrastive training
objective based on relative similarity metric (RSM) (i.e., use the
original encoding outputs from the LaBSE). We first observe that
the LaBSE provides rather good initialization. However, merely the
LaBSE is not enough. As we can see, on DWY100K, the LaBSE is ben-
efited substantially from our RSM, with an absolute gain over 10%
on DWY100Kgp, wd and 5% on DBP15K. The use of neighborhood
aggregator boosts SelfKG on both DWY100K and DBP15K, which
indicates the importance of introducing neighbor information.

Besides, we test the performance of SelfKG without self-negative
sampling strategy, which means we sample negative entities from
the target KG as most baselines do but without labels (which may
introduce the true positive ones). The results show that self-negative
sampling is necessary for SelfKG, which brings absolute gains of
2-7%. While the strategy increase in performance can be partly
attributed to avoid of collision, careful readers may think of why
possibly-existed duplicated entities does not harm as much as the
collision. It can be potentially explained that the entity alignment
task evaluates alignment accuracy across different KGs (e.g., Gx and
Gy) rather than within one KG (e.g., Gx). Even though we might
sample duplicated entities in Gx and push them away, it might
generate only limited influence on their similarities with the target
entity y in Gy,

Impact of the quality of pre-trained uni-space embedding.
To clarify the influence of different pre-trained word embeddings,
we conduct an experiment that replaces the LaBSE embedding we
use in SelfKG with FastText embeddings, which is widely used in
baseline methods.

First, comparing FastText results with and without training, the
after-training results are consistently higher by 8.5%-17.2% than
before-training results in Table 5. These results also outperform
all previous unsupervised baselines, indicating the effectiveness of
SelfKG when being applied to any embedding initialization.

Second, comparing FastText results with LaBSE results, we also
confirm that a stronger pre-trained language model like LaBSE will
boost SelfKG’s performance compared to FastText word embed-
dings. This is also the case in baseline methods, such as HMAN [43]
and BERT-INT [35], who leverage multi-lingual BERT as their en-
coders. Despite better pre-trained embeddings, in our ablation study
(Cf. Table 4 and Table 5), we show that the "-w.o. RSM + neighbors"
(i.e. LaBSE before SelfKG training) can be significantly improved
by 6.4%-28.2% with SelfKG, which demonstrates the usefulness of
our method.

Impact of relation information and multi-hop structure in-
formation. To better examine whether relational structural infor-
mation will help in the self-supervised setting (which might have
different results from previous supervised observations), we first
conduct experiments on incorporating multi-hop information and
then integrate relation information. Table 6 shows the results on
DBP15K when multi-hop neighbors (more specifically, 20-nearest-
neighbor subgraph) are leveraged instead of 1-hop ones. We observe
that the performance is actually worse. This is probably because of
the heterogeneity of different knowledge graphs and also because
the neighbor noises may be amplified in a self-supervised setting.
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Table 4: Ablation Study of SelfKG’s components and strategies on DWY100K and DBP15K.

| DWY100Kgpp wa | DWY100Kghp ye |

DBP15Ky}, en

| DBP15Kj, en

DBP15Kf; en

Model
| Hit@1 Hit@10 | Hit@1 Hit@10 | Hit@1 Hit@10 | Hit@1 Hit@10 | Hit@1 Hit@10
SelfKG 0.983 0998 | 1.000 1.000 | 0.745 0.866 | 0.816 0.913 | 0.957  0.992
-w.0. RSM 0.884  0.963 | 1.000 1.000 | 0.670  0.813 | 0760  0.867 | 0916  0.987
-w.0. neighbors 0.887 0987 | 1.000 1.000 | 0.638  0.783 | 0.732  0.849 | 0931  0.978
-w.0. RSM + neighbors 0.799  0.903 | 1.000  1.000 | 0581  0.739 | 0.689  0.815 | 0.899  0.964
-w.o0. self negative sampling 0918 0978 | 1.000  1.000 | 0.688  0.833 | 0773  0.882 | 0932  0.980

Table 5: Ablation Study on quality of pre-trained uni-space embedding on DWY100K and DBP15K.

‘ DWYlOOdep_wd ‘ DWYlOOdep_yg ‘

DBP15K,}; en

DBP15K; cn

| DBP15Kjs cn |

Model
| Hit@1 Hit@10 | Hit@1 Hit@10 | Hit@1 Hit@10 | Hit@1 Hit@10 | Hit@1 Hit@10
FastText - before SelfKG training | 0.837 0.910 0.864 0.939 0.590 0.688 0.645 0.755 0.828 0.898
- after SelfKG training 0.921 0.986 0.954 0.993 0.707 0.834 0.755 0.865 0.914 0.967
LaBSE - before SelfKG training 0.799 0.903 1.000 1.000 0.581 0.739 0.689 0.815 0.899 0.964
- after SelfKG training 0.983 0.998 1.000 1.000 0.745 0.866 0.816 0.913 0.957 0.992
Table 6: Ablation Study of multi-hop structure and relation 4.3 SelfKG v.s. Supervised SelfKG

information on DBP15K.

| DBP15K,p en | DBP15Kjs en | DBP15Kg en

Model
| Hit@1 Hit@10 |Hit@1 Hit@10 | Hit@1 Hit@10
SelfKG | 0.745 0866 | 0816 0913 | 0.957  0.992
multi-hop 0.685 0.834 | 0.769 0.876 | 0.936  0.983
with relation | 0.750 0.876 | 0.819 0.921 | 0.959 0.994

Based on the 1-hop restriction, as for incorporating relation
information, we combine relation name embeddings and their cor-
responding tail entity name embeddings as the new 1-hop neighbor
embeddings. We can see that the results are improved by a slight
margin with relation information, which demonstrates that rela-
tional information is of a little usefulness.

Impact of hyper-parameters. The main hyper-parameters in
SelfKG are 1) negative queue size and batch size (which influence
the capacity of negative samples), and 2) momentum coefficient m
that controls SelfKG’s training stability.

As pointed out in Theorem 1 and 2, the error term of contrastive
loss decays with O(M_z/ 3), which indicates the importance of
enlarging the number of negative samples. Fixing batch size to 64,
we change the sizes of the negative queue and derive the curve in
Figure 4. The performance increase is not obvious when queue size
is between 10° and 10; but as it grows to 102, the improvement
becomes significant. Fixing queue size to 64, along the increase of
batch size, the improvement is more stable ranging from 10 to 10%.

For momentum coefficient m, we discover that a properly large
m such as 0.9999 is usually better for SelfKG. Besides, a proper m
is also critical for better training stability (Cf. Figure 4). A small
momentum leads to faster convergence, but also representation col-
lapse and consequent poorer performance. A too-large momentum
(e.g., 0.99999) converges too slow.

In practice, we often encounter low-data resource situations where
there is very limited supervision. To justify SelfKG’s scalability, we
compare self-supervised SelfKG with its supervised counterpart
SelfKG (sup) on DBP15K,}, oy, across different data resource settings.
SelfKG (sup) follows the conventional supervised entity alignment
methods using Absolute Similarity Metric as presented in Eq. 3.

In our preliminary experiment, we find that the original
DBP15Kk’s data split (30% labels for training and 70% for testing) is
not sufficient to present SelfKG (sup)’s advantage, resulting in a
Hit@1 of 0.744 for SelfKG (sup) and 0.745 for SelfKG. So we con-
struct a new split of DBP15Ky}, ¢p that contains 20% for testing and
80% for constructing different sizes of training set. The result is pre-
sented in Figure 5, where the horizontal axis indicates the ratio of
training labeled entities for SelfKG (sup) to all entities. We observe
that SelfKG is approximately comparable to SelfKG (sup) using an
amount of 25% labeled entities, which accords with our observation
in the aforementioned preliminary experiment. When using less
than 25% amount of labeled entities, SelfKG performs much better
than SelfKG (sup), which demonstrates the effectiveness of SelfKG
in low supervised data resource settings.

5 RELATED WORK

Entity alignment. Entity alignment, also named entity resolution,
ontology alignment, or schema matching, is a fundamental problem
in the knowledge graph community [48] that has been researched
for decades. Before the deep learning era, most approaches focus on
designing proper similarity factors and Bayesian-based probability
estimation. [34] develops the idea of transforming the alignment
into minimizing the risk of decision making. RIMOM [20] proposes
a multi-strategy ontology alignment framework, which leverages
primary similarity factors with the Cartesian product to align con-
cepts unsupervisedly. [21] argues for rule-based linking and design
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Figure 4: Study on (a) negative queue size, (b) batch size, and (c) momentum on DBP15K,}, ¢y, (c) presents the test Hit@1 curve

throughout the training epochs.
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Figure 5: SelfKG vs. SelfKG (sup) on DBP15K. SelfKG works
well in a low-data resource setting.

arule discovery algorithm. [53] develops an efficient multi-network
linking algorithm based on the factor graph model.

Recently, embedding-based methods have drawn people’s atten-
tion due to their flexibility and effectiveness. TransE [1] is the very
beginning to introduce the embedding method to represent rela-
tional data. [4] develops the knowledge graph alignment strategy
based on TransE. [30] argues for a cross-lingual entity alignment
task and constructs the dataset from DBpedia. [51] proposes to em-
bed entity ego-network to vectors for the alignment. [39] introduces
the GCN to model both the entity and relation in knowledge graphs
to perform the alignment. [36] argues that we can use attributes
and structure to supervise each other mutually. BERT-INT [35]
proposes an interactive entity alignment strategy based on BERT
and substantially improves the supervised entity alignment perfor-
mance on public benchmarks. [50] designs heterogeneous graph
attention networks to perform large-scale entity linking across the
open academic graph.

However, most embedding-based methods nowadays rely heav-
ily on supervised data, hindering their application in real web-scale
noisy data. As a prior effort, in [22] authors present self-supervised
pre-training for concept linking but with downstream supervised
classification. In this work, we endeavor to investigate the potential
of a completely self-supervised approach without using labels to
reduce the cost of entity alignment while improving performance.

Self-supervised learning. Self-supervised learning [23], which
learns the co-occurrence relationships in the data without human
supervision, is a data-efficient and powerful machine learning par-
adigm. We can divide them into two categories: generative and
contrastive.

Generative self-supervised learning is often related to pre-
training. For instance, BERT [6], GPT [27], XLNet [45] and so
on [7, 28] develop the field of language model pre-training, which
boost the development of natural language processing. The con-
trastive self-supervised learning is recently proposed by MoCo and
SimCLR [5, 16] in computer vision to conduct successful vision pre-
training. The core idea of leveraging the instance discrimination
and contrastive loss has been proved to be especially useful for
downstream classification tasks. Self-supervised learning has also
been applied to graph pre-training tasks, such as in GCC [26], the
authors pre-train the structural representation of subgraphs using
contrastive learning and transfer the model to other graphs. [47]
proposes adding augmentations to sampled graphs following Sim-
CLR’s strategy to promote graph pre-training performance.

6 CONCLUSION

In this work, we re-examine the use and effect of supervision in
the entity alignment problem, which targets aligning entities with
identical meanings across different knowledge graphs. Based on
the three insights we derive—uni-space learning, relative similarity
metric, and self-negative sampling, we develop a self-supervised
entity alignment algorithm—SelfKG—to automatically align enti-
ties without training labels. The experiments on two widely-used
benchmarks DWY100K and DBP15K show that SelfKG is able to
beat or match most of the supervised alignment methods which
leverage the 100% of the training datasets. Our discovery indicates
a huge potential to get rid of supervision in the entity alignment
problem, and more studies are expected for a deeper understanding
of self-supervised learning.
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A APPENDIX
A.1 Proof to Proposition 1

Proof.  Notice that % is increasing w.r.t x € R,x > 0, where

a € R,a > 0is a constant. Then we have:
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A.2 Proof to Theorem 2
Proof. We follow the outline of Wang’s proof [38].
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where the last equality is by the S.L.L.N. (Strong Law of Large
Numbers) and the Continuous Mapping Theorem.

The convergence speed is derived as follows, where A > 1 and
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where the second inequality follows the Jensen Inequality based
on the the concavity of log.

For the other side:
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where the first inequality follows an application of Lagrange’s
mean-value theorem, and the last inequality follows the bound
from Chebychev’s inequality, which can refer to [38].

Therefore, The noisy ASM still converges to the same limit
of ASM with absolute deviation decaying in O(M™2/3), combing
the derivations of both sides above. O

A3
Let Qy, Qy be the space of knowledge graph triplets, n € N. Let
{7 Qx — R”}?ﬁl, {y;7 1 Qy — R"}?ﬁl be i.i.d random variables
with distribution py, py. S -1 denotes the uni-sphere in R". If there
exists a random variable f : R" — St f ), f(y;) satisty
the same distribution on Sd_l, 1 <i £ M., then we have

Proof to Theorem 3
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Because |log S| is bounded, with Dominated Covergence The-
orem, the sign of mathematical expectation (i.e. integral) can be
exchanged with the sign of limit:
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A.4 Details on Implementation

A.4.1 Dataset. For both DWY100K® and DBP15K* datasets we
used, we do simple data processing on the original datasets built
in BootEA [31] and JAPE [30] respectively. The process of data
processing is as follows:

Firstly, we remove the redundant prefixes of the URLs repre-
senting the entities, leaving the meaningful entity names at the
end. For example, in DBP15K,}, ¢, dataset, there is an entity repre-
sented by "http://dbpedia.org/resource/2012_Summer_Olympics".
We remove the substring in front of "2012_Summer_Olympics" to
remove the useless part. Then we replace the underscores used to
connect words in the entity names with spaces, so that the entities
can be represented by their original entity names. In addition, we
replace the indices that represent entities in DWY100Kqp;, wd (e-g-,
Q123) with strings of entity names. The purpose of this step is to
make the entity names as original as possible to let our model bet-
ter extract the character-level information and the semantic-level
information with useful data. Then, we need to map every entity to
a unique index in every pair of KGs respectively. The pairs of KGs
are the subdatasets of DWY100K and DBP15K: DWY100Kdpp wds
DWY100Kapp_ye, DBP15K;_en, DBP15Kj,_en and DBP15Ky ¢y We
use DBP15K dataset provided in [42] and the DWY100K dataset
provided in [30] as our original dataset and follow the indices they
created in our experiments since they have already done this pro-
cessing step.

As for obtaining 1-hop neighbors, we treat the KGs as undirected
graphs, that means we use the relational triples in the datasets to
find all the entities connected to an entity regardless of the direction
of the connection.

3Can be downloaded from https://github.com/nju-websoft/BootEA
“4Can be downloaded from https://github.com/syxu828/Crosslingula-KG-Matching
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Finally, we reconstruct Dataset and use DataLoader of Pytorch’s
torch.utils.data package to packet our data and create batches. Be-
cause we do not use any labels in our model for training, we set
the indices of the entities as the y data which is usually used to
contain the labels in Dataset package. As for the x data which is
the training data in Dataset package, we set the entity names of the
center entities and the corresponding neighbors with the adjacency
matrix of the center entities as the x data.

A.4.2  Implementation Notes. Our model is implemented using
Python package Pytorch 1.7.1.% The experiments were conducted
on a GNU/Linux server with 8 Tesla V100 SXM2 GPU and 32G GPU
RAM mainly, and also 56 Intel(R) Xeon(R) Gold 5120 CPU(2.20GHz),
500G RAM.

For both experiments on DWY100K and DBP15K, we randomly
select 5% links from the training set in the original datasets as our
validation set and evaluate our model’s performance both on the
validation set and the testing set. We stop the training progress
once our model reaches the best performance on the validation set
and record Hit@1 and Hit@10 results on the testing set.

A.4.3  Similarity Search. In order to evaluate our model on the
validation set and the test set efficiently, we apply Faiss®, a library
for efficient similarity search.

In the evaluation period, we apply the IndexFlatL2 as indexer,
which is based on £, distance. Once the indices are built, via the
kd-tree algorithm used in Faiss, the top 1 and top 10 closest entities
in the target KG of every entity in the source KG can be found
efficiently.

A.5 Runtime

On the time efficiency of using large number negative samples in
SelfKG, by leveraging multiple negative queues with Moco [16],
the running time of SelfKG is significantly reduced even when the
sample size is large, making it similar to the common negative sam-
pling method adopted in state-of-the-art baseline methods. Details
are discussed in Section 3.4.

A.6 Limitations

There are mainly two limitations in SelfKG. Firstly, SelfKG requires
good embeddings to ensure the unified representation for both KGs.
As we clarified in Section 4.2, we confirm that a better pre-trained
language model like LaBSE will boost the performance of SelfKG.
This issue is also commonly faced by other embedding-based entity
alignment methods. Secondly, SelfKG still underperforms some su-
pervised state-of-the-art methods. Some of the supervised methods
such as BERT-INT[35] can reach almost an accuracy of 100% on both
DBP15K and DWY100K, which outperforms our self-supervised
solution. The gap is expected since supervision does provide much
useful information for the alignment task. The ultimate goal of self-
supervised methods is to match or even beat supervised methods.

More details can be found in our code https://github.com/THUDM/SelfKG
®https://github.com/facebookresearch/faiss
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